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4.23 s/s01m2 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754.24 s/s01m3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754.25 s/s02j1 T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764.26 s/s02j2 T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774.27 s/s02j3 T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774.28 s/s02m1 T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794.29 s/s02m2 T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794.30 s/s02m3 T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 804.31 s/s03m1 T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 804.32 s/s03m2 T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 824.33 s/s03m3 T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 821 Classial Mehanis1.1 m/m98j1 VThe ation with Lagrange term for onstraint inluded isZ w�w yp1 + _y2dx� ��Z w�wp1 + _y2dx� L� (1)The onserved quantity, harge orresponding to the translations along x axis isH = p _y � L; p = ÆLÆ _y ; (2)so p = (y � �) _yp1 + _y2 : (3)Up to the onstant term,H = �(y � �) 1p1 + _y2 : (4)After expressing _y = f(y) and integrating, one getsy = �+H osh xH ; (5)and the length onditionZ w0 p1 + _y2 = Z w0 osh xH dx = H sinh wH = L (6)1.2 m/m98j2 VLet the �rst partile is at distane r and the angle � from the enter of mass (its motion deouples). Then, theLagrangian isL = 2m2 [r2 _�2 + _r2℄� k2 (2r � 2r0)2 (7)The momentums arepr = 2m _r; pal = 2mr2 _� (8)4



and the Hamiltonian isH = p2r4m + p2�4mr2 + 124k(r � r0)2 (9)The angular momentum p� onserves and equations for � deouplep� = onst; _� = �H�p� = 12mr2 p� (10)while fora. radial omponent_r = �H�pr = 12mpr (11)2m�r = _pr = ��H�r = 2 p2�4mr3 � 4k(r � r0) (12)b. The system will osillate between two turning points. They �rst one is just the initial point, the seond isdetermined from equation for vanishing kineti energy in that pointp2�4mr20 = p2�4mr2 + 2k(r � r0)2 (13)Form small v one has small p� and as a result�l = 2(r � r0) = 12mv2kr0 ; (14)where r0 = l=2, and v is initial veloity in the lab frame.1.3 m/m98j3 VThe equations of motion are�x = g � N sin!t (15)�y = N os!t (16)_y = _x tan!t (17)With an anzatz N = A sin!t one gets�x = g � A sin2 !t (18)�y = A os!t sin!t (19)_y = _x tan!t (20)Then,_x = gt� 12At + A4! sin 2!t (21)and _y = A4! (1� os 2!t) (22)All equations are satis�ed with A = 2g andx = g4!2 (1� os 2!t) (23)y = g4!2 (2!t � sin 2!t) (24)That is yloid. 5



1.4 m/m98m1 VFrom equation for fores at an in�nitesimal path of irle dT = ��Td� follows T = T0e��� = mge�� �2 .1.5 m/m98m2 VWe onsider ase, when the horizontal line lies in the same vertial plane as a irle, below it.L = 12m �(r _�)2 + _x2�+mgr os�� 12k �(x� r sin�)2 + (a� r os�)2� (25)for small deetions, where y = r�, gives the anonial kineti term and the following bilinear form for the potentialterm  k �k�k ka+mgr ! (26)with the eigenvalues� = 12 ��(k + k1)�p(k + k1)2 � 4(kk1 � k2)� ; (27)where k1 = ka+mgr and frequenies !2 = �m .1.6 m/m98m3 Va. v =p2gh = 4:5m=s2 (28)b. Balloon is inlined in the diretion of the aeleration with the angle tan � = ag = 0:1. .MgS = �gH; H = M�S = 3 m (29)d. �P = 4 �R = 20Pa (30)e. Sine�rv = 1�rp (31)andP vi = 0, where vi are inoming veloities,X(pi � penter) = 0: (32)Then penter = 14(2�+ 1)p (33)it should be greater than p for the ow to go out. Therefore� > 32 (34)1.7 m/m99j1 Tm99j2 FMg = tg�R = b� a sin �Mw2R = F and T = 2�w Thus T = 2�q b�a sin �gtg� 6



1.8 m/m99j2 Tm99j2 r2 = x2 + y2 Lagrangian isL = m2 [r2 _�2 + _r2℄�mgpr2 � R2 (35)Equation of motion mr2w = L = onst ( _� = w) andm�r = L2mr3 � mgrpr2 � R2 (36)The stationary orbit is when _r = 0 and r2 = r20 = R2 + g2w�4 Equation of motion for small utuation � = r � r0 is�� + 
2� = 0
2 = w2(3� R2w4g2 ) (37)The osillations are unstable if 
2 < 0 or when (here we substitute expression for w from formula for r0)r20 < 43R2 (38)1.9 m/m99j3 Tm99j2 Fores ating on the element of rod from x to x+ dx (x 2 [�L=2::L=2℄) all together gives zero result:T (x+ dx) + dxm(R+ x)w2L = T (x) + dxmMGL(R + x)2 (39)After integrating one getsT (x) = � mMGL(R + x) � mx(R+ x=2)w2L +C (40)The ondition that total gravitational fore is equal to total entrifugal fore is T (L=2) = T (�L=2). Solving thisonstraint we will �nd w2 = MG=R(R2 � L2=4), and after substituting this bak we will have thee following resultfor T (x)T (x) = � mMGL(R + x) � mMGx(R+ x=2)w2LR(R2 � L2=4) + C (41)Now we will use ondition that at the end of the rod there should not be any tension (end of the rod is massless). OrT (L=2) = T (�L=2) = 0. This givesC = mMG(R2 + L2=8)RL(R2 � L2=4) (42)Now we an alulate T (0)T (x = 0) = 3mMGL8R(R2 � L2=4) (43)1.10 m/m99m1 VFrom onservation of an angular momentum there is a rotating frame in whih ball moves only in the vertial diretion.Let the frame 'bar' rotate with 
 ounter lokwise.!x = !�x os 
t� !�y sin
t (44)!y = !�x sin
t+ !�y os
t (45)7



(the same relation between any 'bar' and lab vetor omponents). Then aeleration-fore equations of motion in labframe: m _v�y = 0 (46)m( _v�x � 
2r) = N�x (47)m _vz = �mg +Nz (48)and angular momentum-angular aeleration equations of motion in lab frameJ _!z = rN�y (49)J _!x = r sin
tNz (50)J _!y = �r os
tNz (51)an be rewritten into 'bar' frameJ _!z = rN�y (52)J( _!�x �
!�y) = 0 (53)J( _!�y +
!�x) = �rNz (54)Sine N�y = 0_!z = 0; !z = �
Rr : (55)Substituting vz = r!�y in the (??) one getsJ( _!�x �
!�y) = 0 (56)J( _!�y +
!�x) = �r(mr2 _!�y �mgr) (57)and then�J �!�y + J
2!�y = 0; �J = J +mr2 (58)with osillating solution!�y = B sin �t; (59)where �2 = 
2 JJ+mr2 . From !�x(0) = 0 one getsB = � mgr(J +mr2)� (60)whih determinesvz = r!�y sin �t = � mgr2(J +mr2)� sin �t (61)and z = � mgr2(J +mr2)�2 (1� os �t) = �52 g
2 (1� os �t) (62)The ball will be osillating between two horizontal lines. 8



1.11 m/m99m2 VThe potential 1r 2 has the same form as an e�etive potential for a partile moving along radius due to its angularmomentum. Therefore (for the e�etive sattering partile, in the entral oordinate system, where � = � is zerosattering), givenm2 ( _r2 + M20m2r2 + �r2 ) = E0 (63)and rewriting� = Z M0drq2E0m � M20+�m2r2 1mr2 (64)one an immediately �nd the answer without integrating, just from omparison with a freely moving partile� = �s M20M20 +m�2 (65)(Here M0 and m are for the e�etive partile, m = meff = m1m2m1+m2 and M0 = bvmeff , and meff = 23M ).The inoming light partile (whih is 2 times lighter), will satter in the lab frame at the angletan � = sin��13 + 23 os(� � �) (66)1.12 m/m99m3 Va. From the funtional for the energyL = Z 2�xdx(�p1 + (y0)2 + �gy) (67)in the limit y0 ! 0 one gets the stationary equationddx (x�y0) = x�g; (68)with solutiony(x) = x2�g4� (69)b. Inluding dependene on time in lagrangian with zero angular mode, one getsL = Z 2�xdx12(�(�ty)2 � � (�xy)2) (70)with the standard equations of motion for ylindrially symmetrial waves�t(x��ty) � �x(x�y) = 0 (71)Plugging y(x; t) = y(x)ei!t one getsd2ydx2 + 1x dydx + 
2y = 0 (72)where 
2 = �!2�Its solutions are given by Bessel funtions. With x = 1
 ~x the equation beomes anonial and the answer isy = J0(
x). Let 0 is the �rst root J0(0) = 0, then! =s �20�R2 (73)9



1.13 m/m00j1 Tm00j1Let �(x) be the angle between the tangential line to ark (at point x) and horizontal line. Obviously tg� = y0.Then the mass of the element of ark from x to x + dx is dm = �dl = �dxos� . Let us �!N be the normal (no gluing-notangential) fore in ar. Then �!N = x̂N os�+ ŷN sin�. The element of ar is in rest. As a onsequenes the sum ofall fores ating on it is zero. These fores are: normal fore at the one end ( at x), normal fore at another end (atx+ dx) and gravitational fore.N os�(x+ dx)�N os�(x) = 0 (74)N sin�(x+ dx)� N os�(x) + dmg = 0 (75)Or N sin�(x) = C = onst (76)and thus(Ctg�)0 + �gos� = 0 (77)As a result� �gdxC = d�os� (78)and then� �gdxC = d(y0)p1 + (y0)2 (79)Integrating this we gety0 = sh(�gC (x� x0)) (80)At lasty0 = � C�g sh(�gC (x� x0)) (81)Ar has form of so-alled hain-line (sh). C has sene of horizontal fore in ar.1.14 m/m00j2 Tm00j2 Let '(t) = � � �(t) and '0 = '(t = 0) And also let l 2 [0::L℄ be the oordinate along one rod, suh as l = 0 isa free end (on the oor) and l = L is a tied end. Then the oordinates arex(l) = (L � l) os' (82)y(l) = l sin' (83)v2 = _x2 + _y2 = _'2[l2 + sin2'(L2 � 2Ll)℄ (84)The kineti energy of one rod isE = Z L0 dlm2L v2 = mL2 _'26 (85)Energy onservation low saysmL2 _'26 + mgL sin'2 = mgL os �2 (86)10



a). The moment just before the rods touh the oor is when ' = 0. This time _x = 0 sine it is proportional to sin'.Thus the veloity is vertial and equalL _' os' =p3gL os � (87)b). Now we will �nd the fore between the tied ends. Due to the symmetry these fore (F) is horizontal, and this isonly one horizontal fore ating on the rod. Aording to the seonds Newton's low, applied to the enter of mass ofthe rodF (t) = m�x(t) (88)We know the dependene x(t) = x('(t)) and _'(t) = _'('(t)) (energy onservation low). Thus �(t) = _'2 d2d'2 x(') +dd'x(') dd' _'(') _' The seond term gives no ontribution sine dd'x(') proportional to sin' and vanishes when ' = 0.And the ontribution of the �rst one is�x(' = 0) = 3g2 os � (89)Or, �nallyF = 3mg2 os � (90)1.15 m/m00j3 Tm00j3Let r be the distane between the hole in the table and mass m2. Then the largarngian isL = 12[(m1 +m2) _r2 +m2r2 _'2℄�m2gr (91)Equations of motion arem1r2 _' = L' = onst (92)(m1 +m2)�r = �m2g + L2'm1r3 (93)The equilibrium position is r0 = m2gm1w2 , where w = _'. We want to onsider small osillations of variable � = r � r0.Expanding up to the �rst order in � the equation of motion for rwe will get�� +
2� = 0 (94)where
2 = 3L2'm1(m1 +m2)r40 = 3m1m1 +m2w2 (95)We know that the orbit is losed () 
 = wn)and there is only one minimum (maximum) per period () n = 1). Thusm2 = 2m11.16 m/m00m1 VThe potential is (a)GM 12� Z d�jR+ rei�j = GM 12� 1R Z d�(1 + 2x os � + x2)�1=2 = GMR �1 + 14x2�+O(x3); (96)where x = rR , and (b)!20R = GMR2 �1 + 34 r2R2� (97)11



