# Generals Exam 2007, Part II, Problem 2 The Rayleigh-Taylor Instability and the Energy Principle (MHD) 

Clayton Myers - 26 March 2009

The goal here is to analyze the stability of a slab-geometry plasma supported against a gravitational force by a magnetic field. In Cartesian coordinates, the gravitational force $\rho \mathbf{g}$ is defined to be $x$ directed such that

$$
\begin{equation*}
\rho \mathbf{g}=-\rho g \hat{\mathbf{e}}_{x} . \tag{1}
\end{equation*}
$$

The magnetic field is perpendicular to the gravitational force. Thus, it is defined to be $z$-directed, and it is assumed to vary only along the direction of the gravitational force such that

$$
\begin{equation*}
\mathbf{B}=B(x) \hat{\mathbf{e}}_{z} . \tag{2}
\end{equation*}
$$

## Part (a)

Examine the momentum equation, which has been modified to include the gravitational force:

$$
\begin{equation*}
\rho \frac{d \mathbf{v}}{d t}=\mathbf{J} \times \mathbf{B}-\nabla p+\rho \mathbf{g} . \tag{3}
\end{equation*}
$$

The pressure gradient is zero because the plasma is assumed to be cold $(p=0)$. In equilibrium the time derivative will vanish, leaving the simple equilibrium force balance equation

$$
\begin{equation*}
-\rho \mathbf{g}=\mathbf{J} \times \mathbf{B} \tag{4}
\end{equation*}
$$

Rewriting $\mathbf{J}$ using Ampère's Law $\left(\nabla \times \mathbf{B}=\mu_{0} \mathbf{J}\right)$ and substituting for the gravitational force from Equation 1, the equilibrium force balance equation becomes

$$
\begin{align*}
\rho \mathbf{g}=\frac{1}{\mu_{0}}(\nabla \times \mathbf{B}) \times \mathbf{B} & =-\frac{1}{\mu_{0}} \mathbf{B} \times\left[\left(\frac{\partial}{\partial x} \hat{\mathbf{e}}_{x}+\frac{\partial}{\partial y} \hat{\mathbf{e}}_{y}+\frac{\partial}{\partial z} \widehat{\mathbf{e}_{z}}\right) \times B \hat{\mathbf{e}}_{z}\right] \\
& =-\frac{1}{\mu_{0}}\left(B \hat{\mathbf{e}}_{z}\right) \times\left[-\frac{\partial B}{\partial x} \hat{\mathbf{e}}_{y}+\frac{\partial B}{\partial y} \hat{\mathbf{e}}_{x}\right]=\frac{1}{\mu_{0}} B B^{\prime} \hat{\mathbf{e}}_{x} \tag{5}
\end{align*}
$$

where the convention $\partial B / \partial x=B^{\prime}$ has been adopted. Noting that this vector equation reduces to a scalar equation because $\mathbf{g}=-g \hat{\mathbf{e}}_{x}$, the final equilibrium force balance equation is simply

$$
\begin{equation*}
\rho g=-\frac{B B^{\prime}}{\mu_{0}} \tag{6}
\end{equation*}
$$

## Part (b)

The energy principle integral modified to include the effect gravitational force is given in the problem to be

$$
\begin{equation*}
\delta W=\frac{1}{2} \int_{V} d^{3} \mathbf{r}\left[\gamma p|\nabla \cdot \boldsymbol{\xi}|^{2}-\boldsymbol{\xi}^{*} \cdot \nabla(\boldsymbol{\xi} \cdot \nabla p)+\frac{1}{\mu_{0}}|Q|^{2}-\boldsymbol{\xi}^{*} \cdot \mathbf{J} \times \mathbf{Q}+\boldsymbol{\xi}^{*} \cdot \mathbf{g} \nabla \cdot(\rho \boldsymbol{\xi})\right], \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{Q} \equiv \nabla \times(\boldsymbol{\xi} \times \mathbf{B})=(\mathbf{B} \cdot \nabla) \boldsymbol{\xi}-\mathbf{B}(\nabla \cdot \boldsymbol{\xi})-(\boldsymbol{\xi} \cdot \nabla) \mathbf{B} . \tag{8}
\end{equation*}
$$

