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1 Definitions

1 Definitions
Basic Plasma

Ap - Debye Length Section [2.1| on page
[KT,

Ap = 2360

€“ngo

Qs - Cyclotron Frequency

B
QZ — QS
msc
wps - Plasma Frequency - Section on page
CGS: )
2 47Tans
Wps = ——
ms
MKS: )
2 _ nodgg
P5 T mgeq
ps - Larmour Radius - Section [3.I on page
vl mguy
770, 4B
v - Thermal Velocity
kT
Vth,s =
ms

Mirror Machines - Section on page

1 - Magnetic Moment

_lmvi
=578

Tokamaks - Section on page

(1.1)

(1.2)

(1.5)



1 Definitions 7

€ - Inverse Aspect Ratio

€= — (1.8)

q - Safety Factor ¢ is the average pitch of the magnetic field line.

do rByg Br winding # long way (1.9)
— _— = = €— = .
a do RyBy Bp  winding # short way
wy, - Bounce Frequency - Section on page
1 Ugp
— 2= 1.10
wp=erp (1.10)
(vp)r - Radial Drift Velocity - Section on page [35]
v
(vp)y = %h (1.11)

Waves

vg & vy - Group and Phase Velocity - Section on page

vy = g: (1.12)
Vph = % (1.13)
Va4 - Alfven Velocity - Section [9.6 on page
Vi= 4W§§mi (1.14)
2
;} - ‘;2’; (1.15)
~v - Section [9.7] on page
v = Ay (1.16)

B3
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2 Simple Plasma Derivations

2.1 Plasma Shielding
Starting with a Gibbs Distribution for both particle typeeﬂ

s = noekqi?s ~ Ny + a .
n 1 ¢ 2.1

Using Poisson’s Equation and substituting in our particle distributions:

V26 = = (Zini — ne)

€0

e Zicd _ed
=—ng|e*i —e ke

€0

We then expand using the approximation e® ~ 1 + x:

€0 kT; kT,
_ GQTLO ¢ Z,L'Te i 1
kTeo T;
e*n Z; 1
— 0 b = =
keo T; T.
1
= o
D

Giving us the definition for the Debye Length:

kT eq
Ap = 2.2
p V e2ng (2:2)

2.2 Distance of Closest Approach

At the distance of closest approach, the potential energy of the system is at
a maximum, while the kinetic energy is zero. Before the particles interact,
they are moving at the thermal velocity V;. This is show in the following
equation:

With shorter time scales, the ions can be seen as stationary. If this is the case, replace
Ziq¢
n; = noe *Ti with n; = no.
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Figure 1: Distance of Closest Approach

bz
|

Figure 2: Mean Free Path

No

Y

Murp

2 2 2

e mVy — mVf 9
= = V

4mepb 2 + 2 mvT

Rearranging for b, we get:

62

= 2
dregmVy

Using the fact that %mV:,% = %k:T, we finally arrive at:

62

h—
dmeokT

(2.3)

2.3 Mean Free Path

The number of particles in a cylinder of radius b is the area of the volume
times the density ng. If we define the mean free path as the average length
travelled by a particle before it undergoes one collision, then we see that:
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7T1)2n0)\mfp =1

Rearranging, we find that

1 Vr
Agpy = —— = e 2.4
fp Th2ng  Veg (2:4)
2.4 Plasma Oscillations
Starting off with the following three equations:
on o
e +V.-nv=0 (continuity eq.) (2.5)
V - eE =e(n; —ne) (Poisson’s eq.) (2.6)
0
— (mnw) + V - (mnov) = enE (force eq.) (2.7)

ot

We then linearize these equations by making the following substitutions and
neglecting 2nd order terms ﬂ

n =ng+n
E - E1
V=0
arriving at:
8n1
V- eoﬂl = —€en (29)

dv

mnoa—t1 = —enoE; (2.10)

Taking % of (2.8)), and combining the result with (2.10|) gives us the follow-

ing:

9%ny —eE,
o Y <m>

2Any quantity with a 1 subscript is small.
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Then, subbing in (2.9)), we finally arrive at:

S+ —"ny =0 (2.11)
Obviously, this is the equation of a simple harmonic oscillator, with a fre-
quency wps, called the plasma frequency.
. 2
N1+ wpsn =0

2
2 qds1o
257 2.12
Wps €0 ( )
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3 Single Particle Motion

3.1 Cyclotron Frequency

Starting with the equations of motion for a charged particle in a magnetic
field B = ByZ and no electric field, and breaking it into components

d'u_g

& = (E+V xB) (3.1)
ﬁf:o (3.2)
%%:%%&:QM (3.3)
% = _%’Usz = —Qvy (3.4)

where we have defined the cyclotron frequency as €2; = q?%_ We can then

proceed in finding the equations of motion by taking the time derivative of

Eq.’s (3.3) and (3.4]), and subbing in Eq.’s (3.3)) and (3.4]) into the results.

Yy = —v, sin (Qt + «) (3.5)
& =wv, cos (Ut + a) (3.6)

To finish, we merely integrate the above equations with respect to time.
The gyro radius (Larmour radius) of the particle is defined as the radius
of the circular motion of the particles.

V] MgV

=, 4B (3.7)

3.2 FE x B Drift

Now we will look at the motion of a charged particle in a magnetic field
B = ByZz and an electric field of E = E, § + Ejj2. We break down Eq. (3.1])

into its components:

i = (3.8)

j= Qi+ LB, (3.9)
m

= 1pg, (3.10)

m
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The Z equation can be directly integrated. The other two equations are
solved by the same time derivative procedure as used in the previous section,
arriving at:

Y =% (3.11)
¥ =%+ LB (3.12)
m

For solutions to this set of equations, we plug in a slightly modified version

of Eq.’s (3.5) and (3.6).

Yy = —v, sin (U + «) (3.13)

&t =wvycos(QU+a)+ Vg (3.14)

Plugging in the & component of the above equation into Eq. (3.12]), we find
that

4B _E

Generally speaking, this velocity, the E x B drift velocity, is written as:

Vi = (3.15)

E xB

(3.16)

3.3 Gravity Drift

With the gravity drift, we merely have a force in the § direction:

Fy,=mg

We can see from the E x B drift that if we set ¢, = F, in Eq. (3.9)), we
can then plug in our new value for Fy, and proceed, arriving at a generalized
drift for forces:

FxB
In the gravity drift case, our drift is merely:
mg X B
V,=——— (3.18)

+=g qB2
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3.4 VB Drift
The VB drift can also be written in terms of Eq. (3.17). The relevant force

1S:

F =—-uVB

2
Since p = % this drift can be rewritten as:

B x VB
3.5 Curvature Drift
If we define a centrifugal “pseudo-force”:
2=2c
Eep=mvi g
where
R, - -
E—% =—(b-V)b
We can then utilize Eq. (3.17) for the curvature drift:
B x VB
| % =2W| = 2
Vewrs =2W= 53 (3.20)

3.6 Polarization Drift

Polarization drift arises from a time dependent electric field. The equations
of motion can be written as the following:

T =y

.. . q
= —Q; —FE,
y $+m y()

Proceeding much as we did in Section we find that:

q

F 4 0% = LOE
m
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Solving these equations lead to the normal E x B term in the & equation,
while in the § equation, we get the following;:

y =Vl Sin(Qit + Oé) + V})ol (3.21)
where
1 q .
Voo = ﬁ?%ﬁ (3.22)

37 VB” Drift

The VB is not a perpendicular drift like the previous drifts. This comes
about from the flux through a gyro loop being constant. The force felt by
the particle is:

0B,
a 0z
The “drift” associated with this force is, by using Eq. (3.17)):

F = = qu B,

B? B,
= U”?; ~ :|:U||§

Va
This “drift” of the particle motion leads to the bouncing seen in a mirror
machine, i.e. g conservation. More in mirror machines can be found in

Section .11
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4 Confinement Schemes

4.1 Mirror Machines
4.1.1 Magnetic Invariance

1 is the magnetic moment, and is defined as follows:

2

1muy
= _ 4.1
h=5g (4.1)
This definition of p is derived from the standard definition of y = I A, where
2
I = %= and the area A = mr? = %, By writing down the force associated
2m L w?
with p invariance,
dv 0B

where ds is a line element along B and multiplying the second and third
terms of the above equation by v = %, one gets

doy d (1 ,\  dB
T = ae \ 2" ) T
The particle’s total energy must be conserved, so

Combining the two preceding equations gives us

dB d

_ L uB) = 4.

por + o (wB) =0 (4.3)
dp
o _ 4.4
pril (4.4)

4.1.2 Adiabatic Invariants

i is the first adiabatic invariant in a mirror configuration. Adiabatic invari-
ants (J) are defined by

2rJ = j{pdq = constant (4.5)

where p and ¢ are the generalized momentum and coordinate that the motion
repeats itself over.



4.1 Mirror Machines 17

For u, the calculation is as follows

€A¢
p¢ = mv¢ + 7

1
= — d
J1 27rj§p¢ q

1
= [j{mercrL do + G%B-ﬁda}
2m c

1 e
=5 (mr%wc%r — EB?TT’%)

_ma, (M
_2LC_/‘I’ q

The second adiabatic invariant, J is the bounce time between mirrors,

with p = YL The third adiabitic invariant is the drift time around the
device ® with p = %.
o= jl{A -dl ~ constant (4.6)

See pg. 43 of Chen.

4.1.3 Trapping Condition

The trapping condition on particles in a mirror machine is based on p in-
variance. As can be seen from Eq. , 1 is constant in time. As a particle
moving in a mirror machine sees an increasing B, its v| must also increase
in order to keep u constant. Total energy of the particle also remains con-
stant, so as v increases, v decreases. At some point, if the magnetic field
is high enough, v = 0 and the particle turns around.

One can easily find the condition on the particles initial velocities that
determines whether or not the particle is trapped. By taking a particle with
an initial velocity of v|y at the midplane (B = By) as having too just enough
energy to escape

1
imvﬁo + uBo < Bmax (4.7)

Rearranging

1 2
EmUHO +1< Braz
uBo By

2
v B
0
g 11< max
ULO Bo
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Finally, defining the mirror ration R = Bg—(‘)” and using v? = vf_ + vﬁ, one
gets

v2

vi_R (4.8)

Noticing that sin @ = *+, one can rearrange Eq. (4.8) to the following

v

1 1
1\? By \2
sinf > <R) = (B 0 > (4.9)

Thus, the trapping condition in Eq. (4.9)) states that the any 6 of a confined
particle that is smaller than defined in the condition is not trapped by a
magnetic mirror.

4.2 Other Confinement Schemes

4.2.1 Common Machine Parameters

Device % % 1]
Tokamak 3-5 10-20 | 5%
Spherical Torus | 1.2 - 1.5 5 25%
RFP 3-5 1 25%
Spheromak 1-1.5 5 50%
FRC 1 0 1

4.2.2 Simple Tokamak Definitions

For other Tokamak related information/parameters, please refer to sections

on page [34] and [7] on page
€ - Inverse Aspect Ratio

€= — (4.10)

q - Safety Factor ¢ is the average pitch of the magnetic field line.

do rBy Br  winding # long way (4.11)
e _— fy =€ = .
1 do Ry By Bp  winding # short way
wy, - Bounce Frequency
wy = €2 0 (4.12)
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(vp)r - Radial Drift Velocity
(vp), = 2t (4.13)

R
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5 GPP2 Miscellaneous
5.1 Flux Functions
Vi x V¢ = B(R, 2) (5.1)
B =V x V¢ + By (5.2)
Flux surfaces have constant v (¢ is the flux function). The V¢ x V¢
part represents the poloidal field, while the By is the toroidal field. Other
relevant equations:
B-Vy=0 (5.3)
R
Y= / R'By(R,z)dR' (5.4)
0

Most places have By in the definition of ¥ equal to Bp, B,, or Bg. This
can be gotten from from the fact that

B=VxA (5.5)
10
B, = ﬁ@(RA(ﬁ) (5.6)
0Ay
Br=-— 5, (5.7)
Since we know that B, = Vi x V¢, or
1oy, 10y,

we can equate the two expressions for B, arriving at the above integral
definition of ¢ from the integral form of V x A = B and

= RA, (5.9)

5.1.1 Slab Geometry
¥(z,y) = Yo(z) — e (z) cos ky (5.10)
B=V¢yx2z2+B,2 (5.11)

Expand x = x¢ + ex; for flux surfaces. y = 0 = 27r is periodic, as is
z=0=27Ry.
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5.1.2 Cylindrical Geometry

Y(r, 0, 2) = Po(r) — ey (r) cos(mb — kz) (5.12)
B=Vyx2+B, <2+’::é> (5.13)
Expand r = rg 4 er1 for flux surfaces. z = 0 = 2w Ry is periodic.
5.1.3 Toroidal Geometry
Y =vY(R,z) = RAy (5.14)

B=Vix b+ By (5.15)

5.2 Field Line Curvature

We start with Ampere’s law |

J-'vxB (5.16)

W

1
Jxﬁz;(Vxﬁ)xﬁ (5.17)
(5.18)

If we rewrite the vector identity
V(A-B)=Ax(VxB)+Bx(VxA)+(A-V)B+(B-V)A (5.19)
setting A = B, and using it on the RHS of the J x B equation, we get
(VxB)xB=B-VB — %VB2 (5.20)
Now we have to examine the B - VB term.

B-VB=Bb-V(Bb) =B’ -Vb+ Bbb- VB (5.21)
S—_——
=1bb-V(B2)

3Tf we choose, we can add a —V P to each side at this point. If we don’t want a scalar
P, we use V - (1P). Of course, this complicates things, but if we carry out the derivation

we would get J x B— VP =V [% —T(P—i— g—;)] See Sectionon page
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Simplify using

k=b-Vb 5.22)
V.=V -bb-V 5.23)
we arrive at
BZ
pJ x B = kB% — Vig (5.24)

The first term on the RHS of equation represents the tension in the
field lines, while the second term represents magnetic pressure.

5.3 Conservative Forms

Conservative forms are useful when working with mass, energy, and density.
When one puts equations representing these quantities in the following form,
it is known as the conservative form:

o
5 ()+V-()=0 (5.25)

Three equations for mass, energy, and momentum in their conservative
forms follow below.

gt +V . (pv) = Mass (density) (5.26)
ow
rra +V.85= Energy (5.27)
where W is energy and S is defined below
1 , B? P
W = §p1} + E + ﬁ
2
S=v< +P) +-ExB
2 v-=2 W
a p—
g (pv)+V-T Momentum (5.28)

where T is the stress tensor, defined below

= B2\= 1
T—pvv—|—<P+>I— B
21 Iz
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54 O0W

To look for stability in a system, one tries to make §W as small as possible.
If W is still > 0 after one does this, then it is stable.

TSt R OO 10
DY 3

— 1<% b x Q +P v -cﬂ >z (5.29)

4 5

Terms 1, 2, and 5 in equation ([5.29]) are all stabilizing terms. 1 corre-
sponds to shear Alfvén waves and the energy required to bend field lines.
2 matches up with compressional Alfvén waves and the energy required to
compress field lines. 5 represents sound waves and the energy necessary to
compress the plasma. The last two terms, 3 and 4 are destabilizing terms,
and are pressure and current driven terms.
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6 MHD

6.1 MHD Equations
To begin, we start out with Boltzmann’s Equation.

of

0
ot +U'Vf+;(E+UXB).VUf_<f>cozz (6.1)

ot

The collision term is 0 for ideal MHD. If we take moments of this, we can get
the continuity equation and force balance equation. With Ampere’s Law,
Faraday’s Law, Ohm’s Law and an equation of state, we have the MHD
equations.

Conservation of Momentum:

ov

pa+pQ-VQ=—Vp+l><E+pg (6.2)

Continuity Equation:

0
ait):—V-(py)z—pV-y—y'Vp (6.3)
Ampere’s Law:
OE
V x B = uod + /106067? (6.4)
Faraday’s Law:
0B
E=——— 6.5
V xE 50 (6.5)
Ohm’s Law:
JxV V.II
E'va+<X+ + 2 )sz (6.6)
neeg neeg neeg
Equation of State
d (p
—(—=]=0 6.7
dt (m) (6.7)
or
d,
L PV v =0 (6.8)

dt
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For the derivation of the alternate form of the adiabatic equation, use

Eq. (6.3]). Also, see Section [9.11.2| on page

For Ohm’s Law, the terms in the parenthesis are often ignored for MHD.

7 is the resistivity
n= Mele;

g (6.9)

For Ideal MHD, n = 0.

Alternately, for the Equation of State, one can use either of the following
two equations, the first being for incompressible fluids, while the second two
are derived from the first.

V-v=0 (6.10)
dp
g 11
2 =0 (6.11)
dp
& 12
2 =0 (6.12)

Lastly the Force Balance equation is simply Eq. (6.2]) with p% =0, so

Vp=JxB (6.13)

6.2 Assumptions for MHD

Assumptions made for MHD to be valid are:
1. small gyroradius
2. high collisionality (scalar p)
3. small resistivity, with n = 0 in Ideal MHD.

6.3 Magnetic Islands

In slab symmetry

Blr.y) = Vile.y) x 2 + Bu() (6.14)
U(z,y) = to(x) — etr(x) cos(ky) (6.15)
xr =z + €x] (6.16)

First we sub in the definition of x into our equation for ¢ and Taylor
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expand around xg. Finally we solve for z.