To �nd small osillations onsider the Hamiltonian form withp� = mR2 _�; pr = m _R; (98)and H = p2r2m + p2�2mR2 � GMmR �1 + 14 r2R2� (99)The stationary point for r motion orresponds top2�mR30 = GMmR20 �1 + 34 r2R20� (100)Plugging it in the e�etive potential term, and taking the seond derivative, one �nds�2V�R2 = GMmR3 �1� 34 r2R2� (101)Then,!r!� = 1� 34x2 (102)and �� = 2�34x2 (103)1.17 m/m00m2 VLet � is an angle between the line from the orner to the enter of the ladder and the oor. Then from onservationof energym2 _�2r2 + J2 _�2 = mgr(sin �0 � sin �) (104)one �nd the relation between _� and �, and also equation of motion for ��� = �mgrJeff os � (105)The x oordinate of the enter of mass moves with an aeleration�x = ���r sin � � _�2r os � (106)When the ladder separates from the wall �x = 0, thusmgrJeff r os � sin � � _�2r os � = 0 (107)and the result for ritial angle issin � = 23 sin �0 (108)
12



1.18 m/m00m3 TLgrangian of our system isL = m2 [R2 _�2 + w2R2 sin2 �℄ +mgR os � (109)Using that w2 = gR we obtain the system with e�etive potential energy of the formU = � gR [os � + 12 sin2 �℄ (110)and with kineti energy 12 _�2. Now the period of osillations with amplitude � isT (�) = 4sR2g Z �0 dtqos t� os � + 12(sin2 t� sin2 �) (111)Expanding near zero, treating t; � << 1 we getT (�) = 8�sRg Z 10 dtp1� t4 (112)1.19 m/m01j1 Tm01j3 As usual we use ylindrial oordinates andL = m2 [ _r2 + r2 _�2℄�mgz (113)Here z = �b os and r = a+ b sin Angular moment onservation low givesmr2w = L+ onst (114)where w = _�. Cirular orbit orresponds to the angle  0 suh as tg 0 = w2r( 0)g . Equation of motion in the terms ofr is m�r = L2mr3 �mdzdr (115)And frequeny of small osillations is
2 = 3w2 � d2zdr2 = 3w2 � gb os3  0 (116)1.20 m/m01j2 Tm01j2 The most important quantity in this problem is the angle between line, whih tangential to the Earth's surfaeand the line, whih is tangential to the radius. If we will drop seond order in � we an treat dr(�)rd� also as a smallquantity and drop it's seond order as well. Then this angle � is just equal to � = �dr(�)rd� (Minus here is due to thesign of d�). The entrifugal fore on the surfae isF = mw2r(�) os � (117)and direted to the axis of Earth's rotation. Together with gravitational fore mg, direted along the radius this foreshould form the fore just perpendiular to the surfae. Using "sin" theorem we getsin�(�)F = sin(� + �(�))mg (118)(note that here g depends on �). We will drop seond order of � and the natural dimensionless small parameter will bew2reg(re) . Expanding in this parameter we an neglet the dependene in g on � and � in sin(�+�(�)). After integratingwe will haver = re(1� w2re sin2 �2g(re) + O((w2reg(re) )2)) (119)Thus � = w2re2g(r3) = 3w28�G� 13



1.21 m/m01j3 Tm01j3Let the (onstant in time) angle between onserved angular momentum and axis of Earth be  , angular frequenyof rotation is w and preession frequeny is 
. Sine no fores at on the Earth angular momentumI(t)ij = (Omega(t) + w(t))j =Mi = onst (120)Let us onsider moment t. Let hoose the ordinate system in the way that M has only z projetion and enter ofEarth has zero y oordinate. ThenM = f0; 0;Mg (121)
 = f0; 0;
g (122)w = fw sin ; 0; w os g (123)In the oordinate frame , orresponding to Earth
 = f�
 sin ; 0;
os g (124)w = f0; 0; wg (125)In this frameI(
 + w) = f�Ixx
 sin ; 0; Izz(
 os +w)g (126)Going bak to the inertial frame ,I(
 + w) = f�Ixx
 sin os + Izz(
 os +w) sin ; 0; os Izz(
 os + w) + Ixx
 sin2  g (127)Now we have to satisfy our assumption about diretion of M . As a onsequenes0 = �Ixx
 sin os + Izz(
 os +w) sin (128)And 
 = �w� os (129)where� = Izz � IxxIzz (130)Remark (V)1. If one expresses the answer in terms of L | angular momentum, the result is 
 = LIx . What is alled by theangular veloity of preession | is the angular veloity of rotation of the axis of the urrent angular veloity aroundthe �xed diretion in spae along the angular momentum (whih remains the same) in the inertial oordinate system(relative to the stars). The preession in this sense is slow when Ix � Iz (rod) and is approximately the same as theurrent angular speed of rotation for a sphere-like objet Ix � Iz.2. By guess, in the problem they ask about estimation of some other quantity (what is onfusing with ommonde�nition) | the angular veloity of rotation of the axis of the urrent angular veloity around the �xed diretionattahed to the Earth, that is | in rotating oordinate system of the Earth. From onservation of the angularmomentum L written in the rotating x; y; z-oordinate system attahed to the Earth we have_L+ ! � L = 0 (131)14



where ! is the urrent angular veloity (as physial objet it is de�ned with respet to the oordinate system ofstars, and by de�nition it is the angular veloity of rotating x; y; z-frame), but expanded in the x; y; z-Earth onnetedoordinate system. That results_!x = Iy � IzIx !y!z; _!y = Iz � IxIy !z!x; _!z = Ix � IyIz !x!y; (132)For O(2) symmetrial body we have Ix = Iy, and thus !z(t) = onst � !z0 and the remaining equations beome linear�!x + ("!z0)2!x = 0 (133)with the harmoni solution having frequeny ~
 = "!z0, whih desribes slow rotating of the urrent axis of angularspeed around the z-axis diretion (whih is attahed to the Earth!, and whih is itself rotates with approximately1-day period around the �xed diretion of the angular momentum relative to the stars!!).1.22 m/m01m1 Ta). 0 = dF = dx�g + T (x+ dx)� T (x) (134)Thus �T�x = ��g (135)But T (x) = KL(�S�x � 1) (136)Result:S00 = � �gKL (137)Or S(x) = a+ bx+ x2=2 (138)From the equation we have  = � �gKL . Sine S(0) = 0 a = 0. We also know that T (L) = 0 and thusb� �gK � 1 = 0 (139)FinallyS0(x) = x+ �gK [x+ x22L ℄ (140)b).The wave equation (as usual) has formS00 � v2 �S = 0 (141)where v2 = KL� . The general solution isS(x; t) = f(x � vt) + g(x+ vt) (142)At the moment t = 0 S(x; 0) = S0(x). Henef(x) + g(x) = S0(x) (143)(here x > 0). Also at the moment t = 0 veloity is equal to zero:f 0(x)� g0(x) = 0 (144)15



for x > 0. Result: for x > 0f(x) = g0(x) = 12S0(x) (145)The last job is to determine f(x) for x < 0. Using that S(0; t) = 0 for any t we an de�ne f(x) for negative x asf(x) = �g(�x) = �12S0(jxj); x < 0 (146)Now f(x) is a smooth funtion.1.23 m/m01m2 TWhen partile ross the point x = 0 with very small energy time inreases logarithmially. If the energy of partileis E then using energy onservation low (it is violated only very slightly and during one period we an use it withouthanging E)E = m _x22 � ax2 + bx4: (147)For small x_x = 2mpE + ax2 (148)and time of rossing isT (x0) = Z x00 dy_x(y) � 2mpa logE (149)Sine after E < 0 the period redues twie beause the path redues twie we approximately haveE(i) � (i0 � i)� (150)for i < i0 andE(i) � 12(i � i0)� (151)for i > i0.Thus for i < i0T � 2mpa log(i � i0) + onst (152)and T � 1mpa log(i � i0) + onst (153)for i > i01.24 m/m01m3 TWe will solve part b. and then will get result for a. substituting � = 0. Let us introdue variable z = y + ix. Thenthe equation of motion will be�z + (� � i qBm ) _z = g (154)Initial onditions z(t = 0) = 0 and _z(t = 0) = 0. The solution isz(t) = imgqB + im� t+ m2g(qB + im�)2 [1� e(i qBm ��)t℄ (155)16



and _z(t) = imgqB + im� [1� e(i qBm ��)t℄ (156)a). � = 0 This motion is the simultaneous irling and shifting.b). In the ase � 6= 0 radius of irling dereases and the motion beame shifting with �nal veloity imgqB+im� .). The drag from b. hanges the value and diretion of shifting. In the ase of radiation the diretion and veloityof shifting oinide with the results from a. The �nal veloity is just the veloity of shifting.To get this result we add the term �q d3zdt3 (�-some real number)to the equation of motion. Then the veloitydepends on the time as_z(t) = � imgqB + v0[1� e
t℄ (157)We have no idea to speify v0. More interesting to �nd 

 = 1�q1� 4�q( iqBm )2�q (158)When � = 0 we return to the a. ase. When � 6= 0 we would like to note that<
 < 0 (159)Thus veloity (and radius of irling dereases in time). The imaginary part is di�erent from a. ase- the frequenyof irling is not the same as without drag.1.25 m/m02m1 Ta).z = r ot�L = m2 [ _r2sin2 � + r2 _�2℄�mgr ot� (160)Equation of motionmr2 _� =M = onst (161)and msin2� �r = �mg ot�+ M2mr3 (162)b).If �r = 0 thenw2 = gz0 ot2� (163)).Expanding we have 
2 = 3w2 sin�1.26 m/m02m2 Ta). Let � be ml The Lagrangian isL = 12 Z L0 dtdx[� _y2 � �y02 +M _y2(x; t)Æ(x� L=2)℄ (164)Equation of motion is� _y(x; t)� �y00(x; t) +M �y(L=2)Æ(x� L=2) = 0 (165)17



