
2012, Part 1, Question 3 (jburby@princeton.edu)

(a) When k > 0, the Landau contour is the directed curve in the complex u-plane used to analytically continue the
dielectric function ε(ω, k) from the upper-half ω-plane to the lower half. When k < 0, it serves to continue ε from the
lower-half to the upper-half. The shape is determined by demanding that the pole in 1/(w/k − u) cannot cross the contour
as the imaginary part of ω is dragged through 0.

A way to remember this is to first recall that when using Laplace transforms to solve the initial value formulation of the
problem, the imaginary part of ω is assumed to be sufficiently positive to ensure convergence of the Laplace transform. Thus,
ω/k begins with an imaginary part whose sign is equal to the sign of k.

(b) For stability, the imaginary part of ω that solves the dispersion relation must be less that or equal to 0. So assume
the contrary, i.e. Im(ω) > 0. Then the Landau contour is along the real u-axis. This means the dispersion relation becomes
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Multiplying the previous expression by ω and then taking the imaginary part finally gives
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Because ug′(u) < 0, the second factor in this expression must be non-zero. This implies Im(ω) = 0, contradicting our
assumption that Im(ω) > 0 (remember that this was what ensured the Landau contour was along the real u-axis). So it can
only be the case that Im(ω) ≤ 0, implying stability.
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