Yo(z0) —
Y(xo + ex1,y) = Yo(zo + €x1) — €1 (xo + €x1) cos(ky) = const.  (6.17)
Y = o(wo) — ex1¥p(zo) — €[v1(zo) — ex11hy (20)] cos(ky) = ho(zo) (6.18)

O(e2)—0 const.
Y1(20)

o(zo)

cos(ky) (6.19)

Tr1 =

All this leads us to the perturbed flux surfaces/]

Y1(zo)

0(z0)

T =1x0+€ cos(ky) (6.20)

When ¢, — 0, then 2 — oco. Thus, this description breaks down at these
surfaces, called rational surfaces. Magnetic islands occur in a plasma at
rational surfaces, or when ¢(rg) = ™.

To continue the calculation to see what occurs at these rational surfaces,

one must go the 2nd order. In order to do this, we set

%b:gco = o(w9) =0 (6.21)

We then Taylor expand 1 again to the second order.

2
¥ = 60 = Thf (o) — ety (o) cos(ky) (6.22)

After solving for x1, we get

_ €1 (o) ky
x] = 12 W (z0) cos ( 5 > (6.23)

To normalize this equation, one notes that

2
2

cos(ky) = 2 cos? <l<:y> -1

cos® =1 — sin

41If we wish to do the same for cylindrical geometry, simple replace the z’s with r’s,
and the argument of the cos with mé — kz.
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Also, one defines the following terms

P
N 6.24
w ,/%, (6.24)

9 0V + ey
= (6.25)

where w is the island width and p is the flux coordinate. Putting all of this

together, one gets
k
T = ig)\/pQ — sin? (2y) (6.26)

For more on tearing modes, see Section [6.6] on page

6.4 MHD Equilibrium

To derive the static MHD equilibrium equations, take % =0and v =0in
the MHD equations to get the following.

Vp=JxB (6.27)
V x B = poJ (6.28)
V.-B=0 (6.29)

For non scalar pressures, the first equation above can be written as

JxB=-V T, (6.30)

T = bbT) + (I - bb)T, (6.31)
_ /T. 0 0

T=(0 7, 0 (6.32)
0 0 T

where

B2

T, = Peml + — 6.33

L=Pemi 5 (6.33)
B2

Ty = Pornl| — — 6.34

| = Pem)| 210 ( )

V.-T=0 (6.35)
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and by multiplying by x, integrating, and applying Gauss’s law, we can
calculate the virial.

z-V-T=V-(z-T)—Tr(T) (6.36)
2

/VV-(m.T)dSm—/S@;-T)-ds—/V <3pcm+2BMO> Pz (6.37)

In a confined plasma, one can set volume V large enough so that the
surface S lies outside the plasma. pe,, and T, vanish here and the magnetic
field is due purely to plasma currents. Thus the virial become arbitrarily
small. In this same large-V limit, the right hand side of the above equation
becomes independent of V' and remains finite. Thus, a plasma cannot be
confined by its self-generated electromagnetic field alone.

See pages 77-79 in Hazeltine.

6.4.1 Screw Pinch Equilibrium

To derive the screw pinch equilibrium, one starts off with the force balance
equation, Eq. (6.38)), and the equation for field line curvature derived above,

Bq. (520)

Vp=JxB (6.38)
Combining the two by setting both equations equal to J x B, one notes
that
1 B?
ro=y=r(1+5)
B |
R = —@7’

Putting this all together takes us to the screw pinch equilibrium equation.

o) B2 1 B?
0 ( magnetic> <ﬁeld line)
— | pressure + + . =0
or pressure tension

6.5 Grad-Shafranov Equation - Axisymmetric Equilibrium

To derive the Grad-Shafranov equation, we essentially take the Force Bal-
ance equation (Eq. (6.13)) and Ampere’s Law. Starting with an equation
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for B
B =V¢Y xV¢+ Byo (6.40)
N———
B, B,
We also know
7V xB,= (6.41)
£2-VxB,= (6.42)

We then take the curl of B,, to get the Grad-Shafranov operator, defined
below.

(0B, 0B\ L[ 10% 0 (10¥\] & ,.
VXBp‘ﬁ( 5.  or )¢[ R0 9R\RoR)| = RV
(6.43)
where
. A 0% 0 1 0¢
Since
V xB=puj (6.45)
or
4j=(V x B)y+(V x B), (6.46)
which, using Eq. and
V x B¢q.7) =V x (RByV¢) = V(RBy) x Vo + (RBy)V x Vo  (6.47)
| ——
VX V¢—0
we can rewrite as
pg = —A*YV ¢ + V(RBg) x V¢ (6.48)

We then take a minute to look at the following. Since

jxB=VP (6.49)

1. Take V x

B=pj.

2. Operate on
the Force Bal-
ance Eq. with
B-( ).
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then
B.-(jxB)=B-VP=0 (6.50)

The above statement is true since B L (j x B). Since this means that P is
constant along B lines, then P(1)). Finally,

P
VP =V (6.51)

Using Eq. again, we find that if we dot j into it, we get
j-gxB=0=3-VP (6.52)
which, using the result from Eq. , becomes
J-Vi=0 (6.53)

Returning back to Eq. (6.48]), dotting it with V1), and using the preced-
ing result to set the whole thing to zero,

[~A*)V ¢ + V(RBy) x V|- Vi =0 (6.54)

The first term in the brackets goes away since v is independent of q,?) The
rest of the equation becomes

V(RBy) x V¢ -V =V (RBy) - Vo xVip =0 6.55
(RBg) x V¢ - Vi) = V(RBy) ¢_BP¢ (6.55)
B, -V(RB;) =0 (6.56)
U

RBy = F(v) (6.57)

Plugging all of this into equations and
B=V¢xVo+F))Ve¢ (6.58)
1j = —A* Vo + F () Vi x Vo (6.59)

Crossing these two equations together gives us

pj x B=V¢ x (Vi x V¢) [-A*p — FF'| = uVP = puP'()Vy (6.60)
y
= Vi(V$)’ V¢ (V- Vo) (6.61)
SN——— N——r—

:évw =0

3. Operate on
the Force Bal-
ance Eq. with

i)

4. Dot Vx B =
pg with Vip.

5. Take puJ x B.



6.6 Tearing Modes 31

Which leads us to the final form of the Grad-Shafranov equation:

FrVU(AS = FF) = P (0) Vi
4
A*p = —FF' — uR?P' (%) (6.62)

6.6 Tearing Modes
Consider a system with a magnetic field in slab geometry
B=Vyx2+B,2 (6.63)

B, > B;,B, = V -v = 0. We then look at the Grad-Shafranov equation
with P =0
V2 = —pj. (6.64)

The next step is to expand ¥ and j, about the equilibrium (Fourier decom-
pose?).

Y = o(x) — e1(x) cos(ky) + ez(wg(:c) cos(2ky) + dbo) (6.65)
J= = jo(z) + ej1(z) cos(ky) (6.66)

The zeroth order Grad-Shafranov eq. is

foRgi .
2 = —ujo (6.67)
while to the first order is
32¢1 2
—k = uj .
- K = s (6.68)

We can also decompose the current j, to an equilibrium component (5%(v))
and an island component, or perturbation (§j,(¢)). After we do that, we
can Taylor expand j, about .

0j-
Jo(9) = o+ 87:(8) = =0 — ey cos(ky)) = (o) — ety cos(ky) 5
%o
y . 030
= j20(%0) + 672(%b0) — €1 cos(ky) (6.69)

I Yo
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So, by comparing Eq. to Egs. (6.64)), (6.65)), and , we can identify

the following. Far from the island, the perturbation component of j, goes
to zero (dj, — 0).

V25 = —pdy. (6.70)
Jt ¢18w0w0 ¢1d¢0/dm (6.71)

Plugging Eq. (6.71]) back into the first order Grad-Shafranov equation, Eq. (6.68]),
we get the exterior tearing mode equation.

B djzo/dl‘
"o/ dz

U= k% N (6.72)

11 — 0 at the boundaries. The tearing mode equation breaks down
where ey ~ g ~ %2 This happens near x = 0.

If we take Eq. and integrate across layers, we can get the jump
condition.

)
B(8) — ) (~6) — K2n26 = p /_ (s (6.73)

small N e

=K1
k1 is the surface current. We can define A’ as

P1(5) — ¥1(=9) K1
A = = 6.74
=0 U@=0) 07
The surface current can be expressed as
K1 = .41101?71 (6.75)

where w is the width of the island. One can use this to calculate the growth

rate.
A’ >0 = unstable

A’ <0 = stable

W 19" A where if { (6.76)
7

dt
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7 Transport Coefficients

To begin our heuristic estimates of the transport coefficients in a tokamak,
we first present the classic for of a diffusion coefficient.
(Az)?

At

D = (7.1)
where Ax is the characteristic length over which the diffusion takes place
over a time At.

7.1 Classical Diffusion

Classical diffusion comes from the particles’ collisions as they travel along
the magnetic field lines. As a result, the length associated with this diffusion
is the Larmor radius pe, while the time scale is the reciprocal of the collision
time ve;. Related to 7.

A 2 2
-T) =-fe — le/ez‘ (72)

(
Dc ass — = =
! At 1/Vei

7.2 Neoclassical Diffusion

Neoclassical diffusion comes from the transition from a cylindrical system
to a toroidal system. Thus it takes into account B x V B drifts. It is also
identified with the Pfirsh-Schliiter regime. Related to 7.

Dys = (vp)2 At (7.3)
(Az))? v,
e a7 (7.4)

where Az = R, is the connection length.

R2 2., .
Aty = ;12 Yl (7.5)
th
Plugging this all into the forumula for D, gives us
R2Pvy; vl p?
Dyps = 2 <. e = PEQQVei (7.6)

2
v, R

For a derivation of (vp)y,, look at Egs. (7.19)-(7.21)) in Section [7.3.3]




7.3 Tokamak Parameters

34

7.3 Tokamak Parameters

Before we go any further with derivations, we have to get a couple of tokamak

parameters out of the way.

7.3.1 Tokamak Trapping

B = By(1 —ecosf)

1
§Uﬁ + uB = E = constant

Reflection is at v = 0.

FE
B'refl =
Trapped Particle: B < % < Bmaz
1 1
*’Uﬁ + *Uﬁ_ < Bras
2 B 2 TlBu
man ~ main l’u2 Bmaz
E 271 B in Pmin
U
2
ﬂ<Bma:p_1N 1+6—1226
vi ~ Bnin 1—¢
— €
v

If % > B, then the particle is untrapped.

7.3.2 Bounce Frequency

0o
Tb:%:2/ 9T
W —00  |v)(0)]

(7.9)

(7.10)

(7.11)

(7.12)

(7.13)

The 2 in front of the integral comes from the fact that we have to take into
account the particle moving up and then back. The following definitions
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apply.
v = 2(E — uB) (7.14)
A= %BO pitch angle (7.15)
v (0) = /2E(1 — A(1 — ecos0)) (7.16)
1
€2Vt
= 7.17
=3 (7.17)

7.3.3 Banana Width or Excursion

Aj ~ (vD)rad _ Pivtn qRo =|A; = Piq (7.18)

1
€2

1
Wh RO €2V,

where € = ;. To get (vp)rad, one must calculate the radial component of

the drift velocity vp.

1
vp = B x B4=n x (uVB+aw’ - Vi) (7.19)
B? TR NN
VB curvature
ExB
1 B,
(VD)rad X (A X VB)paqg = — 8693 71?2 sin 0 (7.20)
Uth PUth
= rad ™ = — 72].
(vD)rad ~ G- = o (7.21)

Another way to calculate banana width is using conservation of toroidal
angular momentum.

Pr=mRV; —eRA; =C (7.22)
~——
ey
take
—/ dr' By (r' / dr' By( (r —ro) Bp(ro) (7.23)
0
Aj—r 70

T0
P =R [mVC + g / dr' By(r') + SABP (7.24)
0

we then choose 79 so that at the turning points, V; =0 and A =0, so

Re [0
P = 76 /0 dr' B,(r') (7.25)
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To ensure constancy, those two terms must cancel each other out.

mjc v
Aj= 08y = X (7.26)
J ejBp Q‘BP
where
1
Ve RV R €20,
By
q=e— (7.27)
By
Br ~ B,
SO
Gl
€2
To wrap it all up, we get
1
€2Uh P44
Aj=—p - ="T (7.28)
€bp €3
mc

7.4 Banana Diffusion

For banana diffusion, we start with a modified version of the standard dif-
fusion coefficient.

Az?

Dban = ftr ( At ) (729)
where fi,. = €3 is the fraction of trapped particles and Az? = A%2. We also
use At = ﬁ We define v,y by the following.

Vei Vei
Veff = TZ? = ? (7.30)

Af = ¢35 is the angle that the trapped particles need to be deflected to
become untrapped. Putting all of this together, we get the following for

Dypan-
b= () (4) ()25 e

€

N|w
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|
|
|
Banana !
Trapped :
Noncollisional
Pl !
,
D
P-S
Fluid
Collisional

S

-3/2

Figure 3: Three regimes in a tokamak plasma.

7.5 Plateau Regime Diffusion

For the plateau regime between the banana regime and the Pfirsh-Schliiter
regime (see Fig. |3]), we start with the collision frequency.
Veff collision freq _ VeiqRo

vt =

= = 32
W bounce freq ¢34, (7:32)

In the banana regime, particles must bounce more than they collide to be
trapped. In the P-S regime, particles must collide more than they bounce

or pass (%—Z - the stronger condition). So
v
U S ] =yt =t > e (7.33)
vin/ Rq

We then plug this back into our equation for v*.

v = 290 g s using 1 & 3 for v (7.34)
€2V
Ui,
Dyiat = Pgﬁ (7.35)

3
2

One uses the calculated vg; with v* = ¢~ 2 in Dy, or with v* = 1 in Djygyy,.
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80

Figure 4: As a result of the E¢, particles in banana orbits tend to spend more time
moving in the direction parallel to E¢, which also corresponds to spending more
time above the midplane. As a result, the particles are subjected to an inward drift
for a longer time then they are subjected to an outward drift. The cumulative effect
of all this is the Ware drift.

7.6 Ware Pinch

Tokamaks have a constant F) = E¢. As a result, as particles bounce around
in their banana orbits, they are accelerated by E: while moving on one half
of their orbit, and slowed down on the other half. At the end of this slower
half, they bounce and again speed up; however, the length of this side is
smaller and smaller each bounce, and thus slightly closer to the magnetic
axis. The result of all this is a slow drift of particles in banana orbit towards
the center of the plasm over the period of many banana bounces. See Fig.

Bl

0B DA 04

This is the quantity that causes the asymmetry. The acceleration caused by
this is
Av|  eE

acceleration = —

7.37
At m ( )

where ) R
At~ — = 1 (7.38)

Wb €2y,

Solving for Ay gives us

E
Avy = =€ (7.39)

mwy

The net inward drift due to the Ware pinch effect is simply

(UD)ware - (UD)’/‘AG (740)
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counter moving

comoving

more comoving
particles than
counter moving

Figure 5: Boot strap current.

where A# is the amount the endpoints of the banana orbit shift with each
orbit. Again, see Fig. [l The value for Af is

AUH . AUH

Af = = (7.41)
(v)re ezuy,
Putting this all together lets us solve for the value of (vp)ware-
. eE
(vD)uare = = |(vp), | A9 = —ZhE =
Vth €2 muwy,
_ _vwwpeB Rq v eBc Ry
R im G%Ufh QR em v2,
. mc GEC . qc EC _ T RBT CEC
- eBTem N EBT_ RT’BpBT
s
=|—c— 7.42
5. (7.2

7.7 Boot Strap Current

Boot strap current is a pressure gradient driven toroidal current produced
by the collisional trapping and detrapping of particles in the banana regime.
For boot strap current, we will first go through a heuristic calculation of it
before we outline the more in depth derivation.

Boot strap current arises from the fact that the density gradient Vn
increases towards the inside of the plasma. As a result, at a given location,
the number of particles in a comoving trajectory (outside of an interior
banana orbit) is more than the number of particles counter moving (on the
inside of an exterior banana orbit). See Fig.

From Wesson, pg. 166:
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A heuristic explanation of the bootstrap current can be given.
For an inverse aspect-ration € = r/R there is a fraction e2
of trapped particles and they typically have a paralllel velocity
€2vy,. They execute a banana orbit of width wy ~ €~ 2¢p, where
p is the Larmor radius. Thus in the presence of a density gradi-
ent they carry a current analogous to the diamagnetic current of
untrapped particles but here parallel to the magnetic field. This
current is
dn €2 dn

. 1,1
Jr ~ —eez (e2vy)wp— ~ —q—

— 4.9.1
dr B dr (4.9-1)

Both trapped ions and trapped electrons carry such a current
and there is a transfer of momentum to the passing particles
of both species which adjust their velocities accordingly. The
dominant current turns out to the that arising from the difference
in velocity between passing ions and the passing electrons and
this is the bootstrap current 7.

The heuristic argument from class goes as follows. The boot current is
simply
Jps = — |e| v, (# of passing particles) (7.43)

The number of passing particles can be expressed as A‘é—:f = f—;d—’;. Plugging

in for p = eé’;’;nc and ¢ = %, we get

Jps = —eéden

5T ar (7.44)

The more detailed derivation starts with the Drift-Kinetic equation.