This equation ould be separated for two�y � v2y00 = 0 (166)where v2 = �� for x 6= L=2 andM �y(L=2; t) = � [y0(l=2 + 0; t)� y0(l=2� 0; t)℄ (167)Boundary onditions for x = 0 and x = L: y = 0.We would like also to note that frequeny (and thus wavelangth) to the left of mass and to the right of mass shouldbe the same for y(x) be smooth for any moment t in the enter x = L=2.Anzat: (w2(k) = v2k2) for x < L=2y = Ak sin(w(k)t + �) sin(kx) (168)for x > L=2y = Ak sin(w(k)t + �) sin(k(L � x)) (169)Now we preserve smoothness of y(x). But there is also exeption when y(L=2) = 0 for any t:k = 2�nL (170)Then y ould bey = Ak sin(w(k)t + �) sin(kx) (171)for x < L=2 andy = �Ak sin(w(k)t + �) sin(kx) (172)for x > L=2Even in this ase dependene on time (and n) from both sides should oinides to satisfy equation for M �y = :::Now the equation of motion for mass M yieldsMw2 sin(kL2 ) = 2�k os(kL2 ) (173)Let us denote kL2 as �. Then equation istan � = m�M (174)In the exeptional ase (k through n) the equation for massM already satis�ed. This is just stati wave with knotin the point L=2.b). We did this. But exept this there are suh a solutions when M =1.). At M = 0 we have equation tg� = infty and k = (2n+1)�LPlus exeption k = (2n�LAt M =1 we have equation tg� = 0 and k = 2n�L This is the same wavelength as exeptional mode has (it shouldbe added in the ase M = 1) but the amplitudes Ak in the RHS and LHS of the string has the same or oppositevalue orrespondingly.d). The �rst for frequenies (starting from M = 1): two symmetri and two antisymmetri relatively enter(x = L=2). Thus for eah mode in the LHS we have two modes for system at all. Two modes in the LHSy = sin(w(n)t+ �) sin(2�nxL ) (175)and n = 1; 2. 18



When M hanging from 1 to 0 antisymmetri doesn't hange! The symmetri modes are " sliding along tghgraph" (see equation derived before). Their momentum k inrease and for �nite M they looks like:n = 1-bak of two-humped amel. Eah hump inrease and beame from part of sin from 0 to � into part of sinfrom 0 to 32�The same happens with n = 2. But for M 6= 1 the symmetri mode is not fourth any more- the zero mode atM = 1 (just onstant mode) start " sliding along tgh graph" and goes to "one-hamped amel". Eah side of humpin the end of the story (M = 0) beame to sin from 0 to �=2.1.27 m/m02m3 Ta). _v = g � kmv2 (176)Solutionv =rmgk tanhrkgm t (177)b). _u = os�wv (178)Solutionu = os�mwk log oshrkgm t (179)). v !rmgk (180)u! wtrmgk os� (181)1.28 m/m02j1 TLet us the distane between the y = 0 plane and mass M be h. And the angle between the horizontal line and stikof length 2 be �. Then the onstraint for this system isb2 = (a �  os �)2 + (h+  sin�)2 (182)Potential energy of this system isU = �2Mg[h+  sin�℄ (183)Equilibrium point is dU = 0 or (using onstraint)os �0 = a (184)h0 +  sin�0 = b (185)and alsod�dh (h0) = �1a (186)19



Now seond derivative of U with respet to h at the equilibrium point:U 00 = �2Mg[ad2�dh2 � a2 sin�0℄ (187)Let us �nd d�2dh2 . Using onstraint one ould simply get0 = (1 +  sin�)2 + ( os �d�dh )0( sin�� a) + (x+  sin�)[ os�d2�dh2 �  sin��d�dh�2℄ + ( os �d�dh )2 (188)At the equilibrium point this yieldsd2�dh2 (h0) = h0a3b sin�0 (189)EventuallyU 00 = 2Mg[b� h0℄ba2 (190)Now we will �nd the kineti term. Horizontal speed of mass M=2 partiles is 2 _h sin�0 a . Horizontal speed of massM partile is zero.Vertial speed of mass M=2 partiles is _h[1 + 2 os�0a ℄ = � _h. Vertial speed of mass M partiles is _h.Kineti energy is T =M _h2[1 + 2 2a2 sin2 �0℄. The square of the frequeny isw2 = 2g[b� h0℄b[a2 + 2(b� h0)2℄ (191)Now using that (b� h0)2 = 2 � a2 we havew2 = 2gp2 � a2b(22 � a2) (192)1.29 m/m02j2 TLet us remind the relevant formulas for partile orbiting the entral attrative fore � 1r2 .1. Angular momentum L = mr2 _� is onserved.2. If the potential energy is given by ��r and total energy is equal to �E, E > 0 then the partile orbits the urver(�) = p1 + � os(�) (193)wherep = L2�m (194)and �2 = 1� 2L2Em�2 (195)Now if the energy less then zero the orbiting is �nite. Otherwise it is in�nite.Let us denote the veloity of satellite just before "ollision" with Mars v and the veloity of Mars was V =p �mb .After "ollision" the veloity of partile is �!u = 2�!V � �!v .The energy after the "ollision" isE = mu22 � �b = mv22 + �b � 2m�!v �!V (196)If before the interation veloity of the satellite and Mars was direted opposite to eah other E > 0 and satellite willgo to spae in�nity. 20



To disuss the ase of general diretions we will need useful formulasE = �a+ b (197)and L2 = 2abm�a + b (198)Then the energy after olliding (in assumption that �!V and �!v were parallel to eah other) isE = ��b [ aa+ b + 1� 2r 2aa + b ℄ (199)This energy ould be negative. And the square of angilar moment isL2 = 4�mb[1�r a2(a+ b) ℄2 (200)Eventually the largest distane is4p1� � �1�r a2(a+ b)�2 (201)where� =s1� 8[2r 2aa+ b � 1� 1a+ b ℄�1�r a2(a + b)�2 (202)1.30 m/m02j3 Ta).T = kÆx = kl Æll . Now Æll should be substituted by ÆLL . Eventually we have klL .b).T (x) = kl( dsdx � 1) (203)and ml g = �dTdx (204)Solving this with boundary onditions: s(0) = 0 and T (l) =Mg we haveS0(x) = (1 + (m+M )gkl )x� mgx22kl2 (205)and S0(l) = l + (m+2M)g2k . ). Now it is useful to introdue new variable D(x; t) = S(x; t)� S0(x). Wave equation forD(x; t) ontains lq km as the speed of waves. Plus boundary onditions D(t; 0) = 0 and M �D(t; l) = �klD0(t; l).Using �rst onstraint we onstrut our solution in the formeiwt sin(px) (206)Then the other onstraint yieldstan(pl) = mMpl (207)and also w = plq km d). M = 0 yields p = �2l . "A half of the wave".m = 0 naively yields p = 0-no osillations at all. But this is too naive. We will present orret answer after theintermediate ase m << M .In the ase m << M we an expand tan and get p = 1lpmM (here we are interested in the low frequeny). As wasexpeted in this ase w =q kM . The last step is to normalize D(x; t) in the way that amplitude of the osillations ofthe mass M beome �nite. OrD(x; t) = eip kM txl (208)Now we an simply take the limit m = 0 and get the usual result for pendulum handing on the massless string .21



1.31 m/m03m1 Ta). Third Newtons low for orbit of radius r > Rmw2r = mMsGr2 + mMeG(r �R)2 (209)where w is the frequeny of Earth w2 = MsGR3 . This equation ould be rewritten in the way r = �R1 = 1�3 + MeMs�(� � 1)2 (210)Obviously it has one solution for xi > 1. Really starting at � =1 and when going to � = 1 RHS inreases from 0 toin�nity. Thus it rosses 1 at expliitly one value of x.b). Taking MeMs = � as a small parameter we understand that xi should goes to 1 when � goes to 1. Or, in otherwords, when � is �nite (approximately 1) quantity � � 1 is small. We would like to rewrite the previous equation inthe form� = (x� 1)3(x2 + x+ 1)x2 (211)Aording to the previous speulations we ould �nd the answer in the leading order by treating � = 1 and lookingfor (� � 1):� = 1 + � �3�1=3 (212)Numerially (if � = �) � = 1 + 10�2 and (r �R) = 1106km.).Using angular momentum onservation we ould �nd square of angular frequeny of small osillations
2 = 3w2 � 2[MsGr3 + MsG(r � R)3 ℄ (213)We are interesting whether 
2 > 0 or not. Rewriting this we will get3� 2�3 � 2�(� � 1)3 (214)Using our equation for � through � we an reexpressed the result only through xi (equivalent inequality)3� 2[1 + ��1 + ��2 + ��3℄ > 0 (215)Thus we have that orbiting is stable for large xi (when partile is far from the Earth) and unstable otherwise. Theinfernal point is when�4 � 3�2 + 2 = 0 (216)In our ase, when � = 1 + � �3�1=3 we have3� 2[1 + ��1 + ��2 + ��3℄ = �5 + O(�1=3) < 0 (217)The orbit is unstable.1.32 m/m03m2 Ta). Seond Newton's lowM ��!R = m�!g sin � +�!f (218)(our �!g has the value of usual g but direted "downhill" )and the same low for angular momentumI _w = a[�!n � �!f ℄ (219)22



with without slipping onstraintddt _R = ddta[�!w � �!n ℄ (220)yield �!f [1 + Ma2I ℄ = �m�!g sin � (221)Hene e�etive fore (RHS in the Newton's low) ism�!g sin �[1� 11 + Ma2I ℄ = 57�!g sin � (222)in the ase I = 25Ma2b). One again seond Newton's lowM ��!R = �!f (223)plus low for angular momentumI _w = a[�!n � �!f ℄ (224)plus without slipping ondition_R = a[�!w ��!n ℄ + [�!
 ��!R ℄ (225)(R = 0-enter of rotation) yield�!f = M [�!
 � _�!R ℄1 + Ma2I (226)and �R� [
� _R℄1 + Ma2I = 0 (227)Let us denote � as� = 1 + Ma2I = 27 (228)Then introduing omplex artesian oordinates on the plane r = x+ iy and v = _x+ i _y the equation beame�v + (�
)2v = 0 (229)with solution -linear superposition ofAei�
t +Be�i�
t (230)Obviously this is orbiting (arbitrary point as enter) with frequeny�
 (231)
23



