2011 - Part I - Question 1B Applied Mathematics (Quickie)

May 10, 2011

We want to find the asymptotic solutions to

$$
\begin{equation*}
\psi^{\prime \prime}+Q(x) \psi=0 \tag{1}
\end{equation*}
$$

This is just the standard WKB problem. As the problem instructs, we look for solutions of the form $\psi=e^{S}$. Plugging this solution into Eq. 1 and find

$$
\begin{equation*}
S^{\prime \prime}+\left(S^{\prime}\right)^{2}+Q=0 \tag{2}
\end{equation*}
$$

Now, we have no information about Q . Thus, we can only guess a balance and find the condition such that the balance holds. $\left(S^{\prime}\right)^{2}$ usually dominates over $S^{\prime \prime}$, so we choose a balance

$$
\begin{align*}
& \left(S^{\prime}\right)^{2}=-Q \\
& S^{\prime}= \pm i Q^{\frac{1}{2}} \tag{3}
\end{align*}
$$

In order for this to be a valid balance, we require

$$
\begin{align*}
\left|S^{\prime \prime}\right| & \ll\left|\left(S^{\prime}\right)^{2}\right| \\
\left|\frac{Q^{\prime}}{Q^{\frac{1}{2}}}\right| & \ll|Q| \\
\left|\frac{Q^{\prime}}{Q^{\frac{3}{2}}}\right| & \ll 1 \tag{4}
\end{align*}
$$

This is the standard limit for the WKB approximation.
Now we want the second order solution, so we add a g^{\prime} to S^{\prime} and plug it back into Eq. 2 to find

$$
\begin{equation*}
\pm \frac{i}{2} \frac{Q^{\prime}}{Q^{\frac{1}{2}}}+g^{\prime \prime}-\not \subset \pm 2 i Q^{\frac{1}{2}} g^{\prime}+\left(g^{\prime}\right)^{2}+\not \subset=0 \tag{5}
\end{equation*}
$$

Balancing the two \pm terms, we find

$$
\begin{equation*}
g^{\prime}=-\frac{1}{4} \frac{Q^{\prime}}{Q} \tag{6}
\end{equation*}
$$

Now we need to ensure that this is a legitimate balance too. Thus, we compare $\left(g^{\prime}\right)^{2}$ to the balanced terms.

$$
\begin{aligned}
&\left(g^{\prime}\right)^{2} \ll \frac{Q^{\prime}}{Q^{\frac{1}{2}}} \\
& \frac{\left(Q^{\prime}\right)^{2}}{Q^{2}} \ll \frac{Q^{\prime}}{Q^{\frac{1}{2}}} \\
& \frac{Q^{\prime}}{Q^{\frac{3}{2}}} \ll 1
\end{aligned}
$$

Again, we find the same condition we imposed for first order balance. Next, we compare $g^{\prime \prime}$

$$
\begin{gathered}
g^{\prime \prime} \ll \frac{Q^{\prime}}{Q^{\frac{1}{2}}} \\
\frac{\left(Q^{\prime}\right)^{2}}{Q^{2}}+\frac{Q^{\prime \prime}}{Q} \ll \frac{Q^{\prime}}{Q^{\frac{1}{2}}}
\end{gathered}
$$

The first term on the LHS is small by the WKB limit. The second term places a new limit on $Q^{\prime \prime}$. In general we ignore this, perhaps because a large $Q^{\prime \prime}$ would cause a large Q^{\prime} someplace over the domain, resulting in a violation of the WKB limit.

Putting these results together, we find our second order solution for Eq. 1

$$
\begin{gather*}
S^{\prime}=-\frac{1}{4} \frac{Q^{\prime}}{Q} \pm i Q^{\frac{1}{2}} \\
S=-\frac{1}{4} \ln Q \pm i \int_{x_{0}}^{x} Q^{\frac{1}{2}} d x \\
\psi=e^{S}=\frac{1}{Q^{\frac{1}{4}}} \exp \left(\pm i \int_{x_{0}}^{x} Q^{\frac{1}{2}} d x\right) \tag{7}
\end{gather*}
$$

This is the standard WKB solution.
Lastly, we are asked for values of Q for which these solutions will fail. Clearly, $Q=0$ is one. Another one would be where the WKB limit breaks down

$$
Q^{\prime}=Q^{3} / 2 \Rightarrow Q \sim \frac{1}{(x+c)^{2}}
$$

In fact, one can see that any Q with the form

$$
Q \sim \frac{1}{(x+c)^{n}} \quad n \geq 2
$$

will violate the WKB limit. Certainly there are many more Q s that would violate the WKB limit, but these are some simple ones to see.