0
('fLUH +vp) - Vf+ %EH 2)”8% = Crlf] (7.45)
——

a
BUH

We first have to separate f = f| + f1 where f1 = fs + f Skipping some
steps, we proceed till we get the following expression.

J” = — |e| /dg’UU”(fs +f) = 0'||E|| — \e| /dsva| (7.46)

spitzer = o) E) boot strap
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To continue, other highlights in the derivation follow.
c 3 A
Fpeo = m </d 'Umevcei(fe)> (747)

Gy dey = = el ([ onf.) =

. . 1/ 1 dpe )

Jy—Js)~—€e2| —— + ok 7.48
(= ds) < B, dr 1 (7.48)

SN—— neoclassical

boot strap reduction
Jtotal _ En(l % % 1 dpe 749
1T = oy (1 —e2) +e B dr (7.49)

dn ng d 1ckE

1—17160 = _Dban (d’l‘o - ?0% thO) —nez2 Bp” (750)

See GPPII notes for more on this. This probably won’t come up.
More imporantly, we should stress the neoclassical reduction on parallel
current due to the fact that trapped particles can’t carry current.

neoclassical reduction = —E%O'HE” (7.51)

7.8 Transport Coefficients

To sum it all up, we write down the transport coefficients matrix. There is
a 3 x 3 version of this, with the extra terms coming from heat diffusion and
related cross terms. Here we will deal only with density and current terms.

Dyan i c dpe 5. dT.
[ e } | OB, [5" 270 dr] (7.52)
(g = ds) Lo e2 —noE)

1
ezBip s

The term in the upper right hand corner of the middle matrix is the ware

pinch term, while the one in the lower left hand corner is for boot strap

current. Onsager symmetry holds here, as coefficients are mirrored about

the diagonal.
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8 Drift Waves

The different types of diffusion described in the previous section don’t ac-
count for all the diffusion observed in physical systems. The unaccounted
for component was named anomalous diffusion. Drift waves are one source
of anomalous diffusion.

8.1 Diamagnetic Drift Velocity

Start with the force balance equation and the definition of j. B = B,2 and
Vn = 328,

1
Vpj=_jxB (8.1)
l' = ejnoyj (8.2)

We note that Vp = T'Vn. Putting this together and solving for the ¢-
component of v;, we get the following.

1

TjVng = Eejnvﬂj X B,Z (8.3)

(9n0 N 1 -
= 7 8.5
& (6sz%‘) Y (8:5)

—_———
’U*j
8.2 Drift Waves

ne = ng <1 n Zé’;) (8.6)

where the last term in parentheses is equivalent to %106

ny1; = continuity & force
where vg =0, v = v1, and n = ng + nq.
1. Force — components

2. comps into continuity

3. solve for ™
no

4. Plug into charge neutrality: > nges =0
S
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9 Cold Plasma Waves

9.1 The Wave Equation

To derive the wave equations and various other goodies for cold plasma
waves, we first start out with Ampere’s Law and Fourier transform it.

47 10F 10D
V BziJ . =
* 2 c*+c8t c Ot
4 _
= FT.=Dwk =E——~J=%¢E (9.1)
Tw

We also note that the plasma dielectric tensor is defined as follows.

e=1+) X, (9.2)

Plugging this stuff together and solving for J gives us

w — =
l:_ﬂ S XS.E:US.EzgnSqS’US (93)

For the next step of the derivation, one must bring in the equation of
motion.

ov v =
s 378: s{s E == B>— - P A4
Msils nq(i—l—cxi v (9.4)

The last term is the fluid stress tensor. For cold plasmas, this is equal to
zero. We then linearize the equation of motion using B = ByZ and n = ny,
setting all other terms to 0 in the Oth order.

8’015

Ms—— = qs(Ey + vy X By) (9.5)

After we linearize, we Fourier transform and use the following three equa-
tions

1 .
E* = 5 (Bx £iE)y) (9.6)
1
vt = 5(1135 +ivy) (9.7)
W —+
nsdsvy = = Xs - By (9.8)

4
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to arrive at
2
+ Wps
- — 9.9
X FCETN (9.9)
2
w
Xzz,s = wp; (9.10)
1 _
Xzx = §(X+ +x7) (9.11)
1 _
Xay = 5(X" =X7) (9.12)

One of the nice things about writing this in this form is that it is addi-
tive. Thus we can calculate the susceptibilities for just the changed species
and replace their contribution to the total susceptibility, species by species.
Putting this all together and writing it in terms of the dielectric using

Eq. (9.2)), we get

S —iD 0
eeE=\iD S 0
0 0 P

E,
Ey
E,

(9.13)

where S'is the sum of R and L, D is the difference, and P stands for plasma.

2

w
R=1-— _ps
zs:w(w—i—Qs)

2

wS
P o)

1
S=-(R+1L)

2
D=Xr-1)

2
2
_ Wps
P=1- 2

Other relations to note are

$*—-D?=RL

(9.14a)

(9.14b)

(9.14c)

(9.14d)

(9.14e)

(9.15a)
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Now we use Faraday’s law and Ampere’s law to get the wave equation.
We take the curl of Faraday’s law, Fourier transform these two equations
(see Eq. for the FT of Ampere’s law), and then plug the FT’d Ampere’s
law into our modified Faraday’s law.

ikxE="B (9.16)
C
A . . .
ikxB=—Jg-“E-_“p-_"% E (9.17)
C C C C
U
2
kxkxE=-kxB=-"¢E (9.18)
C C

This is the wave equation. Putting it all on the same side will get it in the
standard form. One note to make is that the coefficient to the € - E term
can be thought of as the free space wavelength (k%), since wg = ckg. We can
also write it in terms of index of refraction, where n = %

w?_
EXEXE+—2€'E:0
c
nxnxE+e E=0 (9.19)

Another way to write it out is in matrix form, as follows.

S — nﬁ —iD n|mnL E,
iD S —n? 0 E,| =0 (9.20)
nny 0 P — ni E,

~

where n =ncosf, ny =nsinf, and cost =k - b.

9.2 Dispersion Relation

Now that we have the wave equation, we can take the determinant of it, set
it to 0, and solve. We find that we get an equation of the form of

An* —=Bn®> +C =0 (9.21)

where
A= Pcos’ + Ssin?6 (9.22a)
B = RLsin? 6 + PS(1 + cos* 0) (9.22b)

C = PRL (9.22¢)
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The solution to this equation follows. This is the dispersion relation.

, B+VB?>—4AC B+F
o 24 24

n (9.23)

where
F? = (RL — PS)?sin? 0 4 4P>D? cos® § (9.24)

If n> > 0, then the wave is purely propagating. If n? < 0, then it is
evanescent (it has the form of e~#*). Something else to note is that if
F =0, then the wave can mode convert. More on this in Section

There are different classifications of waves depending on there attributes.
Note that 0 is defined as the angle between B = B2 and # or k.

1. Longitudinal waves = E || k = electrostatic
Transverse waves = E | k = electromagnetic

2. Right (electrons) and Left (ions) polarized waves are for when 6 = 0,
the wave is propagating along the B field.

3. X (E L By) and O (E || By - independent of magnetic field) waves
occur when 6 = 7, the wave is propagating perpendicular to the B
field.

4. Fast waves - higher v, and lower n?

Slow waves - lower v,;, and higher n?

Another form for the dispersion relation is

—P(n*-R)(n*-1L)

2 _
a0 = 55,2 RL)(n? — P)

(9.25)

We can see from this form of the dispersion relation that when the wave is
propagating parallel to B (6 = 0), then

P=0 n2 =R n?=1I (9.26)

Likewise, if the wave is propagating perpendicular to B (6 = 7), then

RL

n? === n>=P (9.27)
S S——

N—— O

X
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9.3 Cutoffs and Resonances

A cutoff is simply when the wave no longer propagates and n? — 0 (or
n? — 0), where vy, = ¢ — co. Going back to Eq. (9.23), since n =0

C=PRL=0 (9.28)
A resonance occurs when n?> — oo or where vpyn, — 0. Here, A ~ 0, so
we get
P
tan?f = —— 9.29
an S ( )
One can also look at the alternate dispersion relation Eq. (9.25)) and rewrite
it.
P (1-&)1-4 P
tan® f = —— ( éf) ( ";) ~ - (9.30)
(1-52) (- 52)

We can rewrite it as such because the second fraction goes to zero. One must
be careful in this region because at resonance, cold plasma theory really
doesn’t hold. Also, this resonance equation is the same as the electrostatic
approximation, though the two effects are not the same.

Principle resonances occur at

L
0=0 S —o0 S:R% soif Ror L — oo (9.31)
0= g S —0 hybrid type resonances (9.32)

9.3.1 Group and Phase Velocity

Two quick definitions. Group velocity is the velocity at which the wave
packets are traveling, or at which the wave itself is moving. Phase velocity
is the velocity of the phase.

p)
Vg = i]: (9.33)
w
'Uph = E (934)

9.4 Polarization

Before we get into specific waves and propagation regimes, one last thing
we should look at is wave polarization. One can read the wave polarization
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from the middle line of Eq. (9.20]).

(9.35)

E, D -1 ifLH,n?>=1L

iEx_nQ—S_{l if RH,n? = R

It is important to note that § = 0 for these cases. Another way to examine

polarization is with
Et n’—-R
B owoL (9:36)

9.5 Mode Conversion

As stated earlier, in a slowly varying plasma, the discriminant in Eq.
can go to zero and B? > 4AC, then two waves in the plasma can exist at
the same conditions and therefore they can couple to each other and mode
convert. When this happens, there is usually a large n? wave and a small
n? wave. Since n? is usually constant, the two roots are large and small n? .

For the two roots of the dispersion relation, one balances the appropriate
terms to get the asymptotic expressions for the waves.

Anf —Bnt +C =0 (9.37)
—_—— ——
large small

Doing so gives us the following two dispersion relations.
n3 ~— large n? (9.38)
ni~ g small n? (9.39)

The large n? wave is often an electrostatic wave (since when P = 0,
C — 0.), while the small root is often an electromagnetic fast wave. Also,
one wave usually comes from cold plasma theory while the other usually
comes from warm/kinetic effects. The point of mode conversion happens at
B? = 4AC and it typically happens near a cutoff or resonance where the
wave numbers vary quickly.

For more on this derivation, look at Section on page

9.6 Parallel and Perpendicular Propagation
9.6.1 Parallel Propogation

For parallel propagation, = 0, we can see from Eqgs. Eq. (9.25) and Eq. (9.26)
that we have one of three forms. For the P = 0 wave, we can solve to see
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that (dropping % terms)

w? = wzs ~ wge (9.40)

These are plasma oscillations. For the n? = nﬁ = R, L waves, we can solve

that to find
kﬁcz B w? + wQe + 0.0 — %2;@
w2 (Wt Q) (wE Q)

(9.41)

For both the n? = R and n? = L waves, at low frequencies (w — 0),

62

2
~1+ — 9.42
n + Vj ( )
where
B2
Vie —0 9.43
A 47mz-mi ( )
and
2 W;?n'
— = = 9.44
7w (849

At high frequencies (w? —> wgs, 02), n? ~ 1. Both waves are transverse
waves, k | E.

The resonances are at w = €, for the R wave and w = Q; for the L wave.
The L wave can be used for magnetic beach heating. The cutoff frequencies

for these waves is as follows. For n2 = R

Q . . w2e
wpe — e high density - &5 > 1

Wer = w2 . W2 ¢ (945)
—Qe — o low density - g7 <1
For n? = L
Q; + <2 high density - °;;2; > 1
wCT' = ° € (946)

2
Wpe + %Qe low density - ‘g"g <1
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9.6.2 Perpendicular Propagation

For perpendicular propagation, § = 7, it can be seen from Eqs. Eq. (9.25))

and Eq. (9.27) that there are 2 waves, an n? = n%_ = P wave and an n? =

n? = £ wave. For the n? = n? = P wave (O-wave)

w? = wge + k3 ¢ (9.47)

This is the typical/generic dispersion relation of perpendicular propagation

of a wave, for space, etc. The cutoff for this wave is at w? = wgs. The

polarization of the wave is arbitrary (see Wave notes, Lecture 3, page 4).
For the n? = n% = % wave (X-wave)

kicQ _ (w2 4+ wQe + 20, — W}236>(W2 —wQe + Q0 — wge)

Ea P =) — ) 4
where
1 1
wrg = o ng + 0] (Lower Hybrid) (9.49)
wog = Q2 + er (Upper Hybrid) (9.50)

For the X-wave, there are cutoffs where R = 0 and L = 0. These are the
same as for parallel propagation above. There is a resonance at S = 0, which
occurs at the two hybrid frequencies. The high and low frequency limits of
this wave are the same as the parallel propagation case. The polarization
of this wave is semitransverse, since as w — 0, £, — 0, E — E,§ and

kE=k 2

1Ey R—-L
—_ = 9.51
E, R+ L (9:51)
The high and low density limits for the hybrid resonances follow.
Q2,0 high densit
) ) e , o ey (9.52)
wp; + €7 low density
W;%e (1 + 3; ) high density
why ~ ‘ (9.53)

02 (1 + L;)"’;) low density

The lower hybrid resonance can be visualized as the following (see Fig.
[6). Quoting Stix, pg 36:
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// \\ B@
4 \
/ \
/ \
! lon -
" _C e E
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/
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\ /
\
AN . ‘/‘ Electron

Figure 6: The lower hybrid resonance is when the minor diameter of the electron
orbit is equal to the major diameter of the ion orbit. The ratio of the large axis to

the small axis for both ellipses is (7 )z.

If we take the wave electric field in the x direction, the ion motion
will be principally in the x direction, oscillating back and forth
in almost a straight line unaffected by the magnetic field. The
electrons will move predominantly in the y direction with an
E x B, drift, but the deviation of the electron motion from a
straight line plays an important role. The x displacement of
the electrons, which is the movement along the minor diameter
of their elliptic trajectory, is in phase with and equal to the x
displacement of the ions at the root-mean gyrofrequency w =
\QEQZ]% The ion space charge is thereby neutralized at high
plasma densities, and the hybrid oscillation can take place.

Also, see problem 2.6.
The upper hybrid resonance can be thought of in the following manner,
also from Stix, pg. 36.

An elementary picture will describe the upper-hybrid resonance.
Let us consider a cylinder of uniform plasma, and inside this
cylinder draw an imaginary cylindrical surface of radius r. The
cylindrical axis is in the z(Bp) direction. We anticipate that
the oscillation frequency will be high enough so that ion motion
may be neglected, and consider a collective mode of motion for
the electrons. if electrons on the surface » move outward by an
amount Ar, the radial electric field will be, by Gauss’ theorem,
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E,. = 4mn.eAr. The equation of collective motion is then

2 1d(A
m%Ag = —e |4mnee(F - Ar)7 + cd(dtr)

x By (30)

and the characteristic frequency for transverse oscillations will
be just the upper hybrid resonant frequency.

9.7 Alfvén Waves
9.7.1 V4 and v

S (9.54)
A~ 47mimi )
An;m;c?
=t 9.55
g B (9.55)
One can easily see that these two quantities are easily related.
B2 2 20)2
vi— 0 _ 5 (9.56)
4mtn;m; v W

9.7.2 Shear and Compressional Alfven Waves

For w <« Q,., we find that P > 1, and P > S, D. For these waves, E, ~ Q.

Alfven waves are low frequency (w < €2;) that occur in a magnetized
plasma. In this regime, R ~ L ~ S ~ 1+ ~. As a result of this, D = 0.
There are two dispersion relations here.

S—nj=0 = 147 =nf (slow) (9.57)
S—n?=0 = 14~ =n? (fast) (9.58)

For the slow wave, E, # 0 and E, = E, = 0. Thus E& + £ x By2 =0
leading to the fact that V. = v§ = vcos(kLz — wt + k) z)g. This wave is also

known as the (torsional) shear wave since k- v = 0. It is incompressible.
There is a cutoff at w = [€;|. It is a LH polarized wave near # = 0, and

when ‘:—5 <1, W~ kﬁVIZ. Also k x E ~ B, leading to k| Eg ~ B(k,w)q.
The magnetic field lines in this wave are like a string, with V = \/§ =

Vg = %. See Fig. .
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z B, 2B
B,
y — -k, y
X X
(a) (b)

Figure 7: Here we see the two types of Alfven waves, the a) shear wave and the
b) compressional wave.

The fast wave, also known as the compressional wave, is RH polarized
near § = 0. E, = E, = 0, while E, # 0. Since k = k& + k“ﬁ, this is a
transverse wave. Since the force equation looks like Eg + % x ByZ = 0, one
can easily see that V. ~ v&. Thus k - v # 0, leading to the identification of
this wave as the compressional wave. See Fig. . If one lets 6 = 3, then
k =k, and ni = % ~ S. Thus this wave is the low frequency limit of the

X-mode wave.

9.8 Ion cyclotron Waves and w ~ (),

In this regime, w < . and w ~ O(€;). The following relations for S and
D hold true.