1.33 m/m03m3 Ta). We will assign the gas suh quantities as �eld of pressure, �eld of density and �eld of veloity. We also assumethat our proess is adiabati, orP�� = onst (232)Let us onsider small (pointlike) volume of air. Its aeleration _v (as a hole objet is)_v = �P��x (233)We an also onnet veloity of air with gradient of density using onservation of mass equationd�dt + grad(�v) = 0 (234)More onvenient for us form of this equation is���t + �grad(v) = 0 (235)After all we have�log� + �(��1�P ) (236)Using �rst equation one will have (� = ��1)�log�+ P0��0 �� = 0 (237)Expanding around � = rho0 one will get usual wave equation withv2s = P0�0 (238)b). Obviously at the boundary veloity should never be nonzero (vauum an not appear and partiles an notpenetrate through the wall). Thus �P = 0 at the boundary.Eigenmodes areÆ� = Anx;ny;nz�0e�iw(n)t os(x�nxL ) os(y�nyL ) os(z�nzL ) (239)Here w2(n) = v2s�2n2L2We should note that wave equation is the onsequene of all equation we wrote. But there is also additionalondition: number of partiles should not hange with time, orZ d3xÆ� = 0 (240)This ondition kills only the mode with w = 0 (without spatial dependene).). If the pressure in the ube is P (t) then density there is P1=P1=0 �0 and amount of gas (mass) whih has to leavethe ube is (in linear in ÆP approximation)Æm = �L3�0ÆPP0 (241)This mass has volume (inside the tube) equal toSx�0 = Æm (242)Here x is a length of the tube of air from ube. We should not worry about negative x- we ould add to this volumearbitrary volume from tube to make it positive. Now �x = �L3 �ÆPSP0 . But from the Newtons lowm�x = S(P � Patm) (243)24



Here m = �0Sl-full mass of air inside the tube and Patm is the pressure outside the tube. We will introdue now newvariable p(t) = P (t)� Patm. Then equation of motion is�p+
2p = 0 (244)and 
2 = v2sSL3l (245)2 Eletrodynamis2.1 e/e98j1 VFrom the equations of eletrodynamis in mediarD = 4�� (246)rB = 0 (247)r�H = 1 (4�j+ _D) (248)r� E = �1 _B (249)D = "E (250)B = �H (251)j = �E (252)for the ase of the plane wave of the form E(r; t) = Eeikr�i!t;H(r; t) = Heikr�i!t, unit magneti permeability � = 1and zero external soures � = 0 we getkD = 0 (253)kB = 0 (254)ik �H = 1 (�i!"E + 4��E) (255)ik �E = �1 (�i!H) (256)and the immediate onsequenek2 = !22 �" + i4��! � � n2!22 ; n =r" + i4��! : (257)For given numbers one omputesk =p1=3e102 � (2:5e92 � 50 + i � 4 � pi � 2e10 � 2:5e9) = 0:75 + 0:46i (258)and l = 2:2m.2.2 e/e98j2 VSee problem e00j3 for derivation of the intensity of radiation of an aelerating harge. The ondition ! � l impliesthat the size of radiating system is muh less than the wave length, therefore the approximation e00j3 is valid:Ie = 233 �d2 = 233 (�l12!2l)2 (259)The magneti dipole moment is suppressed by the ration v=, therefore the intensity of its radiation will beIm / Ie�!l �2 (260)25



2.3 e/e98j3 VJust near the surfaeE = E0 + 1R3 (3jpj os ��!n � �!p ) (261)Sine inside E = 0 we obtain harge density� = E0 34� os � (262)and the �eld whih ats on a harge but not reated by this harge isEext = E032 os � (263)Therefore the foreF = Z 2�d os � os �E0 32 os �E0 34� os � = 3E20R2 (264)2.4 e/e98m1 VFromA� = 1 j�(t � r=)r (265)integrating the urrent in the limits �p(t)2 � x2 we getAz = � "t log p(t)2 � x2 + t�p(t)2 � x2 + t � 2p(t)2 � x2# (266)and H� = ��rAz = � 2�2xp(t)2 � x2 (267)and Ez = ��tAz = �� log p(t)2 � x2 + t�p(t)2 � x2 + t (268)The limiting ases are read from the expressions above in an evident way.2.5 e/e98m2 VSine the magnet will attrat 'magneti harges' to the boundary of the media with in�nite magneti permeability insuh a way to anel the magneti �eld, they will reate the �eld 2��, in this �eld the harge �A is loated, thereforethe foreF = 2���A (269)(in the problemM is given. It is �).
26



2.6 e/e98m3 Va. The �eld of dipole isH = (�!p �!r )�!r ��!p r2r5 (270)From the �eld at the equator, negleting � = 110, we getp = HR3 = 0:5 � (6:4 � 108)3 = 0:13 � 1027 gauss units (271)b. See e00j3 for radiation of aelerating harge.P = 23 �p23 = 23 (p!2 sin �)23 = 350 gauss units = 3:5 � 10�5Wt (272). In plasma the dispersion relation for the plane wave isn =r1� 4�nq2m!2 (273)(it is immediate sequene of Maxwell equations together with ation of �eld on the harges with the plane wave anzatz)! =r4�nq2m � 4 � 103Hz (274)Sine !earth � !rit the refration index is purely imaginary, and the harateristi length of damping of the signalis l = !rit � 7 � 102km, that is enormously less than spae sales in the solar system. Therefore, the signal isundetetable.2.7 e/e99j1 Va. The fore on dipole is�!F = (�!p �!r)�!E = �(�!E�!r)�!E (275)If E(x; t) = e(x) os(!t + �(x)), thenD�!F E = �2 (�!e �!r)�!e (276)The fore is direted towards region with stronger �eld.b. For the wave in omplex notations , when Ex = <eikx�i!t and Ey = Im eikx�i!t imaginary part in thepolarization will e�etively mean, that the p = �E is direted not along E but at an angle tan � = a0a00 , then there isnon zero fore ating on this rotation dipole from the magneti �eld B. Therefore,F = ! �00jEj2 (277). Fromm�x+ m _x +m!20x = qE (278)for E = Eei!t one getsx = qEm 1!20 � !2 + i! (279)the real part�0 = qm !20 � !2(!20 � !2)2 + 2!2 (280)has maximum at! =q!20 � !0 (281)27



2.8 e/e99j2 VStress energy tensor T = �2 ÆSÆg from the lagrangian L = � 116�F��F�� isT �� = 14� ��F ��F �� + 14g��FlmF lm� (282)It's spae omponents are the ow of momentum (3x3 pressure-tension tensor):��� = 14� ��E�E� �H�H� + 12Æ��(E2 +H2)� (283)Due to the interferene between the external �eld and the �eld from the harge there is ow of momentum throw thespherial surfae separating the hargeF� = ZS2 ���dn� = 14� Z dn��(�(p� + n�)(p� + n�) + 12Æ��2(pn))� = qpa (284)where the integral is taken over S2 around the harge, with pa = Eexta and na = Eqa. Therefore, the momentum owsaway from the harge in aordane to the fore ating on it.2.9 e/e99j3 VDue to rotation the star looses energy with powerddt �J!22 � = �P = �23 �2!43 (285)from J! _! = �P and _T = � 2�!2 _! we get� =s32 _TT4�2 3J; (286)where J = 25mR2, and sine Bmax = 2 �R3 we getBmax =s 35�2 _TTm3R4 = 0:16 � 1016gauss (287)And EQEDrit = m23e�h = 0:5 � 1014 (288)thus Bmax is stronger in � 30 times.2.10 e/e99m1 VSine the sphere ontains harge,due to rotation it has the magneti moment. For the lassial sphere the relation is� = Q2ML (289)where L is the mehanial momentum. In the magneti �eld the sphere preessJ _! = [�! � B℄ (290)with the frequeny 
 = �BJ = QBJ!2mJ = QM !B2 , whih leads toQM = 4�22!B� (291)The polarization of this dipole radiation is irular. 28



2.11 e/e99m2 VLet the radius of the wheel is �. The resistane of a separate spike is r = ��, of a separate segment on a irle isR = ��2�5 . The resistane between the enter and the ending of one of spike isreff = r + r=4 + 2R = 54r + 12R (292)When the spike passes the magneti �eld, it reates indued eletrial �eld, whih auses urrent, whih dissipates.U = � _� = 12!B�2 (293)The rate of loosing of the kineti energy isddt J!22 = U2reff = (12B�2)2 1reff !2 (294)therefore the hange of veloity due to passing through the wedge of one of the spikes is!(t) = !(0)e� (B�2)24Jreff t (295)Sine there is no piture, not loosing generality, let us assume that the angle of the wedge � is less than 2�5The angle depends on time like�i(t) = �0i !i� (1� e��t); (296)where � = (B�2)24Jreff . If �(1) less then than the angle of the wedge, the wheel will stop, having still the same spike inthe magneti �eld. If it is greater, the wheel will leave with this spike the region of magneti �eld with the angularveloity !i+1!i+1 = !i � �� (297)Then it will rotate freely until the next spike enter the magneti �eld, an the proess of slowing down will repeat withthe same funtional form as (295).2.12 e/e99m3 VBy de�nition of the eletri permittivity the following relation holds for a at layer in the perpendiular eletri �eldEtot = Eext + Epol (298)Epol = �4��Etot; ) Etot = Eext1 + 4��; Etot = Eext" ; " = 1 + 4�� (299)Then, �Etot has a sense of the spei� eletri dipole moment per volume. In the 2D piture this distributed eletridipole moment reates homogenous �eld, and therefore the problem is solved exatly (symmetry of the disk and Gausstheorem is exploited).Epol = � �2�4��Etot = �2��Etot (300)and therefore, inside the diskEtot = 11 + 2��Eext = 21 + "Eext (301)Outside the disk the �eld is the superposition of the dipole �eld and the external �eld�!E = �!E ext + �!E dip = �!E ext + 3(�!p �!r )�!r � �!p �!rr5 (302)where�!p = �R2 " � 14� 21 + "�!E ext = 12 " � 1" + 1�!E ext (303)29



2.13 e/e00j1 VOne an solve the Laplae equation with the given boundary onditions on the irles in 2D, using the methods ofonformal mappings, or one an just note, that two opposite harges with 2D logarithmi potential have irles asthe urves of onstant potential. Let the potential on the left irle be ��0, on the right �0 and we will hoose suhharges and positions for them to reate suh potential on given irles. Let �!p = (�p; 0) be position of the harges.�(r) = 2q(log j�!r ��!p j+ log j�!r +�!p j) (304)The equation of urve of onstant potential onst = � = e �2q isy2 + �x+ p�2 + 1�2 � 1�2 = p2 4�2(�2 � 1)2 (305)from whih the position of its enterb = p�2 + 1�2 � 1 (306)and its radius isR = p 2��2 � 1 ; (307)Solving for p; � in terms of R; b we getp2 = b2 � R2; � = 1R(pb2 �R2 + b) (308)and the apaity isC = q2�0 = 14 1log�pb2�R2+bR � (309)At large b it agrees with the naive estimation (if one neglets the displaement of the harges on one wire due tothe �eld of the other wire)Cnaive = 14 1log(2b�RR ) (310)2.14 e/e00j2 VThe gradient of magneti �eld auses the appearane of the irular eletrial �eld, whih ause the urrent, whihreates magneti moment, whih interat with the the gradient of the magneti �eld and slows the irle.E = a2�zBv; I = �b2�E = �2ab2�2 v�zB; � = 1 IS (311)m _v = F = ���zB = �3a2b2�22 (�zB)2v (312)The gradient �zB for the solenoid is obviously proportional to the �eld from the one, the nearest irular loop�zB = n2�Ir r(r2 + z2)3=2 (313)where r is the radius of the solenoid and n is the density of loops. Rewriting the di�erential equation with respet toz from t with _v = v0v and integrating we get�(mv) = �3a2b2�22 �2�nIr2 �2 Z 10 dx(x2 + r2)3 = �3a2b2�22 �2�nIr2 �2 1r5 3�16 (314)30