The necessary and sufficient condition for stability is $\delta W \geq 0$. The first two terms in Equation 7 vanish in the cold plasma limit because they both include a factor of $p$. This leaves the $\delta W$ integral as

$$
\begin{equation*}
\delta W=\frac{1}{2} \int_{V} d^{3} \mathbf{r}\left[\frac{1}{\mu_{0}}|Q|^{2}-\boldsymbol{\xi}^{*} \cdot \mathbf{J} \times \mathbf{Q}+\boldsymbol{\xi}^{*} \cdot \mathbf{g} \nabla \cdot(\rho \boldsymbol{\xi})\right] . \tag{9}
\end{equation*}
$$

The form of the most destabilizing displacement $\boldsymbol{\xi}$ is given in the problem to be

$$
\begin{equation*}
\boldsymbol{\xi}=\tilde{\boldsymbol{\xi}}(x) e^{i k y} \tag{10}
\end{equation*}
$$

Note that this form of $\boldsymbol{\xi}$ is independent of $z$ such that no energy from the displacement is expended in bending fieldlines. The mathematical equivalent of this no-fieldline-bending statement is that $(\mathbf{B} \cdot \nabla) \boldsymbol{\xi}=0$. The expression for $\mathbf{Q}$ now reduces to

$$
\begin{equation*}
\mathbf{Q}=-\mathbf{B}(\nabla \cdot \boldsymbol{\xi})-(\boldsymbol{\xi} \cdot \nabla) \mathbf{B} . \tag{11}
\end{equation*}
$$

To minimize $\delta W$, select the components of $\boldsymbol{\xi}$ such that $\mathbf{Q}=0$. This ensures that the most possible free energy remains to drive the instability. Substituting Equations 2 and 10 into Equation 11 gives

$$
\begin{equation*}
\mathbf{Q}=-B\left[\frac{\partial \xi_{x}}{\partial x}+i k \xi_{y}\right] \hat{\mathbf{e}}_{z}-\xi_{x} \frac{\partial B}{\partial x} \hat{\mathbf{e}}_{z}=-\left[B\left(\xi_{x}^{\prime}+i k \xi_{y}\right)+\xi_{x} B^{\prime}\right] \hat{\mathbf{e}}_{z}=0 \tag{12}
\end{equation*}
$$

Solving for $\xi_{y}$ gives

$$
\begin{equation*}
\xi_{y}=-\frac{1}{i k B}\left[B \xi_{x}^{\prime}+\xi_{x} B^{\prime}\right] \tag{13}
\end{equation*}
$$

With the assertion that $\mathbf{Q}=0$, the energy principle integral reduces to

$$
\begin{equation*}
\delta W=\frac{1}{2} \int_{V} d^{3} \mathbf{r}\left[\xi^{*} \cdot \mathbf{g} \nabla \cdot(\rho \boldsymbol{\xi})\right] . \tag{14}
\end{equation*}
$$

Defining the integrand as $\mathcal{I}$ and expanding gives

$$
\begin{equation*}
\mathcal{I} \equiv \boldsymbol{\xi}^{*} \cdot \mathbf{g} \nabla \cdot(\rho \boldsymbol{\xi})=-\xi_{x}^{*} g \nabla \cdot(\rho \boldsymbol{\xi})=-\xi_{x}^{*} \nabla \cdot(\rho g \boldsymbol{\xi}) . \tag{15}
\end{equation*}
$$

Substituting for $\rho g$ in the above expression from the equilibrium condition in Equation 6:

$$
\begin{equation*}
\mathcal{I}=-\xi_{x}^{*} \nabla \cdot(\rho g \boldsymbol{\xi})=-\xi_{x}^{*} \nabla \cdot\left(-\frac{B B^{\prime}}{\mu_{0}} \boldsymbol{\xi}\right)=\xi_{x}^{*}\left[\frac{\partial}{\partial x}\left(\frac{B B^{\prime}}{\mu_{0}} \xi_{x}\right)+\frac{\partial}{\partial y}\left(\frac{B B^{\prime}}{\mu_{0}} \xi_{y}\right)\right] . \tag{16}
\end{equation*}
$$

