Generals Exam 2007, Part II, Problem 2
The Rayleigh-Taylor Instability and the Energy Principle (MHD)
Clayton Myers — 26 March 2009

The goal here is to analyze the stability of a slab-geometry plasma supported against a gravitational
force by a magnetic field. In Cartesian coordinates, the gravitational force pg is defined to be z-
directed such that

pg = —pgeés. (1)

The magnetic field is perpendicular to the gravitational force. Thus, it is defined to be z-directed,
and it is assumed to vary only along the direction of the gravitational force such that

B = B(z)8.. (2)

Part (a)

Examine the momentum equation, which has been modified to include the gravitational force:

dv

pE:JxB—Vp—Fpg. (3)

The pressure gradient is zero because the plasma is assumed to be cold (p = 0). In equilibrium the
time derivative will vanish, leaving the simple equilibrium force balance equation

—pg =J x B. (4)

Rewriting J using Ampere’s Law (V x B = poJ) and substituting for the gravitational force from
Equation 1, the equilibrium force balance equation becomes
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where the convention dB/dz = B’ has been adopted. Noting that this vector equation reduces to

a scalar equation because g = —gé,, the final equilibrium force balance equation is simply
BB’
pg = — (6)
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Part (b)

The energy principle integral modified to include the effect gravitational force is given in the problem
to be
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where
Q=Vx(xB)=(B-V){-B(V-§ - (£-V)B. (8)
The necessary and sufficient condition for stability is 6W > 0. The first two terms in Equation 7

vanish in the cold plasma limit because they both include a factor of p. This leaves the dW integral
as
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The form of the most destabilizing displacement £ is given in the problem to be
€ = E(a)e’™ (10)

Note that this form of £ is independent of z such that no energy from the displacement is expended
in bending fieldlines. The mathematical equivalent of this no-fieldline-bending statement is that
(B - V)& =0. The expression for Q now reduces to

Q=-B(V-¢§-(£-V)B. (11)

To minimize dW, select the components of &€ such that Q = 0. This ensures that the most possible
free energy remains to drive the instability. Substituting Equations 2 and 10 into Equation 11 gives

€a
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Solving for &, gives
&="7p [Bém + éxB’] (13)
With the assertion that Q = 0, the energy principle integral reduces to
SW = %/Vd?’r [.5* -gV-(pﬁ)} (14)
Defining the integrand as 7 and expanding gives

T=¢£-gV-(p€) = &gV - (p€) = =&V - (pg€). (15)

Substituting for pg in the above expression from the equilibrium condition in Equation 6:

R o _BB' g 2 B_B’ 0 (BB’
—-av (o) —-av- (-22¢) —& |1 (Te) v o (50a)] o

Breaking out the above equation and evaluating the individual terms gives
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Substituting &, from Equation 13 into the latter expression above gives
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Folding Equations 17 and 19 back into Equation 16 gives
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The condition that Z > 0 is equivalent to the energy principle condition for stability (6W > 0).
Because |£;|? > 0, the derived stability condition for the Rayleigh-Taylor instability is simply

BB" > 0. (21)

This condition can be placed in an alternate form using the equilibrium condition in Equation 6,
which gives B’ to be

B = —% (22)
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Substituting back into the stability condition in Equation 21 gives
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Noting that
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the stability condition can be rewritten in its final form as

g Vi (%) > 0. (27)