02
D%—% (9.60)

Also note that |P| > |S|,|D| and S% — D? = 4S.
The Alfven resonance becomes evident when examining the following

dispersion relation.
(R —n?)(L —n?)
2 Il Il
= .61
e S — nﬁ (9.61)

The resonance is occurs at nﬁ =S when 0 = 7.
A quick look at waves in this in region shows the dispersion relations for
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the fast and slow waves as

w? = E*V3(1 + cos? 0) (fast) (9.62)
2 2 -1
2 _ 2 Wpi “pi
wr=Q7 |14 kﬁcQ + k:ﬁcQ Sy (slow) (9.63)

The shear/slow Alfven wave in this regime is LH circularly polarized at
f = 0. It has a resonance at § = 0 and w — €2;. The fast wave in the regime
w > €; is known as the magnetosonic wave.

0=0 0= g
fast nﬁ =R ni — %
slow nﬁ = L | evanescant (n2L =P)

Another way to look at waves in this region is to examine Eq. (9.20)).
Since E, = 0, we can deal with just the 2 x 2 form of it, getting

(S — nﬁ)(S —n?)—-D?=0 (9.64)
Using the above forms for S and D and rearranging, we get
n* cos? 0§ — n%S(1 + cos?0) +~vS =0 (9.65)

We then apply the quadratic formula and solve for n2, and then expand for

dee < 1.
b 2ac
n? ~ o [1 F (1 — b2>] (9.66)

From this relation, we get two asymptotic forms for solutions (this is similar
to the mode conversion stuff). We find that

“low n root” - fast
(9.67)

3
X
X
—N—
[
Qo O

“high n root” - slow

Looking at the fast solution first and plugging in for b and ¢, we find
that

2 ¢ -5 gl
~ = = 9.68
" b —S(1+cos20) 1+ cos?6 (9.68)
We then examine the polarization, plugging values for S and D.
E:E n2 — S w—N S
—— = — —= -1 9.69
"E,” D D (9.69)
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So, this wave is RH at w — §2;, since S, D — oo. This is with single ions. As
a result, even though there might be a resonance with ions at this frequency,
since the polarization is in the wrong direction, there is no resonance.

Now we move onto the slow wave solution. This is the ion cyclotron
wave. It does not propagate above §); (w? < Qf for propagation).

2 b _ S(+cos?h)
a cos? 6
2 2 15 2
nj ~ S(1+ cos® ) ~ v (W) (1 + cos®0) (9.70)

Looking at the polarization for this wave gives us

2
B _mios S-S o 1
E, D —Q%  wcos2f

(9.71)

If we look at 8 = 0 and w — (;, then we see that the above equation goes
to —1 and the polarization is LH (resonates with ions). In general however,
this wave is elliptically polarized.

9.9 High Frequency Waves
9.9.1 Whistler Wave

We now move on to look at higher frequency cold plasma waves. We will
assume that ; < w < Q¢ ~ wpe is true for w. In this region, |P| > |D| >
|S|. There are no slow waves here, only fast wave.

We will start out with the Whistler wave, also known as the electron
cyclotron wave. Assume P > 1 and E, = 0. Using the 2 x 2 version of
Eq. and S < D, we find that

nﬁn2 ~ D
ntcos? 0 ~ D?
D k2 w2
2 pe
~ = 9.72
" cos 6 w? wQ, cos b ( )

This is the Whistler wave.
A couple quick things about the Whistler wave. Assume that 0 = §
(don’t remember why right now). Solving for v, shows us something inter-
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esting.

21.2 2
c°k Wpe

w2 wQecosb

1
. w}%er 2
2w, cos b
1 _ dk -
9 dw

vg X VW (9.73)

N|=

Thus, the higher frequencies in the Whistler wave travel faster than the
lower frequencies.

The other interesting thing about Whistler’s is found by looking at the
angle of propagation. Start off by looking at the £ and £ components of v,
and take their ratio to find the angle of propagation a.

_Ow 2 Q] (k”kx)

Ve ok T wn \ K
2
v = 67(0 = 62 |Qe| k + ﬂ
95 Ok, w2, k
Vgt _ ot — ky ks _ cosfsin 6 _ ¢
Vg k2 +kﬁ 2cos26 +sin?f 24 (2
Cmax = \/5
tan oupee = = Qmaz = 19°28 (9.74)

V38

So the Whistler wave travels mostly in the direction of B, which is why it
was theorized that they have the ability to be generated in one hemisphere
and travel to the other. However, now it is believed that this phenomena is
the result of wave guide physics.

9.9.2 Quasi Longitudinal/Transverse Waves

To look at these waves, we assume that w ~ O(£.). We can’t ignore E,
here. We also use the fact that n? ~ O(1) +.... Normally, we start with

An* —Bn?+C =0 (9.75)
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and use the quadratic formula to solve for n2. We do that here, getting

B+ +VB?%—4A
n? = oA ¢ +1-1 (add/subtract 1)
B+ +VB? - 4AC —2A
=14 o 1 (rearrange)
(@a-B)= () (Ra-B) =)
=1- (crank)
24 ((zA _B)+ 1 ))
2[A— B+ (] .
—1- lug in A, B,C
24— B+ VB 1AC (plug in )
n?=1- 2o (" — i) [ (9.76)
2(w? — w2.) — Q2sin® 0 £ QA
where )
2_ 2 2072
a2 4 (w® — wy,) cos™ 0
A= [QZsin” 0+ 20 ] (9.77)

In the steps above when we add and subtract 1, remember that since n? ~ 1,
the rest is a correction. These waves are quasi longitudinal/transverse with
respect to B, not k.

Some QT and QL waves of interest:

2 w? — wz%e
QT-X ECE
2
QL-R/L n?=1- “pe (9.79)
w(w £ Qe cosh)

The QT-O wave is interesting at 6 = 7. The dispersion relation becomes

2

W,
n?=P=1- j = w’ = wl, + ki c? (9.80)

This is the electromagnetic plasma wave. It is an O-mode wave.
The + solution (RH) of the QL-R/L resonates at w = [€2.|. This is the
electron cyclotron wave or the Whistler wave from Section [9.9.1
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9.9.3 Even Higher Frequencies

At frequencies of w? > wze > 02, P — 1,8 —1,and D — 0. At these
frequencies, the dispersion relation is

n?~1 (9.81)

At frequencies of 2, < w K wpe, P <0, 5 <0, and D < 0. There is no
propagation here.

9.10 Electrostatic Waves

Electrostatic waves have E; || k. B; ~ 0 in most cases. The electrostatic
approximation relies on the fact that

B, =-V¢ (9.82)
If we use the fact that there is no free charge
V-D=V-(e-E)=0 (9.83)
and plug in the approximation and FT the result, we get
ik € (—ikg) =0 (9.84)

This can be simplified to get the electrostatic wave equation.

k=n-€n=0 (9.85)

Al

k-

M

One can further break the E field into longitudinal (||) and transverse
(L) components (E = E; + Er). Plugging this into the wave equation and
dotting everything into n gives us

Q‘[QXQXE—F?'E:O]:>Q‘E[EL+ET]:O (9.86)

Thus, if E; > Ep, then the electrostatic approximation holds. By looking
at the wave equation again

ol
=

nx(nxE)+
(nﬁ— )-E| =

=0 (9.87)
| (9.88)

)]
ol
|

we can see that B > Er is true when

n? > |e;jl (9.89)
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Since n? > €;j OT as we see n? > 1, electrostatic waves tend to be short
wavelength waves (n? ~ %) We can see by examining Eq. (9.23))

An* = Bn?+C =0 (9.90)

that if we have n? > 1, then A — 0 for it to be true. So we set A = 0.

A= Ssin?04 Pcos’0 =0 (9.91)
4
P

tanf = —— 9.92
an S ( )

or

P

n? = —gnﬁ (9.93)

or
k1S + kP =0 (9.94)

Notice that this form of the electrostatic dispersion relation for when n? >
leijl, 1 is exactly the same as a resonance for when n? — co. Sometimes
they are both true, but sometimes they are not. The cyclotron resonance
(S — oo at @ = 0) is not an electrostatic wave since n? > |e;;| does not hold
true.

This form of the dispersion relation can be taken to the next order by
including B in the derivation

An’ + B =0
[Ssin20+P00529] n? — PS~0
n?S+njP - PS =0

P
2 _ 2
where
B = RLsin?6 + PS(1 + cos* 0) (9.96)

P> |R[,[L], S| (9.97)
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One thing to note about ES waves is that as a wave moves toward cutoff,
it starts to pick up an EM part.

At large w, P ~ 1 and S ~ 1, so ES waves don’t propagate. Thus at
high frequencies, all waves are EM waves.

The electromagnetic approximation is

kxE+#0 (9.98)

9.10.1 Examples of ES Waves
Some quick ES waves. The Langmuir-Tonks wave is a QL wave.

w? = w?, (9.99)
The CESICW (cold electrostatic ion cyclotron wave) and the LH wave are
also ES waves.
9.11 Finite Temperature Effects
9.11.1 Cold Plasma Approximation

The cold plasma approximation is simply that v, is much less than the
phase velocity of the wave, and that the Larmor radius is small (FLR).

ki > v (9.100)
I
kips <1 (9.101)
If we examine Eq. (9.100)), we see that it breaks down for electrons first.
w T,
— > Uth,s ~ —_—
kH mg
\
Uth,e > Vth,i (9.102)

On the other hand, FLR breaks down for ions first.

Uth,s = Ps§s
T qsB
==~ ps
M Mg

ps ~ \/ Tsmg

4
pi > pe (9.103)
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9.11.2 Finite 7).

The first step to take in including some temperature effects is to take into
account the parallel thermal motions of the electrons. In order to do this,
we use either an adiabatic or isothermal equation of state to close the fluid
equations.

d (p N
o7 (/ﬂ> =0 (adiabatic) (9.104)
Pe1 = Ne1kT o (isothermal) (9.105)

k is Boltzmann’s constant, and is ignored when using eV of T. ~ = "T*Z
where n is the number of degrees of freedom. The adiabatic equation of
state is used for warm electrons (or ions) where the density and 7' move
with the fluid element, while the isothermal one is used for hot particles,
where electrons (7") can move along the B field very quickly, but the density
moves with the fluid element. A couple alternate ways to write the adiabatic

equation follow.

d
N <I£> (adiabatic eq.) (9.106)
14 d
- ﬁjf - ;11 CT/: (chain rule) (9.107)
- % -2 [gf tu- Vﬂ] (convective deriv)  (9.108)
p
d
:dlt)*%[*pv'ﬂfﬂ‘vp+2'vd (Eq. (6.3)) (9.109)
d,
£+7PV'Q=0 (9.110)

In general, this form of the equation is a lot easier to work with. If we
take Eq. (9.107)), write it in a nice (linearized) form, and then manipulate it
some, we find the following.

Ldpel 7 dne

= 9.111
Peo dt Neo dt ( )

1 8pel Y Onel
— -V = -V 9.112
oo [ En +v- Vo ] e | Ot +v- Vg ( )

=0 =0
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we know
Pe0d = neoTeo (9.113)
from this we get

De1l = YNe1Teo (9.114)

Since we are using the susceptibility formulation of plasma waves, we can
easily use what we have already calculated and just plug in the new value
of the warm /hot electrons’ susceptibility x¢,. To do this we simply linearize
and FT the force and continuity equations. We assume low frequency ES
(w < |Qe]).

—iWneoMeV; = —Nepely — ik yneTeo (9.115)
—iwney + ik - vney =0 (9.116)

Continuing to work with this, the second equation above simplifies once we
see that

E=-V¢=ik¢ (9.117)
el x By
QJ_,e - (9118)
Bj
¢
kv, =0 (9.119)

Using this on that equation gives us

kyv
1= e (9.120)
w

—1WNe] + ik\\vzneo =0=ne =

Now, we take this equation and Eq. (9.115) and stick them together.

kv
—iWwneoMev; = —nepe By — ik v T < l}zne()) (9.121)
k?2’yT 0 ;
<w2 AT, = YR, (9.122)
Me Me

We then use Eq. (9.3))

. —iw
NoedeVze = Jle = ?Xe,zzEz (9123)
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to get

—w?

(X22), = 27;%:&0 (9.124)
w2 — e

me

where v = 1 for an isothermal system.

9.11.3 Plasma Oscillations

There are a couple applications of this kind of wave. The first is for plasma

oscillations (Vlasov-Bohm or P = 0 waves). In the cold plasma, we simply

use w? = wgs. If we recall the definition of P,

P=1+) X (9.125)

we can see that with the correction for warm electrons (and cold ions), P
would be

Wy
_ pr pe _
P=1-2 — e 0 (9.126)
W — ———

This can be rewritten using the binomial expansion (since ki\l > Ughe) aS

w2 W2 ki Teo
0=1-— -2 _ 2|y | 9.127
w?  w? Mew? ( )
The final form of the dispersion relation is
ki Teo
2_ 2 2 e
W =wy twpe [1+ p— (9.128)

For the hot plasmas seen later, when P is written, Eq. (9.126]) is ex-
panded for ’%\l < Vg e and the electron term goes like the following:

2

2

Wpe 1 Wpe

T |~ (9.129)
KiVine |1 =gz~ ] KiVne
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9.11.4 Ion Acoustic Wave

Another wave in which we include finite temperature effects is the ion acous-
tic wave. In this kind of wave, we treat the electrons as hot (isothermal
— 7 = 1) and the ions as warm (adiabatic — v = 3). Thus v ; < ¢ < Vgpe.
We start with the P = 0 wave, and we throw out the displacement term
(the 1) because it is small.

w2, w?
_ pi _ pe
0= o _ 3T o _ KjTeo (9:130)
w m; Me
k3T, 3K3T;
2 2 Ity 2 [ 2 |- 0
_ — = _ — 9.131
dlgm)-male-mr) o
3k2Tyy w2 k2T,
o e U (9.132)
m; wpe me
—~—
Z;me
Zime T, 3T;
=i [ iMe Z<0 ’“] (9.133)
m; Me m;
Z; T 3T;
= kf [3;0} (9.134)
7
or
w? = kjC? (9.135)
where Cs = & is the sound speed. What is going on here is that the

electrons can move faster and tend to overshoot their position. This sets up
and F field which drags the ions along. This sets up a pressure driven wave,
much like a sound wave.

9.11.5 Electrostatic ICW

One of the other waves that we will look at is the electrostatic ion cyclotron
wave. This is a ES version of the ion cyclotron wave. We begin with w ~ €;
and vy, ; < ki” < vhe or cold ions and hot electrons. We use the ES

dispersion relation
n3S+nfP =0 (9.136)
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We simply plug in for values of S and P, using our temperature modified
form for P.

2 2 2 2 2
w w, W, w
2 pr pe 2 pr pe
n?|1— +}:—n 1— 2 _ __ “pe_ (9.137)
w2 — QZ Qg Il w? W2 — k’HTe
Me
dominant

dominant

If one keeps these dominant terms, the result is

k2 ZTe

w2 = Q?—i—
myg

(9.138)

9.11.6 Drift Waves

For drift waves, there is a y dependence for p for electrons, so peo = peo(y)
(Vn ~ g). Ions are the same as before. We are still assuming ES waves, so
E =—-V¢=1k¢. As before,

w
We then linearize the force equation.
dv Te0€ OPe1 .
neomed—f = —negel — QTOQ x By — gzlz (9.140)
We then take B x () this equation and solve for v .
Vo x B
v, = _YV9x By, g (9.141)

Bj

This is the same for ions and electrons in the first order in the ¢ direction.

Vo~ (E+2)xB2=19 (9.143)
So we have
ikzcd
v, = B, (9.144)

k=Fk &+ k”ﬁ (9.145)
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We then proceed to linearize and FT the continuity equation.

—twni + v V?’L() + noV . QH =0

k.
ikscd Ino + ikuvzng =0

—iwni +
! By 0y

We then take this equation and plug it into the linearized FT’d equation of

state and solve for p;.

—iwp1 + V] % =% —iwn ikxcgﬁ%
P9y g "By dy
kycg Opy  kyvz
= —_— B
b1 wBy Oy + w 10

Now we go to the equation of motion,

dv .
mnd—tz = qnoL, — ikyp1

and plug in for F,
= —ikyqnog — ik p1

At this point we plug in our expression for p; and rearrange.

kagw | kikict opy
m qnoBo Oy

vV, =
z ( ) kQ’YTe())
ws — A
Me

(9.146)

Then we use Eq. (9.139)).

w
noqu, = _EXzzkH¢

41 noq
Xzz = ——— 7 Uz
w k”(b
2 _ kic 9po
[u) noBo 3y}

Xzz =
2 _ 1.2797s
w k” e

(9.147)

If we set ., to zero, we can solve for w*.
k 0
* = 1o 0RO (9.148)
qnoBy Oy
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9.12 Energy Transfer

Poynting’s theorem expresses the conservation of energy in an electromag-
netic wave as follows.

oW ow
V-P+— =22k, - (P+T)+2wW+ — (9.149)
ot ot lossy

The different parts of this equation represent different bits of energy. P is
the Poynting vector and it represents the flux of electromagnetic energy.

P=-"_[|E*x B+E x B*| ¥ (9.150)
167

T is the kinetic flux, or the amount of energy transported by acoustic means
or particle flux.