2.15 e/e00j3 VFrom the Lagrangian� 116�F��F �� � 12A�j� (315)follows the equation of motion��F �� = 4� j� ; (316)whih in the Lorentz gauge ��A� = 0 yields (�2t � �2r )Ai = 4� ji with the solutionAi(t; y) = 1 Z j(t � jy � xj=; x)jy � xj d3x (317)Further than in the wavelength region the wave an be onsidered to be plane with�!H = [�!n � _�!j ℄2R (318)and E = 1 [�!H � �!n ℄, and the energy ow �!P = 4�H2�!n . At some point there are two ontributions to the total �eldfrom two di�erent soures. They are averaged over the time with 
[os(!t) + os(!t+ �)℄2� = 1 + os(�) The phaseshift is ontributed from di�erent phase soure supply and from di�erent path of propagation � = �+ !� sin� sin�,where � = � in the urrent problem. Thus, the answer isdPd
 = 14�3 sin2 �!2I2�d2�2�1 + os(�+ !� sin � sin�)� (319)2.16 e/e00m1 VAs in e98j1 we getk =r!2"2 + i!4��2 (320)when 4��"! � 1 we getk = pir4��!2 (321)by boundary onditions we get that at the surfae y; z with the wave going in the plane y; xky0 = ky1 (322)and k2xi = k2x0 + k20(n2i � 1) (323)then, sine transversal omponent of B and E is ontinuous we getr = ����nlx � nrxnlx + nrx ����2 ; (324)where nTEx = kxk0 for transversely polarized eletri wave, and nTMx = kxn2k0 for transversely polarized magneti wave.By Kirhho�'s lawt = 1� r; (325)Then, in the limit A = 4��"! !1 we gettTE = 2p2os �pA ; (326)tTM = 2p2 1os �pA; (327)Thus, at � ! �=2, the polarization beome transversely magneti.31



2.17 e/e00m2 Va. Sine there is image harge inside the plane,m�x = � q2(2x)2 (328)and integrating equations of motionT =s2mx30q2 Z 10 dtp1� 1=t (329)b. Radiated powerP = 23 (q�x)23 = 16 q6m2x43 (330). By plaing harges e0 at the opposite point and e00 at the same point, and using E1t = E2t; D1n = D2n we gete+ e0 = e00="; e � e0 = e00 (331)then, e0 = � "�1"+1 and the foreF = �" � 1" + 1 q2(2x)2 (332)2.18 e/e00m3 Va. From Om's equationsV0 = �L11 _I1 � L12 _I2 (333)RI2 = �L12 _I2 � L22 _I2 (334)we getI2 = V0�i!�L12 � L22L11L12�+RL11L12��1 (335)and the dissipated power ishP i = 12 jI2j2R (336)b. From de�nition of indutanes �i = LijIj and simple expression for magneti �eld in the solenoid we getB1 = �0N1I1L (337)and L11 = �0N1N1S1L ; (338)L21 = �0N1N2S2L : (339)Analogously,B2 = �0N2I2L (340)L12 = �0N1N2S2L ; (341)L22 = �0N2N2S2L : (342)32



2.19 e/e01j1 VBy onformal map of the unit disk to the half planew(z) = z � 1z + 1 (343)we get that distane between uts will bed0 = 2R tan �2 (344)where 2� is the angle between them on the disk, and the size of uts will beÆ0 = Æ(tan �2 )0 = 12Æ 1os2 �2 (345)At the plane we �nd that the resistane isR = �UI = 2EÆ0Æ0 log d0Æ0�Æ0�aEÆ0 = 2log d0Æ0��a = 2��a log dÆ (346)2.20 e/e01j2 VSine dpdt ����r = !p = qvB (347)we getp = qRB (348)Sine dpdt ����tan = qE; (349)and E = 12�R 1�R2 _Bav = R2 _Bav (350)we getBav = 2B (351)For ultra-relativisti eletrons_p � _" (352)and q R2 _Bav = _" = 233 q2w2 = 233 q2� !v1� v2�2 : (353)Thus,"max = m 3R3 _Bav4q ! 14 (354)33



2.21 e/e01j3 VIn the media, where k(n) = k0n = !n ,~f(z; t) = Z d!ei(!0+b(!�!0) z�!t)f! = Z d!ei(!0+b(!�!0) z�!t) 12� Z e�i!xf(x) = f(bz � t) (355)where f(�) = R f!d!ei!�, and b = dkd! is just the inverse 'group speed'. In aordane to its name, the pulse propagatesin the media with the veloity vg = d!dk . After the media, the pulse is the same, shifted in time~faft(z; t) = f(z � t+ � ) (356)where � = (b�1)a2.22 e/e01m1 Ta). E(r) = V0�0r (357)And energyE = d Z b+b 12E2�0r = V 20 d2�0 log(1 + b ) (358)b). Di�erene in potential we denote as V0. Then E(r) = V0�0r . We also know that�(r) = 2�0E(r) (359)That is why the harge atone given plate isq = d Z b+b dr�(r) = 2�0V0d�0 log(1 + b ) (360)The total harge is Q = Nq where N = 2�2�0 -number onneted plates.NowQ = CV0 = 2��0d�20 log(1 + b )V0 (361)Capaity isC = 2��0d�20 log(1 + b ) = 50�0d� log(1 + b ) (362)if there are 10 plates of any kind.2.23 e/e01m2 Ta). m�x = eE (363)Thus x = eEmw2 (364)P = nex (365)and D = E + 4�P = �E (366)34



� = 1� 4�ne2mw2�0 = k2w2 (367)Thus w2p = 4�ne2m�0 (368)b). It is smaller in approximately 2000 times due to mpme � 2000. ).vph = wk = q1� w2pw2 (369)vgr = dwdk = r1� w2pw2 (370)and vgrvph = 2, vgr <  < vphd). Ok.e).The equation to determine wp (and n through it) is�T = lw2p�ww3 (371)eventuallyn = m�0�Tw34�e2l�w (372)2.24 e/e01m3 Ta). Eletri �eld is direted along the radius. It is zero inside both ylinders. It is equal toE(r) = b�br�0 (373)inside the larger ylinder and toE(r) = b�b � a�ar�0 (374)outside both of them.b).a�a = b�b-total harge should be equal 0. ). This system is equal to solenoid with total urrent I = �aalw and�eld H = �wbb�b (375)inside. d). With the same frequeny w. e). The ux inside the ylinders is� = �(b2 � a2)H (376)Then E = _� = �(b2 � a2)�b�b _w (377)From the another sideE = 2�bE (378)And additional torque isM = 2�bl�bEb = ��(b2 � a2)lb2�2b _w (379)35



Now we see that this additional torque just shifts the moment of inertia of our system. f). At �rstx� �0E �H = �a�ab�bw (380)and direted along axis of ylinders. ThenL = Z ba 2�rdrH = �a�ab�bw = Z dtM (381)This momentum orresponds to the integral of the torque.2.25 e/e02j1 Ta). v = p�� (382)Z = VI = V_Q (383)Sine Q = Q0eiwt�ikz thenZ = �ivC (384)where C is a usual apaity of the apaitor of given shape.C = 2��log(b=a) (385)EB = 1p�� (386)b). Kirgo� ruleI0 + IR = IT (387)and (I0 � IR)Z1 = ITZ2 (388)HeneIR = I0Z1 � Z2Z1 + Z2 (389)and IT = I0 2Z1Z1 + Z2 (390)The same oeÆients are applied for the eletri �eld. ). One again:I1 + I2 = I0 (391)and I1 = I2. And alsoI0(Z � R) = I1(Z + R) (392)Thus R = Z3 (393)36



2.26 e/e02j2 TE = S _B = 2�RE (394)M = RE� = R2 _B�2 = I _w (395)Finallyw = R�BT�2I (396)At the end of the storyB = 2�w (397)Now we have linear equation for w. Solving it we get a resultw = R�BT�2[I + R2�22 ℄ (398)2.27 e/e02j3 TThing disk is equivalent to the plane irular wire with urrent I = Mh in it. This at the z axis magneti �eld (alsodireted along z) has value a).B(z) = 2�a2Mh(a2 + z2)3=2 (399)b). The fore ating on the sphere is�!F = (m � �)�!B = (� � 1)4�b33 B�zB = (1� �)2�b33 24�2a2M2h2z(a2 + z2)4 (400)This fore should be equal to mg.2.28 e/e02m1 TIn the iron B = �H. In the gap ~B = ~H. From the low divB = 0 we have B = ~B or ~H = �H.Using irulation theorem:NI = 2�RH + w ~H (401)or H = NI2�R+ �w (402)Energy of the �eld is (here S is the area of ross-setion )E = S2 [2�RBH +w ~H ~B℄ = S�2 N2I22�R+ �w (403)Obviously E dereases when w inreases. Thus b). try to widena). ~B = �NI2�R+�ww ould be taken w = 0 in the last formula 37



2.29 e/e02m2 TAt �rst it will useful to solve this problem for external �eldE = E0 (404)and for external �eldE = E0�!xa (405)The eventual result ould be obtained just using superposition rule.The following useful formulas for 2D will be used:�� log r = n�r (406)���� log r = Æ�� � n�n�r2 (407)and ����� log r = 2r3 [2n�n�n � Æ��n � Æ�n� � Æ�n�℄ (408)In both ases we assume that eletri �eld inside the ylinder is direted along x̂ (diretion of external �eld). Wedenote it as E(x). Then �eld on the boundary (outside the ylinder) isx̂[os2 �(�� 1)E +E℄ + ŷ[os� sin�E(�� 1)℄ (409)In the ase of homogeneous �eld E0: the �eld inside the ylinder should be homogeneous (to satisfy divD = 0).This �eld should be equal external �eld plus �eld of polarized ylinder. The possible �led of polarized ylinder aregiven above. In this ase we need ���� log r-this substitution ould solve the equation.x̂[os2 �(�� 1)E +E℄ + ŷ[os� sin�E(�� 1)℄ = x̂E0 + AR2 [x̂� 2x̂ os2 �� 2ŷ sin� os�℄ (410)Really we have two equation here (for x̂ and for ŷ) and to unknown variables (A and E). The solution isE = 2E01 + � (411)A = �12E(�� 1)R2 = �E0(�� 1)1 + � (412)Now we are ready to present the results:�eld outside the ylinderx̂E0 � E0(�� 1)R2(�+ 1)r2 [x̂� 2x̂ os2 �� 2ŷ sin� os�℄ (413)�eld inside the ylinderE = 2E01 + � (414)D inside the ylinder:D = �E = 2E0�1 + � (415)and P inside the ylinderP = (� � 1)E = 2E0 �� 1�+ 1 (416)Now we will onsider the ase of the �eld E0 xa . Then there are free harge � = E0a = divD. And thus D = E0 xa ,D = E0 xa=�. 38



