
Generals Exam 2007, Part II, Problem 2
The Rayleigh-Taylor Instability and the Energy Principle (MHD)

Clayton Myers – 26 March 2009

The goal here is to analyze the stability of a slab-geometry plasma supported against a gravitational
force by a magnetic field. In Cartesian coordinates, the gravitational force ρg is defined to be x-
directed such that

ρg = −ρgêx. (1)

The magnetic field is perpendicular to the gravitational force. Thus, it is defined to be z-directed,
and it is assumed to vary only along the direction of the gravitational force such that

B = B(x)êz. (2)

Part (a)

Examine the momentum equation, which has been modified to include the gravitational force:

ρ
dv
dt

= J × B−∇p + ρg. (3)

The pressure gradient is zero because the plasma is assumed to be cold (p = 0). In equilibrium the
time derivative will vanish, leaving the simple equilibrium force balance equation

−ρg = J× B. (4)

Rewriting J using Ampère’s Law (∇× B = μ0J) and substituting for the gravitational force from
Equation 1, the equilibrium force balance equation becomes

ρg =
1
μ0

(∇× B) ×B = − 1
μ0

B ×
[(

∂

∂x
êx +

∂

∂y
êy +

�
�

�∂

∂z
êz

)
× Bêz

]

= − 1
μ0

(Bêz) ×
[
−∂B

∂x
êy +

�
�

��∂B

∂y
êx

]
=

1
μ0

BB′êx,

(5)

where the convention ∂B/∂x = B′ has been adopted. Noting that this vector equation reduces to
a scalar equation because g = −gêx, the final equilibrium force balance equation is simply

ρg = −BB′

μ0
(6)
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Part (b)

The energy principle integral modified to include the effect gravitational force is given in the problem
to be

δW =
1
2

∫
V

d3r
[
γp|∇ · ξ|2 − ξ∗ · ∇(ξ · ∇p) +

1
μ0

|Q|2 − ξ∗ · J× Q + ξ∗ · g∇ · (ρξ)
]

, (7)

where
Q ≡ ∇× (ξ × B) = (B · ∇)ξ − B(∇ · ξ) − (ξ · ∇)B. (8)

The necessary and sufficient condition for stability is δW ≥ 0. The first two terms in Equation 7
vanish in the cold plasma limit because they both include a factor of p. This leaves the δW integral
as

δW =
1
2

∫
V

d3r
[

1
μ0

|Q|2 − ξ∗ · J × Q + ξ∗ · g∇ · (ρξ)
]

. (9)

The form of the most destabilizing displacement ξ is given in the problem to be

ξ = ξ̃(x)eiky (10)

Note that this form of ξ is independent of z such that no energy from the displacement is expended
in bending fieldlines. The mathematical equivalent of this no-fieldline-bending statement is that
(B · ∇)ξ = 0. The expression for Q now reduces to

Q = −B(∇ · ξ) − (ξ · ∇)B. (11)

To minimize δW , select the components of ξ such that Q = 0. This ensures that the most possible
free energy remains to drive the instability. Substituting Equations 2 and 10 into Equation 11 gives

Q = −B

[
∂ξx

∂x
+ ikξy

]
êz − ξx

∂B

∂x
êz = −

[
B(ξ′x + ikξy) + ξxB′

]
êz = 0 (12)

Solving for ξy gives

ξy = − 1
ikB

[
Bξ′x + ξxB′

]
(13)

With the assertion that Q = 0, the energy principle integral reduces to

δW =
1
2

∫
V

d3r
[
ξ∗ · g∇ · (ρξ)

]
. (14)

Defining the integrand as I and expanding gives

I ≡ ξ∗ · g∇ · (ρξ) = −ξ∗xg∇ · (ρξ) = −ξ∗x∇ · (ρgξ). (15)

Substituting for ρg in the above expression from the equilibrium condition in Equation 6:

I = −ξ∗x∇ · (ρgξ) = −ξ∗x∇ ·
(
−BB′

μ0
ξ

)
= ξ∗x

[
∂

∂x

(
BB′

μ0
ξx

)
+

∂

∂y

(
BB′

μ0
ξy

)]
. (16)

Breaking out the above equation and evaluating the individual terms gives

∂

∂x

(
BB′

μ0
ξx

)
=

1
μ0

[
(B′)2ξx + BB′′ξx + BB′ξ′x

]
(17)

∂

∂y

(
BB′

μ0
ξy

)
=

1
μ0

ikBB′ξy. (18)
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Substituting ξy from Equation 13 into the latter expression above gives

∂

∂y

(
BB′

μ0
ξy

)
=

1
μ0

ikBB′ξy =
B′

μ0
���ikB

(
− 1

���ikB

[
Bξ′x + ξxB′

])
= − 1

μ0

[
BB′ξ′x + ξx(B′)2

]
. (19)

Folding Equations 17 and 19 back into Equation 16 gives

I = ξ∗x

{
1
μ0

[
����(B′)2ξx + BB′′ξx +����BB′ξ′x

]
− 1

μ0

[
����BB′ξ′x +����

ξx(B′)2
]}

=
|ξx|2
μ0

BB′′. (20)

The condition that I ≥ 0 is equivalent to the energy principle condition for stability (δW ≥ 0).
Because |ξx|2 ≥ 0, the derived stability condition for the Rayleigh-Taylor instability is simply

BB′′ ≥ 0. (21)

This condition can be placed in an alternate form using the equilibrium condition in Equation 6,
which gives B′ to be

B′ = −μ0ρg

B
(22)

such that

B′′ =
∂

∂x

(
−μ0ρg

B

)
= −μ0ρg

B

[
ρ′

ρ
− B′

B

]
. (23)

Substituting back into the stability condition in Equation 21 gives

BB′′ = ��B

{
−μ0ρg

��B

[
ρ′

ρ
− B′

B

]}
= −μ0ρg

[
ρ′

ρ
− B′

B

]
≥ 0 (24)

Noting that
∂

∂x
ln

( ρ

B

)
=

ρ′

ρ
− B′

B
, (25)

and that
g · ∇ = −g

∂

∂x
, (26)

the stability condition can be rewritten in its final form as

g · ∇ ln
( ρ

B

)
≥ 0. (27)
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