Wy % agh 2¢;
T=— E* —  FEe*” 9.151
=T T Ten ok (9.151)
where €/, = i [E + ?T}. W and %—Vf lossy 2T defined as
2 . 0 = 2,

Tom |B|” + E* - %(weh) - Ee (9.152)

ow _
Al B AR (9.153)

ot lossy Kl

If there is no dissipation in the system, then

k- (P+T)=—0wW (9.154)
dw  Ow P+T
== (9.155)
When D(k,w) = 0, then
D(k,w)=0=D(k+ Ak,w + Aw) = D(k,w) + &ua—D + 5&82 =
Ow ok
ow —0D/ok

% = Do = (9.156)
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9.12.1 Ray Tracing

These are the ray tracing equations. 7 is a dummy variable (actually its the
distance along the ray).

g: = gi (9.157)
gj_ = —gf) (9.158)
% _ o o159
%: = % (9.160)
If we fiddle with this a bit, we get the following.
or 99
EEZZ:_%:% (9.161)

If VgV, <0, then the wave is a backwards wave. Random fact: « is

the angle between v, and Uph-

10n
tana = —— o 162
an o 90 (9.162)
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10 Hot Plasma Waves

Several of the approximations used for cold plasmas are no longer valid for
hot plasmas. % ~ vy, for hot plasmas (the parallel component of v), while
kip =z O(1). Usually, k| p; > k| pe for the same temperatures (T; ~ T), so
if ki p; < 1, then k; p.. Two handy parameters for summing all of this up
are A and (,. The details of these two will be explained later, but for now
we will list their values for hot and cold plasmas.

Cold A < 1 — gyroradius < wavelength (10.1)
G > 1 = vy >y, (10.2)
Hot A>1 (10.3)
n <1 (10.4)
where

A= %pgki (10.5)
¢, = TRy (10.6)

kW)

10.1 Plasma Kinetic Equations

The general procedure for hot waves is to use the kinetic equations, which
consist of Vlasov’s equation and Maxwell’s equations. Vlasov’s equation is

simply Boltzmann’s equation with the df oo = 0
Ofs Ofs vxB| 0fs _dfs
— | E+=——| " = — 10.7
ot S or +m5 2+ c ov dt | .. ( )
=0
We will also be using Maxwell’s equations and the definition of J.
10E
V xB= —J 10.8
% =T ot ( )
10B
VXE=——7— 10.9
. c Ot ( )
J = nopqu, (10.10)
For the density n(r,t), we will use the following equation.
n(r,t) = no/dgvfs(r,v, t) (10.11)

—_—
=1
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Depending on whether we are dealing with electrostatic or electromagnetic
waves, we will use the one of following equations.

o= qu/d vfs1(r,v,t) (electrostatic) (10.12)
= qu/d%'vfsl(r, v,t) (electromagnetic) (10.13)

Finally, again depending on whether or not the waves are ES or EM, one of
the following equations is used.

V2 = —4ro (electrostatic) (10.14)
w = .
J = i Z X E (electromagnetic) (10.15)

10.2 Electrostatic Oscillations

Now that we have our basic set of equations that we are going to work with,
we can outline the basic procedure. Assume 1-D, ES limit (B; =0, k || E)
in an unmagnetized plasma. The first thing we do is to break up fs.

fs=lfo+h (10.16)

where f; < fg. We then linearize the Vlasov equation by assuming small
amplitude waves (E = E,), getting a zeroth order and a first order equation.

o , 90

vzt =0 (10.17)
ofi | 0h _ q 8fo
ot Tt 0z __m Ov (10.18)
—_———

afy
dt

At this point, there is some trickery involving Landau contours which we
will go into in a bit. However, the next step is to F'T in space and Laplace
transform in time the first order equation and rearrange to get the following.

E(k, W) 8f5° +igs(k,v)

10.19
w — k:v ( )

9
fsl(kaw>v) m

9gs(k,v) = fs1(k,v,t = 0) is the spatial transform of the initial disturbance.
From this point on, F' is short for F(w, k) as opposed to F = F(r,t). Also,
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a similar transform of Poisson’s equation gives us
~ o0 ~
ikE(k,w) =473 g / dvfs(k,w,v) (10.20)
s — 0o

Combining the first order Vlasov equation and Poisson’s equation gives us

S 1k
4% ZS 4s ffooo dv gt;z(—vkv)
1+ 4% Z q% foo dvdfso(v)/dv

s mg J—00 w—kv

E(w, k) = (10.21)

The integrals in the previous equation are along the real axis. However, there
is a pole at w = kv, so this must be accounted for. Only the poles of this
equation contribute to the solution E(z,t), and those poles only arise when
the denominator is equal to zero. So the dispersion relation for electrostatic
oscillations in an unmagnetized plasma is simply

2 oo
H(w, k) = D(w, k) = 1+ w]’;/ dvW —0 (10.22)
where e
wgofo(v) = Z ;:ZS fso(v) (10.23)

S

where f,(v) is a single “reduced” velocity distribution consisting of the com-
bined zero-order velocity distributions for ions and electrons. f,(v) is nor-
malized to 1 and not ng. The integral in the dispersion relation is evaluated
along the Landau contour.

10.3 The Landau Contour

To back out an expression for F(z,t), one must take the inverse Laplace
transform and the inverse F'T of Eq. . Likewise for fs1(v, z,t). This
inverse transform is evaluated along a contour that goes along the real axis
and closes above in the v plane (v,vsv;). If one extends the top part of the
contour to oo, then the contribution of it goes to 0 since v gets big. In this
plane, there is one pole at v = ¥ = % +i7. The contour should always
contain this pole.

In the w plane, we drop the contour down so that the contribution goes
to 0. This makes the integral easier to perform since the contributions come
only from the poles. Also of note is that as t gets large, the uppermost
pole(s) dominate. We must make sure as we do that our contours stay
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above the poles. Thus the value of the integral comes from the sum of the
residues. As we do this, (for k£ > 0), the pole in the v plane drops. We must
deform the contour to make sure that we still contain it.

the result of all this is the following dispersion relation, the form of which
depends on the value of w;. This form is for k£ > 0.

w2 fo'e) 9fo
1+ISO/ dvﬁ wz>0,/€>0
_Oo -
2 o0 8fo y 2
w 1w, O,
_J1 pOP/ dp—9Qv " PoZJo ' =0,k>0
H(w, k) = + o U~ kv k2 Ov w_g wim
w? 00 9fo 2iTw? of,
14 22 dp—  _ po ZJo i <0, k>0
+ k /_OO Yo — kv k2 0v|w v ’
(10.24)

In these equations, the P [ is similar to the principal part (which is along
the real axis) but instead is on a line parallel to the real axis that runs
through the pole.

We can rewrite this as the following for all w; by using this principal part
notation. It ends up being similar to an average of the contour just above
and just below the pole (see page 190 of Stix).

47rq2 9fo
H(w, k) =1 “ng [ dv—2— =
(wa ) +§s: M, nsL/ vw—kv
w2 o0 9fo iTw? Of
1 poP/ dy—9v_  ~“poZJ0 =0 (10.25
T ek R 0v |, (10.25)

10.4 The Plasma Dispersion Function

If we let the distribution function of each species be a Maxwellian to the
zeroth order

2
11 -
fozﬁ@e Ui (10.26)

and plug this into our dispersion relation, using the w; > 0 for H, we start

to see where the PDF comes from. The U_:t) - in the equation above comes
p
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2T

ms*
afo
/ 1) — Uph

IR L_(Zih] =

fo(OO>
+oo

from pulling out a —¢. The v}, | =

0:1—2
zl_zS:

—0since

since

d[fo(v)] I
dv -

v — Upp v—vpp U (V= vpp)?
Also

3f0 0o
/ dv—do_ / do—J0__ ¢ / dvJo)
N ) dVph J 0o UV — Uph

Here we used -2 ( fo(v) ) ( J 0(v2)2. Plugging all this into H give us
P

dvyp ph \ V—Vph

wps 1 d [ 1 e/
H(w,k)=1- be / —_ 10.27
( ) ]CQ Uthﬁ dvph —c0 Vth (U — vph)/vth ( )
At this point, we make a change of variables.
v Uph w
U= — =2 - 10.28
Uth ‘ Uth kugn ( )
d 1
du= d¢ = —dupy, (10.29)
Uth Uth
Making the switch gives us
2 2
s 1 vth d e
Hw k) =1-52 T an
(w, k) k2 vp/m ol dC - uu —C
w2, d| 1 o0 e v’
=1- Py / du—— 10.30
ZS: k203 d¢| VT ) oo u—¢ ( )

The expression in the box is the plasma dispersion fucnction (PDF) Z(().

Z(¢) = \; /Oo du;__uc (10.31)
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with
w
= — 10.32
(= (1032
For cold plasmas, use
w
For hot plasmas, use
w
For a drifting Maxwellian
2
1 1 -k
=—— v 10.35
fo Tron ( )
we would use for our change of variables
_ — w— kv
u="""2 =220 _ TP (10.36)
Vth Vth kyvn,
d 1
du= 2 d¢ = —duy, (10.37)
Vth Uth,
The derivative of the PDF can be rewritten.
z(¢) 1 /°° e
— = — du 10.38
i vl Mo (10:35)
Also
d | e™ 1 2 1 2
s — —Que Y ) — u 10.
o [U—C] U—C< ue (U—C)Qe (10.39)
SO
00 —u? o 0o —y2
e —2ue™" d e™
d = d —
=0
00 _ —u?
o [ alt0de
—00 u = C
o o0 _u2
- —2/ due™*" —2</ du s (10.40)
—00 —00 u = C .
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As a result, one can see that

dZ (<)
d¢

= —2[1+CZ(C)] (10.41)

This lets us write the dispersion relation for longitudinal waves in an
unmagnetized Maxwellian plasma (Eq. (10.22))) as the following.

w? d
H(w,k)y=1- L— A 10.42
w2,
H(w k) =1+ Qk%?h (14 ¢Z(C)] (10.43)
One final way to write this is
2 1 1 !
k=3 > gzo(fs) (10.44)
where
1 4mngq
5 10.4
)\38 KT (10.45)
The hot expansion for the PDF is
4
Z(C<1)= -2+ §<3 + o iy/msgn(ky)e ™S (10.46)
The cold expansion is
]. ]. 3 . 7(2
Z(¢>1) =—¢ 1+2—C2+4TL4+... + iv/mo sgn(k)e (10.47)

where
0 for sgn(ky)Ilm¢ = Im(w) >0
=42 for sgn(k))Im¢=Im(w) <0 (10.48)
1 for |[Re¢|> 1 and |ReC||Im(| < 7

The term o ie =" in the above expansions is the damping term coming from
Landau damping.

In the hot plasma case, the dispersion relation for electrostatic waves
with Maxwellian ions and electrons reduces to the Debye shielding condition,
while in the cold limit, it reduces to Eq. (3.54) in Stix, which was derived
when setting €,, = 0 with the adiabatic correction.
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10.5 Nyquist Stability Criterion

One can count the number of unstable roots for a given zero-order velocity
distribution without finding the roots explicitly by using the Nyquist crite-
rion. The Nyquist criterion states that the total number of unstable modes
of a plasma will be equal to the number of zeros of H(%, k) within the upper
half-plane. So the number of zeros in the upper half-plane is given by

1 H'(w)
Ny = — 10.4
07 omi “ H(w) (1049)
C
This can also be mapped onto the complex H plane.
1 dH
No=— [ — 10.50
07 omi ( )
D

If fo(v) is singly peaked, then it is stable. If it is doubly peaked, the stability
is determined by the separation of the peaks (two stream instability).

10.6 Miscellaneous
10.6.1 Van Kampen Modes

The Van Kampen modes are the steady state solution for the linearized

Boltzmann equation Eq. (10.18)).

Z'QSE 1 dst
ms w— kv dv

Js1=— (10.51)

This solution represents the poles in the numerator of Eq. (10.21)) as opposed
to the poles in the denominator. Van Kampen came up with a meaningful

way of dealing with the singularity at v = ¥ and the form of this equation

was .
fo = — 4 oo [P ( ! ) Y (v - :)] (10.52)

ms dv w— kv

0 here is a Dirac delta function and A is chosen to satisfy Poisson’s equation.

V- E=ikE = 47rzq5/ Fsrdv (10.53)
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10.6.2 Growth Rate of Instabilities

To calculate the growth rate ~, one must expand H into real and imaginary
components.

Hy(w, —iy) +iH;(w, — i) =0 (10.54)
H,(w,) —iy i(wp) =0 (10.55)
0
4
H;

10.7 Hot Plasma Waves in a Magnetized Plasma

For magnetized plasmas, we will start out with uniformly magnetized, ho-
mogeneous (locally) plasmas where B = ByZ + B;, while E = E,. The
Vlasov equation for this kind of system is

dfi _ oh f1 . q 1 dfo

10.7.1 Electrostatic Waves

For ES waves in a magnetized plasma we know that B; = 0 and E =
~V¢ = —ik® = —i(k & + k) 2)®. See Waves lecture (L12.2). The Vlasov
equation reduces to

9 _ 9 s s, 2o _ g, 0fo . 9fo
g/t oot =~ kg = kR 5 = mq’[klauﬁk”avj
(10.58)

where

q [* Of of
ﬁzglmdﬂ )F%O+W8ﬂ (10.59)
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_ 9fo vy .
T Ov vy

Also, & ~ etkr=wt) A quick derivation shows us that ngg

vi = vi + vj
00 _ 0fo 00
Ovy,  Ov| Ouy
(%L
O0vg

ovy Vg
vy vy

. 0fo _ Ofo va
S PRl (10.60)

= 2vu,

2UJ_

Furthermore 42 = vy since 2/(t') = z + v (t' —t). Likewise, %/ = —Q, since
Yt =1t) = ¢(t) and ¢'(t') = —Q(t' — t) + ¢(t). We also have v, (t') =
v cos(¢'(t')). Plugging in our expression for ¢'(t') gives us

vy cos [¢(t) + Qt — )] (10.61)

Following from this
(10.62)

a'(t) —a'(t) = —% [sin [¢ + Q(t — /)] — sin ()]
Returning to our expression for f; and substituting these values in gives u
t / /
f1 — Z,q/ dt {;ﬂvz(t)afo + k”afo} (i)ez‘[kw’(t’)Jrk:”z’(t’)—wt’] eiwtefiwt
m 81}”

— 00 (AN 6@
=®—comes out of [ dt/
(10.63)
We also make a change of variables.

r=t—t At/ =-dr (10.64)

t 0 00
/ dt’ — —/ dr — / dr (10.65)

—00 00 0

Now, f is

- o0 d 0
fi= i@% /0 dr {ku_ cos(¢ + QT)avfi + k”@fﬁ} exp |:kJ_.’13(t)

kLos (sin(¢ + Qr) —sin¢) + kya(t) — kyoym — wt + wT] (10.66)
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In this equation, e’&" = k17! () ik 7' () - We will also make a substitution
to make the exponential term a little more manageable.
exp{iB(T)} = exp(if) exp(i3) (10.67)
- . o0 0 0 Y
fi= i@qe’f@/ dr [ku_ cos(¢p + Q1) —— Jo + k| fo] () (10.68)
m 0 8'UJ_ 8UH

We then turn to Poisson’s equation.

V.E:k-E:k2§>eiﬁ:47qus/f1d3”

o
. 3.5 49 ip iB' (1)
= 47qus/d mCIJme /0 dT( )se
From this we continue on in the derivation.

1=1 Z /d3 / dr |:kJ_ cos(¢ + QT) afo —l— k” gq{o] ' (7) (10.70)
[

where the integral over the Landau contour can be written as

/d% = /dd)/udu/dv” (10.71)
L
Proceeding
1_12 / dT/ dv”/ dvﬂue“" kyjoy)7

afO afO —zz (sm(¢+QT)—sin ¢)
/0 d¢ [kl cos(¢p + Q1) =— B0, + k) (%'J (10.72)

(10.69)

The term with the underbrace can be rewritten using

aﬁ [e—iz (sin(¢+Q7’)—sin¢):| — —i2Qcos(é + QT)e—iz(sin(¢+Q7-)—sin¢) (10.73)
-
Also, we use the following relations.
eZIne = N e, (2) (10.74)
e—izsin(¢+97) _ Z e—im(tb—l—QT)Jm(Z) (1075)
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Continuing
2m ki 0 dfy dfo] — -
1= ne . —im(p+Q7) Jm
/0 d¢ |:_ZZQ or a’UJ_ * k” a’U:| n—zoo ¢ J, (Z) m_zoo € (Z)
ki 0 8fo afo / ing ,—im(¢+Qr)
— J d n m T
|:—ZZQ or aUJ_ av” n_z_:oo In m_z_:oo peve
(10.76)
where

27 2
/ déein¢efim(¢+ﬂ‘r) _ / d(befi(nfm)qﬁefimﬂ‘r _ 671m92ﬂ_5(n _ m)
0 0

(10.77)
Obviously, taking a% of the above equation will bring down a —im). We
now look at the other integrals.