On the boundaryx̂[os3 �(�� 1)E0R�a + E0R os ��a ℄ + ŷ[os2 � sin�E0R(�� 1)�a ℄ (417)This should be equal tox̂E0R os �a (418)plus �eld of polarized ylinder. We will use ����� log rx̂�x̂ and also �� log r and x̂�x̂��� log rThe eventual result for eletri �eld outside the ylinder isx̂E0R os �a �E0R2(1 � �)2�ar [x̂ os �+ŷ sin�℄�E0R4(1� �)2�ar3 [2 os2 �fx̂ os�+ŷ sin�g�2x̂ os ��(x̂ os �+ŷ sin�)℄(419)Inside the ylinder eletri �eld isx̂E0xa� (420)D is x̂E0xa (421)and P isx̂E0x(�� 1)a� (422)2.30 e/e02m3 TThe density of protons is �0(r) = Iv�r20 .Let �(x) be the density of eletrons. Then eletri �eld indued by eletronsE(r) = 1r Z r0 d��(�)2�� (423)The magneti �eldE(r) = vr Z r0 d��(�)2�� (424)The eletri �eld indued by positronsE(r) = 1r Z r0 d��02�� (425)In the point where � 6= 0 al fores ating on the eletron should ompensate eah other:Ep = E � vB (426)or Z r0 d��02�� = (1� v2) Z r0 d��(�)2�� (427)Result is�(r) = 11� v2 �0 (428)From the other side we know thatZ r00 d��0(�)2�� = Z r00 d��(�)2�� (429)Thus �(r) = 11� v2 �0 = Iv�r20(1� v2) (430)only for r 2 [0; r0sqrt1� v2℄ and 0 otherwise.Voltage di�erene isZ r00 d��0�� � Z r�0 d��0��2�� = 0 (431)39



2.31 e/e03m1 Ta). Using thatA(r; t) = �I0 Z y�y dxpx2 + r2 �(t � r) (432)where y2 + r2 = 2t2 we an determined the potentialA(r; t) = �I02 log[t+p2t2 � r2t�p2t2 � r2 ℄�(t� r) (433)Then jB(r; t)j = j�rAj = �I0trp2t2 � r2 �(t � r) (434)The fore (repealing) per unit length isF = �I20trp2t2 � r2 �(t � r) (435)At the moment t = r= (the �rst moment e.m. wave reah seond wire the fore is in�nite) beause we turn on theurrent unsmoothly. b). Similarly to the previous ase (� = I0b , z2 + r2 = 2(t� � )2)A(r; t) = �I0 Z z�z dxpx2 + r2 �((t � � )� r) + 2� Z yz dxb(t�px2 + r2=)px2 + r2 (436)Then BB(r; t) = �br�(t� r=)(t+p2t2 � r2) + ��(t � � � r=)p2t2 � r2 [ brt(t� � ) +p2(t � � )2 � r2 � br � b�(t� � )r ℄ (437)And fore is F = I(t)B. Sine we turn on urrent smoothly the fore is smooth as well.2.32 e/e03m2 Ta). If q = � aRQ and is loated on the line between enter of the sphere and harge Q at the distane r = a2R fromenter of sphere towards harge then V on sphere is zero.b).By Newton's third low the fore ating on the sphere is equal (abs. value) to the fore ating on the harge Q.Conduting sphere with harge Q on it ould be substituted by the point harge Q loate in the enter of the sphereand onduting sphere without any harge. The last one ould be substituted by the harge spei�ed in a. Thus thefores areattrationkqQ(R� r)2 = akQ2R2 � a2 (438)repealingkQ2R2 (439)Result is the repealing forekQ2R2 [1� aR3(R2 � a2)2 ℄ (440)). The eletrial potential at the distane l from the enter of the sphere and at the angle � (� = 0 is a symmetryaxis) is'(l; �) = kQ[ 1l + 1pR2 + l2 � 2Ra os� � 1qa2 + R2a2 l2 � 2Ra os� ℄ (441)40



Thus eletrial �eld on the surfae l = a isE = ��'�l = kQ[ 1a2 � a(R2 � a2)(R2 + a2 � 2Ra os�)3=2 ℄ (442)We know that density of the harge at the surfae of ondutor is � = E�0 where k = 14��0 Result�(�) = Q4� [ 1a2 � a(R2 � a2)(R2 + a2 � 2Ra os�)3=2 ℄ (443)Obviously negative harge will �rst appear at � = 0 when R = 3a.d). At zero approximation (only one sphere with potential V0 on it) the harge on the sphere is Q0 = 4��0aV0.Next approximation: we have one sphere very far from other and ould onsider it as a point harge of Q0 value. Thenseond sphere has harge Q1 = Q0 � aRQ0 = Q0R�aR .e). At the next step we have to onsider on sphere as the point harge Q0 in it's enter and one more harge� aRQ0 at the distane a2R . Sine this distane is already quadrati in a we an neglet it and repeat our speulationsfrom d. substituting Q1 instead of Q0. Result isQ = Q0[1� aR + a2R2 ℄2.33 e/e03m3 TThe vetor, pointing harged partile (in the x-y plane) is�!r = � e�!Emw2 (444)By de�nition�!P = N�!d (445)where �!d is dipole moment of produed of one (negatively) harged partile: �!d = e�!r Now�(w) = �0(1� e2N�0mw2 ) (446)and n(w) =s1� e2N�0mw2 (447)As well known speed of light in the medium is  = 1=n = wk ork2w2 = 1� e2N�0mw2 (448)Dispersion low isw(k) =sk2 + e2N�0m (449)Obviously the plasma frequeny iswp =se2N�0m (450)b). Equation of motion (for omplex veloity vetor)_v + wLv = eEm (451)41



Solving this one getsr = � eE(z; t)w(w + iwL) + r0e�iwLt (452)Hene� = �0(1� e2N�0mw(w + iwL) + eNr0�0 ) (453)(As I understand phase of � is just the phase of r0)). The minimal frequeny should satisfy equation(1� e2N�0mw(w + iwL) + eNr0�0 ) = 0 (454)3 Quantum Mehanis3.1 q/q98j1 VIf the the hamiltonianH0 is perturbed by V then it is possible to �nd the expansion of the eigenstates jiiof H = H0+Vover eigenstates of H0, whih are denoted ��i0� and have energy E0i :jii =Xj ij ��j0� (455)(H0 + V )Xj ij ��j0� = EiXj ij ��j0� (456)In the zero order 0ij = Æij . In the �rst order1ij = Æij � VjiE0j � E0i (457)Thus the expetation value of the operator O in the state jsi ishsj O jsi = Oss �Xj OsjVjs +OjsVsjE0j �E00 + O(V 2) (458)where the matrix elements are meant to be taking over the states ��i0�. The ground state is doubly degenerate as wellas the �rst exited state. However, in the sum the ontribution will be only from the diagonal term. Sine for theosillatorxn;n�1 =r n�h2m! (459)we get the answer:h0j z�z j0i = � ��h! �hm! (460)for any of two ground states.
42



3.2 q/q98j2 VFrom � �h22m d2dx2 + aÆ(x) = E (461)it follows that the jump of the derivative at eah delta funtion is 0j+� = � (462)where � = 2m��h2 . The solution to be found in form Ae�kjxj; B sinh(kx+ f); Ce�kjxj for the regions to the left, betweenand to the right of the bands respetively. Gluing the logarithmi derivatives we get the system of transendentalequationsk � k oth(�kL + f) = � (463)�k � k oth(kL+ f) = � (464)from whih the solution for k and the ground state energy E = ��h2k22m an be found. In the limit L! 0 we havek oth f = � (465)Expanding othx near this point we getsinh2 f = kL (466)from whih follows the answerk = 2mLa�h2 (467)E = ��h2k22m (468)3.3 q/q98j3 VSine SeSp = 12((Se+Sp)2�S2e �S2p ) the eigenstates oinide with the eigenstates of the total momentumS = Se+Sp,whih an take value 0 or 1 with degeneraies 1 and 3 respetively. The eigenvalues, respetively, are:12 �S(S + 1)� 32� = �34a�h2; 14a�h2 (469)The interation of the magneti �eld with the spin12 partile is g2 e�h2m�iBi, where is the gyromagneti ration (dimen-sionless number) and g = 2 for nonrelativisti eletron. Sine mp � me the interation of it with the magneti�eld ould be negleted in this problem. In the basis j0; 0i ; j1; 0i ; j1; 1i ; j1;�1i in the notation jJ;M i for the totalmomentum the hamiltonian takes the form1�hH = 0BBB� �34� 12� 0 012� 14� 0 00 0 14� 00 0 0 14� 1CCCA ; � = a�h; � = eB2m (470)and the evolution operator e�iHt�h restrited to the upper left blok, where is ground state, ise 14 it� "�i�1 �p�2 + �2 + i�3 �p�2 + �2# sin
t+ �0 os
t! ; 
 = 12p�2 + �2 (471)and the probability to remain in the ground state isP = 1� �2�2 + �2 sin2
t (472)43



