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4 Neoclassical Plasma Physics [60 Points]

Part 1: Estimate the terms in the “neoclassical” two-by-two matrix that relates
the fluxes –trapped-particle flux and charge flux (i.e. current density) to the
driving forces (density gradient and parallel electric field) in the “banana regime”.
[25 pts.] Give the trapped-particle flux using simplified (heuristic) estimates of the coefficients
for the driving forces.

As stated in the text of the problem, there are two driving forces of interest. We will look at the forces from

a density gradient and toroidal electric field.

A density gradient will result in random walk diffusion of particles. In a classical analysis we would

quickly write a diffusion coefficient D ∼ ρ2ν. In neoclassical analysis, the diffusion of interest is the much

quicker banana diffusion. In this case, we start with the basic relations

�Γ� = −Db
∂n

∂r

Db ∼
�∆x�
∆t

∼ Λ2νefffT

Where r is the radial coordinate (banana are centered around the outboard midplane for a tokamak, so this

is effectively the major radius coordinate R in this case), Db is the banana diffusion coefficient, Λ is the

banana width, νeff is the effective collision frequency, and fT is the fraction of trapped particles.

To find Λ

Λ = vdriftτbounce

Using the curvature drift

vdrift = −µ∇B ×B

eB
∼ v2T

ΩR

And

τbounce =

θbˆ

−θb

ds��v�
�� ∼

Rq

�1/2vT

Finally

Λ ∼ v2T
ΩR

Rq

�1/2vT
∼ ρq

�1/2

Now we recal the trapping condition
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w⊥0 + w�0 = µBmax

w�0

w⊥0
=

1 + �

1− �
− 1

v� ∼ �1/2vT

The relevant collisional frequency is the frequency at which particles change their velocity enough to leave

their banana orbit νeff ∼ ν90�−1. Additionally, fT ∼ �1/2. Putting it all together

Db ∼
� ρq

�1/2

�2
ν90�−1/2 ∼ ρ2q2ν90

�3/2

�Γ� ∼ −ρ2q2ν90

�3/2
∂n

∂r

A toroidal electric field -providing the second driving force- will result in the classic ware pinch. This is

a radial drift of banana orbits.

vware = �vr� ∼ vdrift∆θbounce ∼ vdrift
∆v�
v�

The small difference in parallel velocity between the two halves of the orbit (one going with the E-field and

one against) can be estimated as follows

∆v� =
eE�

m
τbounce ∼

eE�

m

Rq

vT �1/2

Using what we already know about the velocity scalings

vware ∼ vd
∆v�
v�

∼ v2T
ΩR

eE�

m

Rq

�1/2vT

1

�1/2vT
∼

eE�

Ωm/q
∼

cE�

Bp

The corresponding particle flux (averaged over a banana orbit) is

�Γ� = −fTnvware ∼ −c�1/2

Bp
nE�

[15 pts.] Give a simplified (heuristic) estimate for the neoclassical current density by specifying
the coefficients for the driving forces. The density gradient results in a bootstrap current.

Jb = envfc−c

where e is the particles charge, n is the particle density, v is the current carrying particles velocity in the

toroidal direction, and fc−cis the fraction of co-moving vs counter-moving particles. The key point to not

is that the passing and trapped particle populations are in collisional equilibrium (with particles constantly

changing from one to the other through pitch angle scattering). Thus, the fraction fc−c of the passing

population is equal to the corresponding fraction for the trapped population

fc−c ∼ −Λ

n

∂n

∂r
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Where we assumed the density gradient was negative and explicitly made the fraction positive. The

current carrying particles are the untrapped population, so we estimate v ∼ vT . Plugging in

Jb ∼ envT
Rq

�1/2vT

∂n

∂r
∼ −c�1/2

Bp
T
∂n

∂r

There is also a current driven by the toroidal electric field. classically we would just write Js = σ�E�.
Taking the trapped particles into account

J ∼ σ�E� (1− fT ) ∼ Js
�
1− �1/2

�

We are just looking for the “neoclassical current”, so we write

�J − Js� = −�1/2σ�E�

Putting everything into matrix form

�
�Γ�

�J − Js�

�
=




ρ2q2ν90

T �3/2
c�1/2

Bp

c�1/2

Bp

�1/2σ�
n




�

−T ∂n
∂r

−nE�

�

Note the Onsager symmetry between the off-diagonal coefficient matrix elements.

Part 2: Electrostatic drift waves (and associated instabilities) are often invoked
when neoclassical theory prove inadequate to account for the higher levels of
transport often observed in toroidal experiments.
[15 pts.] Estimate the perturbed density responses for kinetic “adiabatic” electrons and the
cold fluid ions respectively. Combine to give the drift-wave dispersion relation.

We write down the adiabatic electron response (taylor expand the gibbs distribution)

δne

ne
≈ eφ

T

For the ion response, we use the fluid equations. Start with the continuity equation

∂ni

∂t
+∇ · (ni�v) = 0

Lets assume a density gradient in the x-direction and define L =
�
− 1

n
∂n
∂x

�−1
. Linearizing, assuming no

mean flow, we get

∂δni

∂t
− vx

n

L
+ n∇ · �v = 0

In Fourier space

−iωδni

ni
− vx

L
+ i�k · �v = 0

Using the momentum equation with Ti = 0, �k = ky ŷ and �B = Bẑ

∂

∂t
(mini�v)− eni

�E − eni

c
�v × �B = 0
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−iω�v +
eikyφ

mi
ŷ − Ωi�v × ẑ = 0

Solving by components and dropping terms of order (ω/Ωi)
2

vx ≈ −i
e

miΩi
kyφ

vy ≈ −eωkyφ

miΩ2
i

At this point we can recognize the physics that is fundamentally responsible for our drift wave motion:

�E × �B drift in the y-direction and polarization drift in the x-direction. Plugging back into the continuity

equation

δni

ni
=

eφ

Te

�
kyTe

miΩiL

1

ω
−

k2yTe

miΩ2
i

�
= 0

Demanding neutrality

δni

ni
=

δne

ne

1− kyTe

miΩiL

1

ω
+

k2yTe

miΩ2
i

= 0

This is cleaned up by defining ω� = kyTe/miΩiL, c2s = Te/mi, and ρs = cs/Ωi

1− ω�
ω

+ k2yρ
2
s = 0

Finally, we rewrite this in the form of the classic drift wave dispersion relation

ω =
ω�

1 + k2yρ
2
s

[5 pts.] Justify the use of the “quasineutrality condition” relating the perturbed ion and
electron density responses.

The quasineutrality condition is a statement that the wavelengths of interest are much larger then a Debye

length.

This is seen by looking at the Poisson equation

∇2φ = 4πen

�
δni

n
− δne

n

�

k2φ =
4πne2

Te
φ

�
δni

δne
− 1

�

δni

δne
− 1 = k2λ2

De � 1

δni ≈ δne
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