ﬂafo 8f0 2 71,7197’
/d¢ 27[ a0 |8U]ZJ (10.78)

, 1 .
§ zw—kv—nQT_E: i)
/dT " € ( o ) B " i(w — k‘”U” — nQ)e

where lim,_,qg+ for causality purposes. The exponential term goes away
when evaluated, since w = w + v, so €7 ~ e"7e™¥" — 0. Thus we end up
with

(10.79)

0

nlﬁ 9Ofo 9fo
Z / d / d z ij_ + ” 81)” J ( )
YI UJ‘UL w—kp—nfs " %

(10.80)

= —271'2

Both integrals are along the Landau contour.
To continue this derivation, we now stick in the Maxwellians for fo(v, UH),

4 2
fo(u,v”):[ 12 e wis] [ 12 e wls] (10.81)

TI'U)J_S

-

far(vy) (o))
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Taking the derivatives of fo with respect to v and v

0 207

avfi = fu(v)) [_%J fau(vi) (10.82)
202

. = I (o) [_wn] e (10.8)

and subbing in the results in Eq. (10.80f) gives us

:_2772 Z/ vidvy J2(2) far(vy) %

n=—oo

s

/oo N |28 4 by | faroy) (10.84)

—00

W — k‘”U” — nQS
We use the following integral to help us evaluate the above equation.
o] 2 2
_p22 1 a“+b ab

where I,, is the modified Bessel function.

_ lav (z/2)? (z/2)*
L) =715 [1 T AR E S ] (10.86)

Subbing in our values for this integral gives us the following.

2
o° kv kv \ ——=%
d n e n T *
1 5 k2 w? k2 w?
= Jwlexp [— T I, T (10.87)

k2w2
Wherea:b—Q,p* 2L,andy—n Smce)\—%LQg kLpS )'?j,

N

the above integral ~ e~*I,,(\). Using this evaluation for the integration and
changing variables to correspond to the PDF (¢t = w—‘s) we get a final form
for the dispersion relation for uniformly magnetized, locally homogeneous
ES waves in hot plasma. See Eq. (11.85) in Stix.

. “Ae anTHs"i_(w_an)TJ_s
Z Y e { [ b T }zm}

||S n=—00

(10.88)
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where

Y L) ==Y e ML () =1 (10.89)

1 k2 w?
g = — = Ls 10.90
2 2 (10-50)

w —nfd
Cns - u (1091)

kjw)s

2T,
wif, = e (10.92)

In the cold plasma limit, this does indeed reduce to k’ﬁP + k‘iS =0.

10.7.2 Susceptibilities in a Magnetized, Hot Plasma

Now we examine the case where B = BypZ + B, and E = E,. Again, we
will linearize the equations to find our solution. Note that we are switching
to relativistic notation, with

r,v,t —r,pt (10.93)
pP=mv (10.94)
p* =+, + 02 =Pt + 0 (10.95)
m=—""2"_ — ymg (10.96)
v2 2
(1-%)
B B Q
Qs — qS 0 — qS 0 — s0 (10‘97)
msc YMmsoC Y
foler,py)  filr,p,t) (10.98)
Using this notation, our first order distribution function is
t 1 a ,
A== [ o [B0.0) + lox B0, LG
= oo c op
(10.99)
Here is a quick rundown of some of the derivatives involved.
0 0 0 0 dfo 0 dfo O 0

9fo _ foaAH_ﬁg_F foy _ 9fo0pL o Ofo L fo, (10.100)

op  Ope  Opy”  Op.  OpLOpa dp.1 Opy Ip-

H/_/ _/—/
v 9f0 vy 9fg.

vy Op) v Op|
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Again '
J = q/d3pvf1 —Jy = —;ﬂi -E, (10.101)
T
Starting off with Faraday’s equation, F'T’ing it, and then taking %Q X

(), we get

10B; c
V x E, TS Bl_akxﬁl (10.102)
q q q
= B, ==~ kxE, == E)k — kE
CQX 1 w’UX X L w[(ﬂ E k- (v )1]
k k=
qE, + val—qu [ —|—v—v]1}
w w

We now look at the integral over ¢’ in the distribution function. E; behaves

~ ellET—wt) The exponential term can be broken up like so.
ei(k-g’(t’)fwt/) 74kJ_$ (" zkHz (t )eOwt’eiwtefiwt (10103)
where
2t = z(t) — % [sin(¢ — Q(t — t')) — sin @] (10.104)
2t = 2(t) — vyt —t') (10.105)
T=t—t (10.106)
Thus, in the integral
elkre(t) giky=() g it / dr( ) (10.107)
0

Putting it together, our distribution function looks like

fi(k,p,w) = —q/OOOdTEl(kz,w) . [<1 - ”w’“> T+ ”’“] .

w
[cos(gf) + QT)ﬁm + sin(¢ + Q1) =— 0o, g+ Ofos ] e (10.108)

op. op1”  Op
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where
k
B=— L;L [sin(¢ + Q7) — sing] + (w — kyvy)7 (10.109)
k= ku_i-i—k‘”ﬁ (10.110)
v-k=k v COS(¢+QT) —i—k:”U” (10.111)
since
ki@ L~k cos(¢p+ Qr) (10.112)

Looking at some of the dot products with FE, we see that

E - v = Fv cos(¢+ Q1) + Eyvy sin(¢ + Q7) + E,v (10.113)
(1-52) 5.2 .28 o )20
w op op op1
o opy (10119
aE,sin(¢p + Q1)—— + aFE,——
ysin(o + 0m) 50+ a1
k 0fo dfo dfo dfo
E -v)= — =bk- — =k Q1) — + bk =— 10.11
(E y)w op k- op vk, cos(¢p + Q1) o, + bk o) (10.115)
where
a=1- " cos(g 4+ r) Ky (10.116)
b=E-v (10.117)

Plowing through this gives us the following expression for the integrand in

Eq. (10.1083)

Ofo  kivy
F— + cos(¢ + Q1) — +
op1 w (¢ 7) op1 w Jp

- Ofo | kivL Ofo | Kyvi 0fo
E,sin(¢ + Qr) [aapL + - cos(¢ + QT)apL + o Op) +

kiv 0fo , Kyv 0fo
E, laz—+ —cos(¢p +Qr) 77—+ ——
[ Ip| w (@ )8m w Jp|

E, cos(¢ + Qr) [a Ofo | koL 8fo] +

] (10.118)
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Simplifying this expression and introducing the expressions U and V

ofo Ky [ 9fo 3fo]
U=_—-—+—|vL — 10.119
opr  w ap|| P, ( )
—0 for Maxwellian
ki [ 9fo afo}
V= — U= 10.120
w ap” I 8pJ_ ( )
our distribution function finally reduces to the following form.
fo1 = —QS/ dre |U cos(¢ + Q1) E, + U sin(¢ + Qr)E,+
0
<gfo — Vcos(¢ + QT)) E.| (10.121)
|

Now we use our distribution function in Eq. (10.101)), the equation for
J, remembering that

00 e’} 2w
/ d*p = / prdpy / dpy / dé (10.122)
0 0 0

We will be using the identities in Equations (10.74]) and (10.75) again to
simplify J and solving for X, we get

= ps,0 q
Xs_zwﬂso/ 2Wmdm/ I Z <w—’f||v—nﬂ>s

(10.123)
_ pLUSNE  plUZJJ,  pl2J2W
Sn=|—p UBJJ, pLUS(JL)? —idnJipr W
pUZJ2 ip|UdnJy, pyJEW
where
0 0 0 0
w = 2ogny, _ 9fo [1—"} L P 9o (10.124)
Ip| = ap| w w p1Opy
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To get here, see Problem (10.4) in Stix. Now we use the following identities

o0

> nl=0 (10.125)
> Jnd), =0 (10.126)
o p=1 (10.127)

to change W — U inside the sum. This lets us rewrite the susceptibility as
(Eq. (10.48) in Stix)

2 o ~
= _ “pso oo 10fo 1 0f
X:ps/ 27ij_dpj_/ de zzﬁ( +
wiks,0 Jo pOp  pLOpL
00 (10.128)
vl g
w—Fkpy—nQ "
n=—00 [id]
n?J2 indyJ! nJ2p|
z? Z pLz
Tn= z 22 2
nJ2p| indnJ;,p| J,%pﬁ
p1z pL pi

10.7.3 Susceptibilities for a Perpendicular Maxwellian fj

Now we set our zero-order distribution to a Maxwellian, but only in the per-
pendicular direction. We are also examining non-relativistic distributions.
We use the following for our distribution function.

2
1 _PL
fo(vr,vp) = —e 1 h(v)) (10.129)
1
For the susceptibility tensor, we find
_ 2w? P —
= _ anx DS ps -\
Xs = Zzwk”wf_ (o)) + — Z e "W, (10.130)
n=—oo
I Ay, —in(I,, — I,) Ay koL p,
W, = |in(ln = [) Ay (51y+2M0, — 221, ““—L(I —1I')B,
kLnInB Zkl(I —I/)B (;J”an)IB
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where

_ / dor 2 @)
n ” w — k”?}” — nQ

B :/ I LG
" oo wak:”v”fn(l

v w2
H(’U”) = — (l — k') h(U”) + kQWJ_h/(U||)

w
—nQ
w— k(o) + —— A, (10.131)

B, =
K

1
Tk”(
See problem (10.5) in Stix. We can often evaluate X, to the lowest order
(FLR). n = 0,£1,+2 is often sufficient. See Equations (10.61)-(10.63) for
these approximations.

Ay an By, simplify some when the parallel velocity distribtion h(v)) is
also a Maxwellian.

(v — vp)?
hy(vy) = exp [————L (10.132)
17, —TH 1 (w—k‘”UD —TLQ)TLﬂ—TLQTH
A, = — Z 10.133
w T i kjwy wTj " ( :
B — 1 ( — nQ)TJ_ — (k”UD — nQ) H
Ky wTj
1 w—n (u) — k”UD — TLQ)TL + nQTH
Zo (10.134)
ki kyjwy wTj

For derivation, see Problem (10.6) in Stix.
When Ty = T and vp = 0 (non drifting Maxwellian), the above form
of the susceptibility simplifies greatly.

2 00

— w p—
X = 2 Z e W, (10.135)
w n=—oo
QITL
fr— i . ZIn ik
W, = klf;‘th(ln—l’)Z [+ 2A(I, —I’) F Zn ;,CHLQ( 1,)7,
_ ki nly Ikl( ) VA ¢n /
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10.7.4 Bernstein Waves

Bernstein waves are electrostatic waves. For Bernstein waves, we will be
using Eq. or Eq. (11.85) in Stix. We will be using a Maxwellian
distribution function fo = far(vy)far(vy). We will also be setting 7' = Tj,
kj =0, and 6 = 0. Even though for hot waves, where one typically has
(n < 1, since k ~ 0, we will be using the asymptotic expansion for ¢, > 1,

where ( = "fgﬁ;‘g So, our dispersion relation becomes
K2 = PS 1+ e I,(\s) Zo(Cn 10.136
I I S T AR A(ch| IUACE
The bracketed term is, remembering that I,,(A) = I_,()),
[ ] = 14— My >M+iiwsz (M) %
kv, 0 As) = kyven nare
n:(;germ
—k) vt kyvtn
— 10.1
[w—nQ w + nfd (10.137)

The 1 term is expanded using 1 = 3 I,(A\)e~* when 6 = 0, giving us

[e.e]

L= )" L(\e*=e o(A) + i[[n(xs) + I, (Ns)] (10.138)
n=1

n=—oo

The first term on the RHS of the equation cancels with the n = 0 term from
equation Eq. (10.137). Combining this with the rest of Eq. (10.137)), we get

> —\ w w
- *In(As -2
nz::le ( )[w—nQ—i_w—i-nQ ]

0 2 2 9.202
:_Ze_)\sjn(/\s) [ 2w _ 2w® =270 ]

w?2 — n202 w2 — n202

_ _gie—ksmxs) [”2] (10.139)

n=1

where v, = &-.
So, Eq. :10.137 becomes

—k=— Z psz eI, (\ _n2 (10.140)

s thnl

1. Expand sum
and use Z, —
1

—

2. Expand 1
term using 1 =

> Tne .

3. Combine
terms.

4. Set vs = Qié
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One term can be rewritten.

2
4‘2?5& _ 47Tn51;1502ﬁ (10.141)
Vi, As Bg As

Thus the dispersion relation becomes

1=y T 47msm5 2 Z i (10.142)

—TL
s

a(vs,\s)
Xs
One must have o > 1 for the wave to propagate. So, since kj = 0 and
k-€-k = 0 for ES waves, we get kiem = 0. For the simplest Bernstein
waves, €;; = 0 in a hot plasma.
In a cold plasma (v <1 — X\ < 1), we can expand a.

N 32 153
a(v,A) = 21 + W2 —1)(12 —4) + (2 —1)(v2 —4)(v3-9) *

(10.143)

To get the nth harmonic, keeps terms to O(A"!) in &

10.8 Damping

For weak damping, w = w, + iw; and k = k, + ik, where the imaginary
components are much smaller than the real components. Power absorbed
per unit volume is (see Eq. (11.68) in Stix)

P~E-J=)Y ny.v,) E (10.144)
<ys> = Re {(ys>ei‘k'£—wt)} (10.145)
Paps = Z E'(X.-X.)-E (10.146)

So for power absorption, we need to calculate (3, — 71) Using the hot
plasma tensors such as Eq. (10.135)), we see we need to calculate Z, — Z
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and Z) — Z/* where Z is the PDF.

¢
Zn(Ga) = i/me™Sn — Ze~G / dte’” (10.147)
IV 0
m —
Re
T — ZF = 2i\/me (10.148)

Z! — 7% = (iVm)(=20)e = — cc. = —2( (2¢\/7?e—45> (10.149)

Thus,
n?l, _in(In—1I}) ki¢nl,
9 )\kH’Uth ) kH'Uth k‘HQ A
= =t _ Yps Z (o —2\ | in(In—1)  “Stox(In—1L) ik, C(I,—1I)
Xs™Xs = 7 e " 2iv/me ey ven Fjoen )
n kiCnl, ik CIn—1,)  2((w—nQ)In
B QA Ty 2 K202
I I I1Vth
(10.150)

As will be stated below, cyclotron damping is in the xx, xy, yx, and yy terms.
TTMP is in the yy term while Landau damping is in the zz term. The yz
and zy terms are cross terms for TTMP and Landau damping.

10.8.1 Landau Damping

Landau damping is when a particle and a wave resonant due to the fact the
that particle’s thermal velocity is on the order of the phase velocity of the
wave (v ~ 7).

If we plug in w = w, + iw; into Eq. and do some expanding and
rearranging, we find that we get an expression for w;.

e k),

, (W
R <E> (10.151)
This agrees with the value calculated from particle trajectories in Section
8.2 of Stix. More importantly, we will look at the valid collisionality regimes
for Landau damping.

For Landau damping to occur there must be at least a certain number
of collisions, but not to many. This is analogous to the banana regime in
tokamaks, except on a smaller scale. To find these limits, let us define the
oscillation frequency of a particle in a potential well as

1
1 kB 2
- = <q 1> (10.152)

T osc m
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The upper limit on collisionality must be low enough to allow for interaction
between the wave and the particle. Other wise the particle doesn’t have a
chance to resonate with the wave.

Am
Ak = 5 <1 (10.153)

At the other end of the spectrum, the particle can’t see the other side of the
potential well. Otherwise it will begin slow down, etc. as nonlinear effects
begin to take over as the particle becomes “trapped”. For Landau damping,
we assume vj| ~ constant.

ToscVeoll = 1 (10.154)

Another way of stating that is
Veoll 2 Wosc (10.155)

Since Landau damping depends on the E field, and we know the force
equation for this interaction is

d’U”
dt

we can easily see that E = F) 2. As aresult, the component of the dielectric
tensor that plays a role in this kind of damping is €.

Using Equations (10.146]) and (10.150]), we find that the power absorbed

F=—-g=m (10.156)

is

2 w2
Arngg? _ }E ‘ VTW? T
Pabs: g kQ;SSG )‘IO()\) 8|7|T k’HTthe k” th (10.157)
s

As we can see, since the power absorbed is Py o 6*4721, for cold plasmas
where (¢, — 0, Pyps — 0.

10.8.2 Cyclotron Damping

Cyclotron damping is similar to Landau damping except that the resonating
particle interacts with the field at its cyclotron frequency as opposed to at
zero frequency. To quote Stix, page 239:

Cyclotron damping occurs for oscillations that are periodic both
in time and in axial distance and in which there exists a compo-
nent of E that is perpendicular to By. lons or electrons moving
along lines of force will see thee oscillations of the perpendicular
electric field at a frequency that differs from the laboratory-frame
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frequency by the Doppler shift. Some charged particles will see
the oscillations at their own cyclotron frequency, and they will
absorb energy from the field. If the electromagnetic field is pro-
duced by a plasma wave, this absorption of energy will cause the
wave to damp out with time or with distance.

Cyclotron damping occurs when
w— kv —nQs =0 (10.158)

The €44, €yy, €2y, and €y, terms all contribute to cyclotron damping.
For cyclotron damping, we will set £ = 0 and assume small A\. From
the equation below, we can see that absorption goes down for large n (from

ﬁ) Also, hotter particles absorb better for n > 2 (from (A)nfl).

2
> n A\
Fas = Z Z(n—l)! <2) g
n:l
{|Ex+iEy|22i\/7re_<n |E, — iE,[?2i\/rE~¢

kv kv

} (10.159)

It is worth noting that the left term in the brackets is the |F,| term and
represents ion cyclotron damping. The right term is the |E_| or electron
damping term. The fast magnetosonic wave can’t heat at w = €; since it is
RH and ions are LH. If there is a minority ion species, then its contribution
to S is small and it can be heated.