3.4 q/q98m1 Va) The ground state is jgi = jm1i jm2i with m1 = J1;m2 = �J2 to maximize S1z � S2z.S2 = (S1 + S2)2 = S21 + S22 + 2(S1zS2z + 12(S1+S2� + S1�S2+)) (473)Only �rst three terms ontribute into expetation value on the ground state, and thushgjS2 jgi = J1(J1 + 1) + J2(J2 + 1)� 2J1J2 (474)Using matrix elements of operatorshm+ 1jL+ jmi =p(l �m)(l +m + 1); hm � 1jL� jmi =p(l �m+ 1)(l +m) (475)it is easy to deompose the tensor produt of SU (2) spin J1; J2 representation into the diret sum of the irreduibleones (the adding of moments). The notations below are jJ;M i for the total momentum, and jm1i jm2i for separateprojetions of the partile angular momentum on the quantization axis.b) For J1 = 1; J2 = 12 starting from the highest weight and ating onsequently by L� we get����32 ; 32� = j1i ����12� (476)����32 ; 12� = 1p3 �p2 j0i ����12�+ j1i �����12�� (477)����12 ; 12� = 1p3 �j0i ����12� �p2 j1i �����12�� (478)Reverting the expansion we getj1i �����12� = 1p3 �����32 ; 12��p2 ����12 ; 12�� (479)The outomes are J(J + 1) = f154 ; 34g for J = 32 ; 12 orrespondingly with the probabilities 13 ; 23 .3.5 q/q98m2 VUse the Born approximation to onsider sattering on the potential V (r) = V0e�(r=a)2 .d� = 2�v�h Z d3k(2�)3 Æ(Ei �Ef ) ����Z d3xV (x)eiqx����2 (480)usingd3k = k2d
mdEk�h2 ; (481)and Z d3xV (r)eiqx = 2�q Z 10 rdrV (r) sin qr (482)andZ 10 rdre� r2a2 sin qr = p�4 a3qe� q2a24 (483)we getd�d
 = 2��hv 1(2�)3 k2m�h2 1k �V0 2�p�a34 e� q2a24 �2 (484)44



b) Integrating over angles is straightforward with q = 2k sin �2 and qdq = k2 sin ��theta and the result is� = 2��hv 1(2�)3 k2m�h2 1kV 20 �3a64 2�k2a2 �1� e� q2maxa22 � (485)with qmax = 2k� = �2V 20 a48v2�h2 (1 � e�2k2a2 ) (486)) The approximation is valid when V0 � m�h2a2 or when V0 � m�h2a2 qa. Also the equation for d� is not justi�ed whenjqaj � 1 (see Landau-Lifshitz).3.6 q/q98m3 Va) From the perturbation theory we know that the seond order perturbation of the ground state is always negative:ÆE = �X jV0nj2En � E0 (487)whih means that the seond derivative over the parameter is negative (the �rst derivative is given by the �rst orderperturbation theory). If one wants to use hint it is also straightforward. Take point ~� and the ground state j�i, withground energy E(~�). Then, by sine the ground state should minimize the funtional h jH j i we getE(�) � D~����H1 + �H2 ���~�E = D~����H1 + ~�H2 ���~�E + (� � ~�)D~����H2 ���~�E = E(~�) + (� � ~�)D~����H2 ���~�E (488)ThereforeE(�)� E(~�) � (�� ~�)D~����H2 ���~�E = (� � ~�)E0(~�) (489)and this means onavity.b)For a = 0 the matrix0B� 1 0 00 1 b0 b 1 1CA (490)The eigenvalues are f1; 1� bg. Take for example b > 0 the opposite ase is analogous. The ground energy is 1� b andthe ground state is (0; 1;�1). The �rst order perturbation is given by the matrix0B� 0 1 b1 0 0b 0 0 1CA (491)whih onvoluted with ground state gives zero. Thus, the �rst derivative is zero at a = 0. The seond will be alwaysnegative. Therefore the energy will derease as a inreases.3.7 q/q99j1 VIn the non relativisti approximation there is no spin-spin or spin-orbital interation. Therefore the wave funtion anbe written as a diret produt of the spin wave funtion by the oordinate wave funtion. Two spin 1=2 partiles anombine either in the total momentum 0 state with the symmetrial spin funtion or in the total momentum 1 statewith the antisymmetrial spin funtion. Sine the total wave funtion should antisymmetrial beause of grassmaniannature of the fermions, we obtain that the oordinate wave funtion should be symmetrial for S = 0 state andantisymmetrial for S = 1 state. The angular momentum in the ground state of the hydrogen moleule is zero. Theorresponding terms of the hydrogen moleule are denoted by 1�+g and 3�+u respetively.��1�+g � = �anti�� �sym(r1; r2) (492)45



��3�+u � = �sym�� �anti(r1; r2) (493)In eah ase, in the perturbation theory as a trial oordinate wave funtions we an use the symmetrized/antisymmetrizedproduts of the wave funtions of the separate atoms. Denote protons by the letters A;B, and eletrons by the numbers1; 2. H = K1 +K2 + UA(r1) + UB(r1) + UA(r2) + UB(r2) + U12(r1; r2) + Upp (494)where Ki = � �h22me�i is kineti energy, UA;B(ri) = � e2jri�rA;Bj is the interation between the eletrons and protons,U12 = e2jr1�r2j is the interation between the eletrons, and UAB = e2jrA�rBj is the interation between the protons.The trial wave funtions are:j�i = 1p2(�A(r1)�B(r2) � �A(r2)�B(r1)) � 1p2(jABi � jBAi) (495)In the �rst order perturbation theory the di�erene between energies of the j�i states is given by the di�erene ofthe matrix elements h�jH j�i.b) Plugging the expressions for j�i to the Hamiltonian we get the di�ereneÆE = h+jH j+i � h�jH j�i = hABj 4E + 2Upp jBAi + hBAjUBA + U12 jABi + hABjUAB + U12 jBAi ; (496)Sine it is omposed from the matrix elements of the wave funtions for the separate atoms the overlapping of themis proportional to e�RAB .) and the mean energyEm = 12(h+jH j+i + h�jH j�i) = 2E + hABjUBA + U12 + Upp jABi + hBAjUAB + U12 + Upp jABi (497)where UAB = UA(r1) + UB(r2) and UBA = UB(r2) + UA(r1). The ross terms represent interation between betweenatoms. In the dipole approximation the interation energy is(d1RAB)(d2RAB)� d1d2R2ABR5AB (498)and therefore is proportional to d1d2=R3. But the average dipole moment vanishes. Therefore, only the seond orderperturbation gives nonvanishing result, that is Ueff (RAB) � R�6AB.3.8 q/q99j2 VIt is onvenient to represent the Hamiltonian in the following formH = 12((S1 + S2 + S3 + S4)2 � (S1 + S3)2 � (S2 + S4)2) = 12(J(J + 1) � J13(J13 + 1)� J24(J24 + 1)) (499)Then we an lassify all states by onsequent adding of momentums. First add in the pairs J13 = S1 + S3 andJ24 = S2 + S4 and then add the pairs.The result J13 � J24 !2J+1 jJi, where J is the total momentum and the degeneray is 2J + 1.0� 0 =1 j0i H = 01� 0 =3 j1i H = 00� 1 =3 j1i H = 01� 1 =1 j0i ;3 j1i ;5 j2i H = �2;�1; 1.For any spin the ground state is obtained in the variant with spins added to the maximal one. So, it has angularmomentum 4J , the degeneray 8J + 1, and the energy12(4J(4J + 1)� 4J(2J + 1)) (500)46



3.9 q/q99j3v VIn the limit V0 � �h2k22m the probability of transitionw = 2��h mj�hpj 12��h 2a "����Z a0 ei~px 12"0x sin kx����2 + ����Z a0 e�i~px 12"0x sinkx����2# ; (501)whereka = �; �V0 + �h2k22m + �h! = �h2p22m ; �h2k22m + �h! = �h2~p22m (502)and Z a0 ei~px sin kx = a~pk2 � ~p2 � 1(~p � k)2 (ei(�~p+k) � 1) = �a~p + O� 1~p2� (503)is omputed to bew = 2��h mj�hpj 12��h 2a 12"20 a2~p2 = "20a2�h!p2m(�h! � V0) (504)3.10 q/q99m1 VThe hamiltonian isH = �(�!S1�!S2 � 3S1zS2z) (505)where S are half-pauli matries and� = �h2e2m22L3 (506)The eigenstates arej++i ; j��i ; 1p2(j�+i + j+�i); 1p2(j+�i � j�+i) (507)with the eigen values �(�1=2;�1=2; 1; 0) respetively.a) The initial state j++i is eigenstate. Therefore it only aquires the phase e� i�t�h j++i and the result of measuringS1z + S2z is always 1.b) The initial state is12(j+i1 + j�i1)(j+i2 + j�i2) = 12(j++i + j��i + j+�i + j�+i); (508)whih evolves to12(e i�t2�h j++i + e i�t2�h j��i + e� i�t�h j+�i + j�+i); (509)Projeting onto eigenvetors of S1x + S2x we get that the outome with the result 1 is possible with the probabilityos2(34 �t�h ) and the result with the outome �1 is possible with the probability sin2(34 �t�h )) The lassial dipoles rotates smoothly with preserving the same diretion for the a)-ase and rotating with itsprojetion to the X-axis equal to the expetation value os(32 �t�h ) in the b) ase.47



3.11 q/q99m2 VThe eletroni on�guration of di�erent eletrons is spei�ed approximately by showing whih orbit eah eletronoupies with notation like 1s2s or 1s2p. The total on�guration is given by speifying the total S spin of the orbitaland the total L momentum of the orbital. They onserve separately in the "LS-approximation" but are perturbedby relativisti LS-interation. The exatly onserved quantity is the total momentum J = L+ S. Given L and S theresulting J ould run from jL� Sj to L+ S, and for eah J the orresponding state is degenerated 2J + 1 times overthe diretions of J . The on�guration is displayed2S+1LJ (510)where instead of L = 0; 1; 2; 3 the letters S; P;D; F; :: are used.Two eletrons an ombine into total spin S equal to 1 or to 0. The L is de�ned by the seond eletron, whih ins-state gives 0 and in p-state gives 1.The possible states in the problem are:1S0;3 S1 for the seond eletron in the 2s shell. 1P1;3P0;3P1;3P2 for the seond eletron in the 2p-shell. Thedegeneraies are 2J + 1, whih gives respetively 1; 3; 3; 1; 3;5.The lowest energy should be S-state (L = 0). The total spin probably should be 1 than the spin wave funtionis symmetrial and the spae-time wave funtion is antisymmetrial whih derease the energy due to repulsions ofeletrons. The Hund rule states that the minimal energy of the states with the same eletroni on�gurations in termsof �ling n; l-shells has the term with:First S ! max, then L! maxWhih agrees with the proposal for the minimum energy of 3S1-state.May be the maximal energy will be of the term 1P1 for the same reason.The strongest deay proess should be due to the eletri dipole radiation E1 from 2p shell to 1s shell: 1P1 !1 S0.The 3P0;1;2 state ould deay into 3S1 due to the E1 proess. Just for the referene the probability isw = 4!33�h3 jdfij2: (511)It seems, that the deays from 1S0 and 3S1 states are impossible due to E1-proess (whih is spae-parity negative).The parity of E-photon is (�1)j , the parity of M -photon is (�1)j+1. But from 3S1 it seems possible to do with oneeletron emitted in M1-wave (whih is spae-parity positive wave). From 1S0 state the 1-photon deay seems to beimpossible. That should be the longest level. (And it is a little bit upper 3S1?).3.12 q/q99m3 VThe Alie photon 1 is � j+i1 + � j�i1. Entangled with the photon j�i2;3 = j+;�i2;3 � j�;+i2;3 it gives rise to the3-photon state �(j++ �i123�j+� +i123)+�(j�+ �i�j� � +i). Given orthogonal basis of states for the 1st and the2nd photon, we an expand the total 3-photon wave funtion over this basis, where the oeÆients of the expansion arethe wave funtions of the 3-rd photon. After measurement the state falls into that basis vetor whih was measured.Sine the basis of states for the 1st and the 2nd photon is the orthogonal the oeÆients up to a sale an be foundby taking the salar produt. For eah ase j = a; b; ; d the relationj�ij3 = h�jj1;2 (�(j++ �i123 � j+ �+i123) + �(j�+ �i � j� � +i)) (512)after expliit substitution givesj�ia3 = �� j+i3 � � j�i3 (513)j�ib3 = �� j+i3 + � j�i3 (514)j�i3 = +� j+i3 + � j�i3 (515)48