Breaking out the above equation and evaluating the individual terms gives

$$
\begin{align*}
\frac{\partial}{\partial x}\left(\frac{B B^{\prime}}{\mu_{0}} \xi_{x}\right) & =\frac{1}{\mu_{0}}\left[\left(B^{\prime}\right)^{2} \xi_{x}+B B^{\prime \prime} \xi_{x}+B B^{\prime} \xi_{x}^{\prime}\right]  \tag{17}\\
\frac{\partial}{\partial y}\left(\frac{B B^{\prime}}{\mu_{0}} \xi_{y}\right) & =\frac{1}{\mu_{0}} i k B B^{\prime} \xi_{y} \tag{18}
\end{align*}
$$

Substituting $\xi_{y}$ from Equation 13 into the latter expression above gives

$$
\begin{equation*}
\frac{\partial}{\partial y}\left(\frac{B B^{\prime}}{\mu_{0}} \xi_{y}\right)=\frac{1}{\mu_{0}} i k B B^{\prime} \xi_{y}=\frac{B^{\prime}}{\mu_{0}} i k B\left(-\frac{1}{i k B}\left[B \xi_{x}^{\prime}+\xi_{x} B^{\prime}\right]\right)=-\frac{1}{\mu_{0}}\left[B B^{\prime} \xi_{x}^{\prime}+\xi_{x}\left(B^{\prime}\right)^{2}\right] \tag{19}
\end{equation*}
$$

Folding Equations 17 and 19 back into Equation 16 gives

$$
\begin{equation*}
\mathcal{I}=\xi_{x}^{*}\left\{\frac{1}{\mu_{0}}\left[\left(B^{\prime}\right)^{2} \xi_{x}+B B^{\prime \prime} \xi_{x}+B B^{\prime} \xi_{x}^{\prime}\right]-\frac{1}{\mu_{0}}\left[B B^{\prime} \xi_{x}^{*}+\xi_{x}\left(B^{\prime}\right)^{2}\right]\right\}=\frac{\left|\xi_{x}\right|^{2}}{\mu_{0}} B B^{\prime \prime} \tag{20}
\end{equation*}
$$

The condition that $\mathcal{I} \geq 0$ is equivalent to the energy principle condition for stability ( $\delta W \geq 0$ ). Because $\left|\xi_{x}\right|^{2} \geq 0$, the derived stability condition for the Rayleigh-Taylor instability is simply

$$
\begin{equation*}
B B^{\prime \prime} \geq 0 \tag{21}
\end{equation*}
$$

This condition can be placed in an alternate form using the equilibrium condition in Equation 6, which gives $B^{\prime}$ to be

$$
\begin{equation*}
B^{\prime}=-\frac{\mu_{0} \rho g}{B} \tag{22}
\end{equation*}
$$

such that

$$
\begin{equation*}
B^{\prime \prime}=\frac{\partial}{\partial x}\left(-\frac{\mu_{0} \rho g}{B}\right)=-\frac{\mu_{0} \rho g}{B}\left[\frac{\rho^{\prime}}{\rho}-\frac{B^{\prime}}{B}\right] . \tag{23}
\end{equation*}
$$

Substituting back into the stability condition in Equation 21 gives

$$
\begin{equation*}
B B^{\prime \prime}=\not B\left\{-\frac{\mu_{0} \rho g}{\not B}\left[\frac{\rho^{\prime}}{\rho}-\frac{B^{\prime}}{B}\right]\right\}=-\mu_{0} \rho g\left[\frac{\rho^{\prime}}{\rho}-\frac{B^{\prime}}{B}\right] \geq 0 \tag{24}
\end{equation*}
$$

Noting that

$$
\begin{equation*}
\frac{\partial}{\partial x} \ln \left(\frac{\rho}{B}\right)=\frac{\rho^{\prime}}{\rho}-\frac{B^{\prime}}{B}, \tag{25}
\end{equation*}
$$

and that

$$
\begin{equation*}
\mathbf{g} \cdot \nabla=-g \frac{\partial}{\partial x} \tag{26}
\end{equation*}
$$

the stability condition can be rewritten in its final form as

$$
\begin{equation*}
\mathrm{g} \cdot \nabla \ln \left(\frac{\rho}{B}\right) \geq 0 . \tag{27}
\end{equation*}
$$