10.8.3 Transit Time Magnetic Pumping

Transit Time Magnetic Pumping (TTMP) is similar to Landau damping,
but instead of an interaction with the E field, there is a yV B interaction
with the B field. To follow this analogy through, we change the £ — B
where By = ki Ey. In this sense, the perpendicular component of the
dielectric tensor €| contributes. This corresponds to the x,, component of
the susceptibility tensor. The force equation is

dUm 8B1

F=—-uVB=m—— T e vl — k) By (10.160)

As an example, suppose w ~ nf). We will let n = 0 and E} = 0 too, so
we will just examine the yy term.

2T — 1Y)
P = s e 22i/me " E? 10.161
b 167‘(’ Z vme kHvth ‘ ‘ ( )
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We know from Faraday’s law
10B
VXE=———"—
c Ot
ik x B = i(k &+ k) 2) x (Byij + Eudt) = —B,
c
k1E,2="B2
c
w? 1 9
B, = |By.|
Y 2k
_ 8mngT;
f= B2
Thus, for TTMP,
2 B, |2
Pups =Y Bs TU Ve (I - ppylBial - (10.162)
t
S

We can see as 3 T, TTMP becomes more important.
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3.0

Figure 8: Kruskal Graph. The equation that is plotted is 1 + 2 + ex? + 2€323 =
0. The lines drawn between the pairs of points are dotted. All lines need to be
examined more closely following the process in the text.

11 Asymptotics
11.1 Kruskal Graphs

In using a Kruskal graph, one must have a small parameter, such as ¢ < 1.
The equations in question are algebraic and have the form of

> ela? (11.1)

One then simply plots each term on a p vs. ¢ graph. Lines are then drawn
between pairs of points. Lines that have nothing under them or to the left
of them are examined more closely. Others are ignored.

One then sets the 2 quantities on the lines as dominant, making up the
LHS of an equation. The rest of the terms go on the RHS of the equation,
and get set as small when x ~ xy. The LHS is then reduced to just z. At this
point, we have a function x = f(z). The iteration converges if |f'(xo)| < 1.
The zero-order solution is £y = non small stuff. The 1st order solution is
found by subbing in x( into the expression for x. Higher order solutions are
found by iterating.
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Example: For an example, we will examine

142+ ex? + 26323 = 0 (11.2)
See Fig.
For case 1, 1 + z is dominant, so
z+1=—(ex? + 2632°)
small
z=—1— (ex? + 2632°)
xo =1
r; = —1 — (exd + 26x})
x9 = iterate... (11.3)

For case 2, x + ex? is dominant, so

1 (14 26323)

€ Te
N———
small
1
rog = ——
€
iterate... (11.4)

Case 3 has ex3+2€323 dominant. It follows a similar route as the previous
two cases.

11.2 Nonlinear Equations

When solving nonlinear equations, the method usually involves making the
given equation look like a nonlinear equation that has already been solved.
Here are several nonlinear equations that have solutions. A common substi-
tution that seems to work a lot is

u = M (11.5)
Bernoulli The Bernoulli equation has the form of
y' = a(z)y + b(z)y” (11.6)
To solve the Bernoulli equation, one makes the substitution of
uw=yP (11.7)

This makes the equation linear in u. One can then find v/ and sub in for all
the y’s. Once this is done, one can find the solution to the equation.
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Riccati The Riccati equation is in the form of
Y = a(x)y?(z) + b(x)y(x) + () (11.8)
There is no general method for solving this equation. However, if you can

find y1 (), you can sub y(x) = y1(z)+u(z) and get to the Bernoulli equation.

Exact These equations can be written in the form of
M (z,y(x)) + N (z,y(x))y'(z) = 0 (11.9)

One can reduce this to

daf
— = 11.1
2 &y =0 (11.10)
Using this lets us rewrite the equation as
of of ,
— 4+ =y = 11.11
e " 9yY 0 ( )
where
of of
M= N=— 11.12
Ox y ( )
oM  ON
L= 11.1
"oy o (11.13)

11.3 Complex Integration

Complex integration is often performed using the theory of residues. The
theory of residues states that if

1 f(w)
f(z) = 5 % (0 — Z)du (11.14)
then . )
= — i f 11.1
f(2) 57 Z <re51dues o = z)> (11.15)
The residues are
! ! ! (11.16)
(u—2) (z—21) (2 — 22)
where the residue of the nth order zero z; is
| 1 o fw)
Resid = 11.1
esidue(z1) (n—1)19zn1 [(z —zo)(z—23). |, (11.17)

So

%(f(z)dz _ Qmif(")(zo) (11.18)

2 — zg)" L n!
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11.4 Misc. Series

The Taylor series
(k)
fz)=> ARG k(!ZO) (z — 20)" (11.19)
k

converges in a radius given by the closest singularity in f.
The radius of convergence for series is given by

R = lim | 22t=2 (11.20)
aog,
11.5 Homogeneous Linear Differential Equations
Homogeneous linear differential equations have the form of
y " (2) + Py (z)y™ D 4. Py(z)y =0 (11.21)

There are three types points in these equations.
1. Ordinary Points
2. Regular Singular Points

3. Irregular Singular Points

Ordinary Points x( is an ordinary point if all Py(x) are analytic at xo.
In other words, its not singular. In this case, one can use a Taylor series for

y(x).
oo
y(x) = Z a,x" — calculate 3/, 7" and plug in (11.22)

n=0

Regular Singular Points The differential equation has regular singular
points if no term is more singular than the highest derivative (™). Think of
Y™ (z) ~ 2. In this case, the first solution is in the form of a series with
an indicial exponent .

y=> ana"t® (11.23)

Again, we find the derivatives of y and sub them into the equation. The
next step is to break out terms of the series and change summing indices
until there are a couple leading terms and just one summation whose terms
are of the same nth order (z™). Then, the indicial index is set from the
leading term in front of ag and one solves normally from here.
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The second solution is the following.

dyl - n
o= . =y In(z) + ngobnz: (11.24)
where the recursion relation is
Oan,
b, = — 11.25
Ja |, ( )
bop=0 (11.26)

Example: As an example, let us examine the Bessel equation.

" 1 / V2
y+-y—-|1+—=5)=0 (11.27)

x x
This equation has a regular singular point at z = 0 since none of the terms
are more singular than the highest derivative ~ %2 We will use the following.
y=Y anz"" (11.28)
y = Z(n + @)apz" Tt (11.29)
y'=> (n+a)(n+a—1)az"? (11.30)

Subbing these into the Bessel equation gives us

0= i{ [+ a)(n+a—1)+ (n+a) = 1?]apa™ 2 — aua™t} (11.31)

n=0

Once we cancel terms and start pulling terms out of the sums, we get

0=(a® = v*)apz* *+ [(1+a)® — v*]agz*"

n=0 n=1

+ i{ [0+ @) = v?]an — an-2 2" 072 (11.32)
n=2

We can see from the leading term that a? = v, which sets the indicial index
at o = £r. Moving to the second term shows us that the only way for it
to be zero is if a; = 0. Moving to the summation, we need to calculate the
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recursion relation. We can tell that we will iterate from ag for aeyen terms,
and from a; for the odd terms. As a result, a,qq = 0. Examination reveals

(a2 — %+ 4ka + 4k:2)a2k = Qok_2

4(k+04—2+-V> (k—i-agy)azk:agkg

ao
a =
) (L 55)
ag
S R o e o (e ) Y () B
Using I'(n + 1) = nI'(n), we can rewrite this as
aol' (1+ %) T (1 + 2%
asy, = ol ( 2 )T (142 )7 (11.34)
AT (k+ 1+ 22T (k4 1+ 25%)
Thus, for o = v, our recursion relation is
apl'(v + 1)
= 11.35
G R T (v 1 k4 1) (11.35)
At this point, one could choose ag. If
27v
=" 11.36
O T (11.36)
is chosen, one gets the modified Bessel function.
(£)2k‘+l/
L(x)=) —*——— 11.37
/(@) Zk!F(u+k+1) (11.37)
Looking for the second solution, it is not enough to simply use a = —v,

since we know that Iy = I_g. Thus we have to find a different solution. See
Asymptotics notes (L3.2) for the second solution.

Irregular Singular Points These are more difficult. Points are irregular
singular points when they are not either of the previous two types of points.
One way to differentiate regular and irregular singular points is to set z = +

t
and subbing in. One gets

y = —t%y (11.38)
y" = thj+ 263y (11.39)
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As one examines the differential equation in terms of ¢, it is often easier to
see what term is most singular as ¢ — 0.

One can’t use the summation with an indicial exponent since invariably
the only way to set the leading term = 0 is to set ag = 0. Thus the whole
series equals zero. As a result, we must try something different.

We will use

y = @) (11.40)

Calculating the derivatives of y gives us the following.

y =s'e’ (11.41)

y" = [s" + ()] ¢’ (11.42)

Again, we then substitute this into our differential equation and look for
dominant behavior near our singularity. Once s is determined, one improves
the solution by subbing in s = sp+g. Dominant behavior is again determined
in order to evaluate g. This process is continued until a term is equal to
In( ). At this point, one switches paths and tries to find W (x), a completely
divergent series. We let W equal

W=> ana™ (11.43)

The powers of x should be 3 if the exponents are going in increments of %
One plugs W in and gets something in terms of W and its derivatives. Then
solve for a,,. Stop when the terms of W start to grow.

Our solution will be in the form of

Yy = C’x()em()W(a:) (11.44)

The z0) term is the In( ) term.

Example: For example, we will look at
3y =y (11.45)

xz = 0 is an irregular singular point since 4% is more singular than y” ~ %.
x X
We plug in our values for y,1/, and 3" and get

z3 [s" + (S/)z] =1
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Looking for dominant behavior leads us to try s” > (s')2. Thus

1
1,38//:1 8/:_7
212
" N2 "
s = — ) =—7>s asz—0
a3 () 4z

Clearly, that was not a good balance. Thus we try (s')% > s”, giving us

s=TF2x 2 Y ~ eﬂx%
Now we need to improve on this by setting s = :F2$*% + g. We calculate
the derivatives of s and plug it into the differential equation.

:F%afg +¢"+23+ 23:739’ +(¢) =23

We see that some terms cancel. This is a good check of your first order

solutioSn. The dominant terms can be determined to be the ;335—% and
+22x72¢". So we set them equal to each other and solve for ¢’ and then get

g.
)3 _ 34
T % 97"
Here we have found the In( ) term. If we were to further improve upon
our solution from here, we would find that we would bring down a constant
term and a term that goes like x to some positive power. Of course, since
we are look at where x — 0, this term goes to zero. The constant term is a

normalization. This is why we stop here. So our solution for now is

[N

y=Azxte™ (11.46)

Now we need to look for the divergent series W. We set
3 _.—% B
y=Azie " “W(x) ='W
and plug it into our differential equation.
m3y// _ 1‘3 [s"WeS + 28,W,ef8/)2W65 + W//es] =y

"W+ 28 W' ()W + W = g
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Then plug in our values for s’ and s” (with the g terms) from the previous
step. Lot’s of things should cancel.

3 2 3
V[r// s = [17/ _ IIr _
<2x xé) 16x2 0

At this point we try a solution for our series, calculate its derivatives, and
plug it in.

fnt1 = An+1)
o= (-3) (3)
4

T(n- 1T (n+3)ag
L(3)T (3)4mn!

ap =
The radius of convergence for this series is 0.

11.6 Stokes Diagrams and Phase Integrals
11.6.1 Derivation of General 2nd Order Differential Equation

For a 2nd order differential equation like
y'+ Py’ + Poy =0 (11.47)
we can eliminate ¥’ by making a change of variables, z — z.

_dydz,_dy(da\' dy
dz dx y dz? \ dx dz? dz?

2y (dz\?> d dz d?
dzg( z) +y[plz+z]+p0y:0 (11.49)

Yy (11.48)

dx dz dr = dx?
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We should choose z so that the term in the brackets goes to 0. If we let
f= %, then

o
f
lnf:—/PldJ: =

P1f+f/ =0 = —P1 =

% —exp [—/Pldx] W) = /de(x) (11.50)

Y pyex 2/de- ~0 (11.51)
dZQ 0 p 1 | y - .
d%y

The boxed equation is our general 2nd order equation. We will try our
method from equations with irregular singular points now. Subbing in y = e*
and its derivatives into this equation gives us

"+ () +Q(z) =0 (11.53)

We are going to assume the 2nd 2 terms are dominant, giving us

/ . Vi Z Q/
s = +i/Q(2) s =t-— (11.54)
2 Q§
We now will go the the next order s’ = iz’Q% +d.
-/
1 PRt
+ Ql +g"+ [-Q +2ig' Q2 +(@)?*+Q=0 (11.55)
Q2 N—
——
Here we will assume that the underbraced terms are dominant. This leads
us to Q’ .
A =1 11.
g 0 9771 nQ (11.56)

Thus our asymptotic solution for y is

y=(20,2) = Q 7 exp {z /0 \/@dz] (11.57)

Notice the new notation (zg, z) introduced for y. Our solutions are called
subdominant (zg,z)s if they — 0 as z — oo. They are called dominant
(20,2)q if they — 00 as z — co.
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The general solution to this equation is
Y =a4(0,2) +a—(z,0) (11.58)

We need a method of relating the a4, a_ coeflicients in one domain to an-
other. Phase integrals are the way to do this.

11.6.2 Rules for Phase Integrals

We start with two definitions of lines in the complex plane.  Anti-Stokes
lines (AS) are when /Qdz is real. The solution is oscillatory here. We
will use solid lines to denote anti-Stokes lines. Stokes lines (S) are where
v/Qdz = i. The solutions here are 4 exponential. We will use dashed lines
to denote Stokes lines.
For example, if Q = —z (and z is real and positive), then the integrand
in Eq. is
0 .
iv/rezdre (11.59)

(after going from z — re'?). We can see from this that

. 30 ™ 7r
ie2 =real = O=—,m1,——

11.60

Thus our anti-Stokes lines lie at these angles. We can find the m AS line
easily by seeing that if z = (—) real, then for \/—zdz to be real, dz — real.
This is how Ist order zeros behave.

1st order poles behave differently. In this case, @ = . We have AS lines
where

\/a\d/z = real (11.61)
If z = (4) real, then dz — real. If z = (—) real, then dz — =+i. Thus
1st order poles have just one AS line coming out of them where z > 0, and
where z < 0, they have AS lines perpendicular to the z-axis. These lines
then wrap around the pole and are more or less parallel to the z-axis where
z > 0.

We are now ready to calculate phase intergrals. We start off with a
solution in a region, typically to the right of the first pole on the real axis.
If the real axis here is a Stokes line, we know we either have a dominant
or subdominant solution. If it is an anti-Stokes line, since z = x + iy, and
we usually go around CCW, y is some non-zero quantity. If you look at the
form of our solutions, Eq. , the ¢ outside the integral multiplied by
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iy gives us —y, which makes the exponential decrease. Thus the solution
starts off as subdominant.
We have a couple rules for how we go around the poles. They are:

1. If an AS line is crossed:

[(a,2)s = (a,2)d] (11.62)

2. If a cut is crossed CCW (CW):

(a,2)qs — Fi(z,a)qs (11.63)

3. If a S line is crossed CCW (CW):

(2,000 — (2,0)a = T(0, ),

(11.64)

For isolated singularities, T, the Stokes constant is

T
T=2% 11.65
i cos <n+2) ( )

for an nth order zero. It is —2i for a 1st order pole, ¢ for n = 1, and
doesn’t apply for n = —2.

If a S line is stepped on, its % and another % to step off.

4. To connect from one singularity (a) to another (b), use:

(z,0) = (2,b)[b,d] | (11.66)

e [b,a] = exp [z /b ' \/@dz] (11.67)

If a and b are joined by a S line, connect while on the S line (using the
step on/step off part of Rule #3). For these connections

Sline s+~ d

) (11.68)
ASline d,s—d,s

A right moving function (wave) e** = ¢®*~¥ is an increasing function as
xr — oo. Left moving is opposite. For example, on the right side of the

. . i —i. . . 2 i,
origin, e~ is outgoing. For €™ ~™! we see that 22 = wt +c. Ast — oo,
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22 — 00, which means if z < 0, then it is left moving. If > 0, then it is

right moving.
Reflection and transmission coefficients are
tgoi 1
p=2w8Ms o (11.69)

incoming incoming

IR+ |T]> =1 (11.70)

11.7 Perturbation Theory

€ is a small quantity. If it is on the highest order derivative, then use
boundary layer theory. Otherwise we use perturbation theory, which leads
to a solution in the form of a series in €. First, set ¢ = 0 and find the roots
of the equation. Once the zero-order solution has been found, let the higher
order solution be equal to x; = g + €a; + €2as + .... Then solve for the
coefficients a,.

Example: For example, lets examine the following equation.
14 (22 +€)2 =¢” (11.71)

Setting € = 0 shows us that 1+ z¢ = e, with a zero at o = 0. We then let
1 =0+ ea; + €2as + ... and sub this in. We get

1+ (22 + e)% = e (11.72)

Since € ~ 0, we can expand the exponential.

1+ (a3 + 7= %
1+e2=1+ea + 5t (11.73)

Canceling and solving for a; shows us that

ap = €

wln

(11.74)

As a result, we have a value for x1 = €3,

If there is no series (its divergent) that works or if more roots exist then
when for € ~ 0, its called singular perturbation theory. In this case, we use
the Kruskal graph approach discussed at the beginning of the section.
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11.8 Asymptotic Evaluation of Integrals

For the asymptotic evaluation of integrals, we have several paths we can
follow. The path chosen depends on the equation.

1. If x is in the limit of the integral we do one of two things depending if
x is big or small.

(a)
(b)

2. If x

Small z - for small x, we expand the integrand.
Big x - if x is big, we integrate by parts.
1

% i 2\ _ op t? 3y _ _
/Z e dt—>dt(e ) = 2te" dt = dv U= (11.75)

is in the integrand, we can do several things. We can use an

expansion trick, the Laplace method, or contour deformation.

(a)

Small x - Sometimes, x is in the integrand and we look at where it
is small. One way to deal with this is to expand the integral into
2 components, one of which evaluates to a constant, while the
other one can be evaluated using the above methods (1a) since it
has x in the integration limits.

/Oocoszxt_)/oocosxt:/’”_F/OO (11.76)
1 t . 13 1 1

The last term is a constant, and the integrand of the second to
last term can be expanded according to case (1a) above.

Laplace’s method - The key here is that the equation is in the
form of

b
/ f(#)er*at (11.77)
We suppose that ¢ has a max and find out where it is.
i
¢(t)\max = o+ ¢'(t —to) + %(t —tg)? (11.78)

Set ¢ = 0 and get ty. Since a < tg < b and most of the contri-
bution to the integral comes from where t = tg, you can expand
the integral limits to +oo. If there is a local max at one of the
end points, one uses ¢’ # 0 instead of a contribution from ¢” and
only one of the integration limits can be expanded to +oco. It is
only necessary to expand to the leading order in f(t).

o0 1! - )2
y = e / Fo(t)em8 =" ag (11.79)
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()

Contour deformation - Method of steepest descemﬂ - if the expo-
nent of the exponential is imaginary in the above case, we change
the contour of integration. We have to use this method since
there isn’t a stationary point where we can expand about since
the function is oscillatory. For example

1
/ dt—>/z’ds/ids (11.80)
0

Cy Cs

where C1 is along the imaginary axis from 0 to co and ¢t = is,
and C3 is a line parallel to the imaginary axis crossing through
1. It is from 0 to oo and t = 1 + is. C'2 goes from 0 to 1 at an
infinite distance up the imaginary axis, so its contribution is 0.

Method of Steepest Descent - ¢ is defined as in Laplace’s Method
above. I think Laplace’s Method is a special case of Steepest
Descent. Depending on the endpoints, one usually integrates
through the saddle. If this can’t be arranged, then usually one
goes through perpendicular into the center of the saddle and then
finish integrating through the saddle. See Problem 1997, pt. 2,
5.2 solution for a nice example.

i. Saddle points are located at ¢’ = 0. Find ¢y (what value of ¢
makes ¢ = 0.)

ii. Direction of saddle points: If ¢fj < 0, then (¢ —t0)? > 0 and
(t — to) = Re, and the saddle is horizontal. If ¢{ > 0, then
then (t—t9)? < 0 and (t—ty) = Im, and the saddle is vertical.

iii. For steepest descent at t — 1, ¢'(¢1)dz = —Re. ¢(t) — ¢(a) =
—u, where u is real. So if ¢/(1) = 2 + 4i, then dz = —&¢

. o4
#. The numerator is the direction of steepest descent.

iv. Usually at this point contribution will come from end points
unless you pass through a saddle.

11.9 Constructing Integral Forms of Equations

To construct the integral form of a differential equation, we follow a specific

process.

°I'm not very confident in the Contour Deformation bit. I never used it. I ended up
using Laplace’s Method, and long after writing this guide, learned the Steepest Descent

technique.

Unfortunately, I waited 6 months until after generals to add the Steepest

Descent write up that follows.
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1. The first step is to plug in the kernel. There are several option avail-
able.

(a) Fourier-Laplace
y = /e“f(t)dt (11.81)

This can also have an indicial ¥ out in front of the integral. Also,

it can have a s out front.

27
(b) Sommerfeld
y = /ezsmh(t)f(t)dt (11.82)

The indicial form of this kernel has the argument of the exponen-
tial as zsinh(¢) — vt. The sinh( ) can also be a sin( ).

(c) Euler
y = /(x ()t (11.83)
(d) Mellin
y = /xtf(t)dt (11.84)
2. Plug it into the differential equation.
3. Integrate by parts (xy/, zy terms)
4. Make the part under the [[ ]d¢ go away by setting it equal to 0.

5. Make the other term equal to 0 by seting the limits of integration on
[ ]
the ( )‘ . Find which endpoints make the expression evaluate to 0.

[ ]
Two paths must be chosen for two solutions.

Example: As an example, we will look at the Airy function.
Y’ =zy (11.85)

We will use the Fourier-Laplace kernel. The 2nd derivative of our kernel is

" 1 /zt2
= — t= fdt 11.
y'= g | S (11.86)

Taking our kernel and multiplying it by z gives us

— 1 L zt g/
. 2m,/e fide (11.87)

oy = ——
y 211

[ar e = 5 se

211
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G

Figure 9: Contours of Integration

If we plug this back into the original equation and separately equate the

terms under integrals, and the terms outside of integrals equal to zero, we
find

tf+f =0 (11.88)
f®)e*| =0 (11.89)

Working from the first line, we find f.

+3

f=e7% (11.90)

Plugging this into the second line and evaluating, we find that there are
3 contours to choose from. See Fig. [9 Since

[-]

C1 Cy (s
we can choose any two. The final solution is
1
y=— [ B (11.92)
271
C

where the contour C is any two of the three contours in Fig. [9]

11.10 Boundary Layers

Boundary layer theory is used when the small parameter € is on the highest
order integral. If € is not on 3", then use multiple scale analysis. The general
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form for these equations is

ey’ +a(z)y + b(z)y =0 (11.93)
where
y(x) =4  y(x2) =B (11.94)
right left

The boundary layer (BL) occurs under three circumstances.

Condition ) Location
alx)=0 d= €2 where a(z) =0
a(xa) <0 d=¢€ x =z on the right
a(x1) >0 d=¢€ x=x; on the left

Once it is determined where the BL’s are, one then follows the process
below. This can be done order by order.

1. Find the outer solution (e = 0).

2. Find the inner solution, where x = 06X, by dominant balance. Assume
oY 9%y
Y, (97X7 W’X ~ 0(1)
3. Match.

X
Yin — Yiaten as g — 0

Yout — Ymateh as T — 0

4. Yuniform = Yout + Yin — Ymatch

Example: We will find the leading order behavior for the following equa-
tion (from (L18.3)).
ey —z%y —y=0 (11.95)

where y(0) = y(1) = 1. We can see from Eq. (11.93)) that a(ze =1) = -1 <
0. Thus, according to our conditions, there is a BL here. There is also one
at £ = 0 since a = 0 here. Our outer solution is

—2%y —y=0 (11.96)
By examination, the solution is

yo = Coer (11.97)
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We now look at the inner solution for the BL @ x = 0. We set x = §z and
our equation now looks like the following.

€ d’Y ayY

= _ 922 Y =0 11.98

02 dz? T ( )
We seek our dominant balance now. The last two terms won’t do since this
sets § = 1, which is just our outer solution. The first two terms won’t work
either since it would set 6% = € and Y = 0, so we end up with the first and
the third terms. This gives us the result of 55 =1 — 0 = \/e. Rearranging
our dominant terms on the LHS and the small terms on the RHS, we get

d?Y 1 ,dY

The solution to this is Y = Dge® + Epe™, where z = § = % We know
that Yo(0) = 1, so Dy + Ep = 1. If we match our outer solution yy = Coewl'
to our inner solution at the boundary x = 0, we see that Cy = Dy = 0.
Forthe BLat x =1, weset xt =1 —eX or X = 1%“” Dominant balance

finds the first two terms of the equation to be dominant. To the leading
order

d>Y dY

- _.l_ -

dX2 = dX
The solution to this equation is Y = Ag + BoeX. We match at X — oo to 0
and find that Ag = 0. Since X = 0 here, this puts Bg = 1. Thus our uniform
solution is

=0 (11.100)

-z z—1
Yuniform = € Ve f+ee (11101)
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12 Diagnostics

12.1 Langmuir Probes
For Debye shielding, please refer to Section [2.1] on page

12.1.1 Bohm Criterion

We start off with the expressions for electron and sheath density, which are
just the Boltzmann distribution. The ion density is then determined from
conservation, n;V; = ngp V.

Ne = Ng €XP [6;1:] (12.1)
Nghp = N eXp {62}1} (12.2)
Ne = Ngp, €XP [M} (12.3)
Te
1
2e(V — Vin) ] 2
=g |1 2V = Ven) 12.4

For simplicity’s sake, we will call V —V;;, = F. We now plug these expressions
into Laplace’s equation.

1
eNngh 2eF \ 2 eF
ViF = ——2 11— - — 12.5
S0m) e(E)] e
We say that F' <« mQV;h, % Thus we can expand the above equation and
simplify.
d*F F F IngF [ 1 1
j:_ensh |:<1+€2>_<1+6>:|:_6nsh |: . _:|
dx €0 mV3, Te €0 mVys  Te
————
—C?2
(12.6)
For non-oscillatory solutions, C? > 0. Thus
1 1
—
]
T. < mV2 (12.7)
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12.1.2 Probe Current

The probe current to Langmuir probe is

1
ene [ 8T, \ 2 e(Vsp — V)
I — A = 1) 12.
4 <7rm6> exp [ T. (12.8)
T.\ 2
I;s = .6en, <) Ay =engy Vs Ay (12.9)
my;
where
KT, \ 2
Van = ( e) (12.10)
myg
g, = .6ng (12.11)

The last equation of importance is the difference between the space potential
and the floating potential.

kT, 1EKT,
+ —

Vip = Vy =33~ 4 o~

In p (12.12)

12.2 Interferometers

The phase shift between two arms of a Mach-Zehnder interferometer, using
a geometrical optics solution (WKB), is

Ap = / (Eptasma — ko) dl = /(N 1) % (12.13)

C

Defining the cutoff density n. as the density of plasma at which our selected
wavelength of light is too long to effective penetrate the plasma. This is a
constant with a given wavelength of light.
mew?
Ne =
7 4me?

We can now solve for the phase shift as a function of plasma density (Eq. (12.15)).

(12.14)

Cc

Agb—/(N—l)wdl
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Since our cutoff density n. is so much larger than our value for n, (~
104 cm*S), we can make an approximation here.

A¢zw/KF—1%—J>M
c 2n.

A ~ w(/mm (12.15)

2n.c

12.2.1 Other Interferometry Stuff

The indices of refraction are different depending on whether or not the wave
is O or X.

N2=1-X (12.16)

X(1-X
where

w2

X=2= (12.18)
w

y = (12.19)
w

12.2.2 Interferometry Problem #1

We start out with the equations in Section[12.2.1)and Eq. (12.13)). The error
between the X and the O components will be

Ad)o 7 A¢x _
‘A% x 100 = error (12.20)
where
A%:-“/<LJ§—QM
¢ (12.21)

oc—/X oc—El
2 2

dl
1/ X(1-X)
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Putting it all together for the error gives us

X + X 1-X —14+X+Y241-X 2
T2 T o x| 1—X—Y?2 | Y (12.23)
error = X X = T =T .
2 T-X—7?2 —x—v?

We finish by calculating X and Y.

12.2.3 Interferometry Problem #2

For the He and CO» laser problem, we start with a couple phase differences.

Ayip, = 2%Al (12.24)
Adpe = AdP, + /\277 Al (12.25)
He
27
2

where

e? A
AP = —— X [ nedl = — [ nedl
A meeg K
A p
= /nedl = e (12.27)
)\He
He

Now, going from the second and third equations above

Atie(AdHe — Aqb%e) =27Al = Aco,(Adco, — A¢%O2) (12.28)
DY A
AHeAdpe — “He / nedl = Aco, Adco, — 22 / nedl (12.29)
K kappa
Mo, — M
Qfe /nedl = )\COQA¢COQ — AHeAPHe (12.30)

(12.31)

/nedl _ KACOQA%OQ — AHeAdHe
)\2 _ )\2
COq He
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The uncertainty in this is

KTAH _
Tz 6 10¥m™2 (12.32)
COq He
/ nedl = 102°m =3 (12.33)
¥
taint
Fractional error = % ~ 6% (12.34)

12.3 Simple Magnetic Diagnostics
12.3.1 Magnetic Pickup Loops

The voltage out on a magnetic pickup loops is simply

Voutz—N/B-ler /B-dl (12.35)

loop leads

where N is the number of loops. There are two ways to get something
meaningful out of this.

1
B=-——" /dth (12.36)
V;)ut
E = 12.
— NL (12.37)

where A is the coil area and L is the coil length.

12.3.2 Ragowski Coil

The derivation of how a Ragowski Coil works follows. We know from Am-
pere’s Law that

/B -dl = Holene (1238)

Since we know that the flux through one loop is ¢ B - da = @, for the n
loops around the contour of our line integral, our total flux is

@:n/fdaB-dl:nA/B-dl (12.39)

¢ = An:U’OIenc (1240)
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Since %—? = —V, the voltage out of our Ragowski coil is

V = Anp,I (12.41)

Finally, to get the current through the coil, one must integrate by time.

1
1= Vdt 12.42
ponA / ( )
12.3.3 Toroidal Loop
Vieop = 2nRE,, (12.43)
If one looks at the Poynting flux through a surface
1
/P ds= | —E xB-ds (12.44)
Ho
1
= / —27RE,B -dl (12.45)
Ho
= IpVioop (12.46)

Also, average resistivity can be found by using

Vi I
= = 24

12.4 Thomson Scattering Cross Section

FE,; is the incident wave, and E is the scattered wave. R is the distance to
the observer.

b=-——FE (12.48)
m
B =1 (ax@xd) (12.49)
=5 4qey Re? - '
ap 2 2 _ 2.2 2
.= R?ceq |Es|” = rZ sin® Oceg | B (12.50)
N
2 o2
= *— =r_.sin” 6 12.51
A ceq | B ¢ ( )
since
dQs = 27 sin 0d0 (12.52)

do = 27r?sin® d6 (12.53)
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and we get

o=—r (12.54)

The calculation of the fraction of photons incoherently scatter from a 1
cm path length of laser beam from a plasma with an electron density of 120
m~3 with a solid angle of detection of 0.01 sr is below.

]]\Vf = neLAQg;(H) (12.55)
=(1x 1020/m3)(.01m)(.01sr)g?2(900) (12.56)
= (1 x 10°/m?)(.01m)(.01sr) 72 (12.57)
=78 x 1071 (12.58)

12.5 List of Diagnostics

Cheers Neutral beam injection (NBI) exchanges electrons with impurities,
causing the ions to get excited and radiate. One can then determine T;, n;,
and the amount of impurities by looking at the radiation.

BES NBI atoms get excited and radiate. Shows density fluctuations.

MSE Motional Stark Effect. The NBI beerns feels the E = E, ;. ,..,+vx B
so one can back out the B field and direction.

Neutron Detectors Count neutrons exciting the plasma.

e Gas Proportional - Fast charged particles going through the detector
can ionize the gas. An applied E then causes and avalanche which one
can pick up.

e BF'; - Detects slow neutrons. BF3 is the gas proportional counter and
a source of 1B which has nuclear reactions with the neutron.

e 235U - Fission detector detects slow neutrons. It picks up n + 23U
reactions with the n being in the 3.5 MeV range.

e 238U - Fission detector for fast neutrons. Picks up both fast and slow
neutrons.
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X-rays One can get T; from the Doppler broadened line and vy, from
the Doppler shift. There are three sources of x-rays.

e Bremsstrahlung is a free-free reaction. The electron scatters off a nu-
cleus and loses energy, emitting 1 hv (a photon).

e Recombination is a free-bound reaction. The electron is captured by
a nucleus, giving up energy and emitting a photon.

e Line radiation is a bound-bound reaction. The electron inhabits a high
energy orbital and after emitting a photon, drops to a lower energy
orbital.

12.6 Miscellaneous Diagnostics

12.6.1 Blackbody

The intensity of radiation given off by a blackbody is

W3Tk

For a plasma to be considered to be a blackbody, the optical thickness
7 must be

T>2 (12.60)
where
am(t)
= (12.61)
m |G

The 2nd harmonic X wave and the fundamental O wave are the only ones

that are really absorbed. The dflzf goes like Q}(}!ﬁ]go.
12.6.2 Fusion Power
Fusion power Pp is defined as
P+ F =14(6rB})*V (12.62)

The power dissipated on the center stack is

nchcff

c= W (12.63)
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The ratio of the two gives us our efficiency.

P L IOM g Rl (1261)

BrBp = 25 <1 2”2> <ﬁ%>2 (12.65)

];l: o 514\,(’4;31)2 (12.66)

To maximize this with respect to the aspect ratio A, we simply take the
derivative of the boxed equation with respect to A, set it equal to 0, and

solve for Agp.