j�id3 = �� j+i3 + � j�i3 (516)Therefore, to obtain the same state from the 3rd photon that Alie initially had for the 1st photon, Bob has to rotatethe inoming photon by the matries ��0;��3; �1;�i�2 orrespondingly to the a,b,,d ases.3.13 q/q00j1 Vd� = 1v 2��h jDe�ik0xV (x)eikxE j2Æ(Ef � Ei) d3k(2�)3 (517)d3k = d
k2mdEk�h2 (518)d�d
 = 4m2�h4q2 j Z 10 drV (r)r sin qrj2; Z 10 r sin qrr2 + a2 dr = 12�e�qa (519)V (r) = br2 + a2 ; b = �h2�mpA; a = � (520)d�d
 = Aq2 exp(�2�q) (521)3.14 q/q00j2 VÆE = �X jV0nj2En � E0 ; hn� 1jxjni =r n�h2m! (522)There are three non-vanishing matrix elements h000000V 100100i ; h000000V 010010i ; h000000V 001001i:ÆE = � 12�h!�2 �h2(2m!)2 (1 + 1 + 4) (523)3.15 q/q00j3 VIn the plane xy, while B is along z and Bz = B:A = �12 [rB℄; B = rotA; A� = 12rB; Ar = 0 (524)H = 12m �p� eA�2 (525)where p is the momentum �i�h� of a free partile. Then eigenvalues of p on the irle are �hnR . The total answerE = �h22mR2 (n� R2eB2�h )2 � e�hB2m (526)3.16 q/q00m1 Tq00m1 Problem 1.The energy of the state jn; s > is w(n+ s � 1=2) (�h = 1).Thus the levels jA >= jn; s >= j � 1=2 > and jB >= jn + 1; s >= j1=2 > are degenerate. At the �rst order ofperturbation theory the splitting is the di�erene between eigenvalues of the perturbation hamiltonian H1 = �xŜx < AjH1jA > < AjH1jB >< BjH1jA > < BjH1jB > ! =  0 �p n8mw�p n8mw 0 ! (527)And the splitting is just �p n2mw 49



3.17 q/q00m2 Tq00m2Let �!B be along z axis. Then onsider for states j12 > 
j12 >j � 12 > 
j � 12 >1p2(j12 > 
j � 12 > �j � 12 > 
j12 >)1p2(j12 > 
j+ 12 > +j � 12 > 
j12 >)It is also useful to express 2�!s e�!s p = (se + sp)2 � 3=2 First three states are already eigenvetors with eigenvalues�� jBj(� + ) In the basis of the last two vetors hamiltonian has the form �3� (� � )jBj(� � )jBj � ! (528)And the eigenvalues of this matrix are �(��p(2�)2 + ((� � )jBj)2)3.18 q/q00m3 Tq00m3 At let us remind the expliit form of eigenvetors of angular momentum 1j1 >= 38�ei'Sin�j0 >= 34�Cos�j � 1 >= 38�e�i'Sin�Splitting of representation 2 into two 1 has the formj2; 2 >= j1 > 
j1 >j2; 1 >= 1p2(j1 > 
j0 > +j0 > 
j1 >)j2; 0 >= 1p6(j1 > 
j � 1 > +j � 1 > 
j1 > �2j0 > 
j0 >)j2;�1 >= 1p2(j � 1 > 
j0 > +j0 > 
j � 1 >)j2;�2 >= j � 1 > 
j � 1 >This result is the simple onsequenes of the symmetry onstraint and of the onstraint that j2; 0 > should beorthogonal to j0; 0 >= 1p3(j1 > 
j � 1 > +j � 1 > 
j1 > +j0 > 
j0 >)If we are interesting only in �1 = �2 = �=2 then j2; 2 >= 38�ei('1+'2)j2; 1 >= 050



j2; 0 >= 38� 1p6(ei('1�'2) + e�i('1�'2))j2;�1 >= 0j2;�2 >= 38�e�i('1+'2)And the result isdP = d�1d�2d'1d'2( 38� )2[2 + 23os2('1 � '2)℄ (529)Or eventuallydPd' = 37� [1 + 13os2'℄ (530)3.19 q/q01j1 VFor the potentialV (x1; x2) = 12M!2x21 + �Æ(x1 � x2) (531)�nd the probability of sattering of inoming partile eipx2 with osillator transited 0! 1. Withw = 2��h 1v Z dk2�Æ(E2i �E2f � �hw) hk; 1jVpertjp; 0i (532)where jpi = eikx2, v is the inident veloity andj0i = �2b� � 14 e�bx21 ; j1i = �2b� � 14 2pbx1e�bx21 ; b = M!2�h (533)we getw = 2�m�h3v � 1k1 �2q218b e� q214b + 1k2 �2q228b e� q224b� ; (534)where k1;2 = �qp2 � 2m�h!�h2 , and qi = p� ki.3.20 q/q01j2 VFrom � �h22m d2dx2 + aÆ(x) = E (535)it follows that the jump of the derivative is 0j+� = � (536)where � = 2m��h2 . At eah band the wave funtion is aieipx + bie�ikx. From the gluing ondition between funtionsfrom the left al; bl and the right side ar ; br of the delta-funtion inserted in the point x the following relation follows albl ! =  1� �2ip � �2ipe�2ipx�2ipe2ipx 1 + �2ip ! arbr ! (537)Multiplying two matries with x = 0 and x = s we get the transition matrixM from right side of the whole potentialto the left side. The transmission oeÆient isT = 1jM11j2 (538)51



And M11 = �1� �2ip�2 +� �2p�2 e2ips; (539)The reetion oeÆient is proportional to M12, we need to �nd when it vanishes. The equation is(1 + b2) + (1� b2) os 2�+ 2b sin 2� = 0 (540)where b = �2p and � = ps. From it follows the solution � = Æ + �+2�k2 , where tan Æ = �2p3.21 q/q01j3 V  1(t) 2(t) ! =  os gBt2 i sin gBt2i sin gBt2 os gBt2 !  1(0) 2(0) ! (541)gBT = � (542)The probability to remain in the same state is os2 �, where � = �2N . Thus answer for a) isPalwaysup = (os2 �)N � 1� �22N (543)The probability of overturn (regardless of whether it was up or down) is p = sin2 �. The probability of k overturns ispk(1� p)N�k. We need to sum up over even number of overturns.NXk=0;k�evenCkNpk(1� p)N�k = 12[(1 + (1� 2p)N ℄ (544)3.22 q/q01m1 VExpliitly the Hamiltonian H = ���iBi has the form� �B  os � sin �e�i�sin �ei� � os � ! (545)with eigenvalues ��Bf1;�1g and the normalized eigenstates orrespondingly 0+(�) =  os �2e�i�sin �2 ! ;  0�(�) =  sin �2e�i�os �2 ! (546)The B �eld rotates and the resulting Hamiltonian ould be expressed as a result of the unitary transformation ofthe original Hamiltonian:H(t) = U�1� H0U� (547)whereH0 = ��B  os � sin �sin � � os � ! (548)U� =  ei� 00 1 ! (549)That orresponds to the transformation of the eigenstates 0�(�) = U�1�  0�(� = 0) (550)52



For the Hamiltonian whih does not depend of time the evolution of the eigenstate with energy E isi�h _ = H ;  (t)� =  (t = 0)e� iE�t�h (551)Now, turn on the rotation of the Hamiltonian and try to �nd the solutioni�h _	(t) = U�1�(t)H0U�(t)	(t) (552)in the following form	(t) = A(t)e� iE+t�h U�1�(t) 0+ +B(t)e� iE�t�h U�1�(t) 0� (553)Substituting in the equation of motion we get:_A 0+ + _B 0� + U _U�1(A 0+ +B 0�) = 0 (554)Evaluating the matrix elements of the operator U in the basis �� 0�� we get the equation: _A_B ! = i _� os2 �2 os �2 sin �2sin �2 os �2 sin2 �2 ! AB ! (555)with the solution A(t)B(t) ! = ei�2  os � sin �2 + os �2 sin � sin �2sin � sin �2 � os � sin �2 + os �2 ! A(0)B(0) ! (556)What is strange is that we got the exat solution, not approximate one.. Where is mistake? And sine sin �2 = 0at � = 2� the system returns into the same state (of ourse with the usual time-phase fator). The probability to beexited is 0 ????3.23 q/q01m2 Va,b)The atoms are neutral. They an have dipole, quadrupole,... multipole moments. The energy of the dipole in the�eld of another dipoleU (r) = 3(d1r)(d2r) � r2d1d2r5 (557)is proportional to d1d2=r3.For the ground state the dipole moment is zero. The ontribution to the energy appears from the seond order ofthe perturbation theory.ÆE = �Xn jV0nj2En � E0 (558)To the ground state it is always negative. By dimensional reasoning d � abe, where ab is obtained from �h2ma2b = e2r ,therefore ab = �h2me2 , and d � hbar2me , and E � me4�h2 . ThusÆE � �� �h2me�4 �h2me4 r�6 (559)) For the �rst exited state the perturbation to the energy will be given by the solution of the seular equation.Sine the non-diagonal matrix elements of the dipole moment do not vanish, there will be non zero ontribution alreadyin the �rst order of perturbation theory.ÆE � ddr3 (560)d) The harateristi time of proesses inside atom is the period of the emitted light. Therefore the retarding ouldbe important at the distanes larger than the wavelength of the emitted light.� � ! � �h3me4 (561)53



3.24 q/q01m3 VThe probability of sattering per time unit for the plane wave normalized for 1 inoming partile ontained in the boxL � L, with the wave funtion jiLi = 1L jii = 1Leipx and the outgoing partile with one partile per unit volume (thewave funtion is jfi = eikx) is given byw = 2��h Z d2k(2�)2 Æ(Ef � Ei) 1L2 j hf jV jii j2 (562)The probability of sattering for just one partile is obtainedp = wLv = 2��hv Z d2k(2�)2 Æ(Ef �Ei) 1L j hf jV jii j2 = 2��hv 1(2�)2 m�h2 Z 2�0 d�q=ksin� 1L j hf jV jii j2 (563)1L j hf j V jii j2 = �2 1L ������ 14aN n=NXn=�N Z (2n+1)a2na eiqx�����2 = �2 14aN ����� 1iq n=NXn=�N(eiqa � 1)e2inqa�����2 = (564)= �2 a24aN ���� 1qa sin 2(N + 12 )qaos qa2 ����2 = (565)(566)Using relation1�A Z 1�1 sin2A��2 d� = 1 (567)we substitute at 1�A sin2 A��2 = Æ(�) at A!1 and get1L j hf j V jii j2 = �a2 Æ(qa) + �a8 k=1Xk=�1 Æ(qa � �(2k + 1)) (568)Note, how N has been anelled. Therefore the probability of sattering is the sum of satterings to disrete angleswith the ondition qa = (2k + 1)�a or qa = 0.p = �2 2��hv 1(2�)2 m�h2 Z 2�0 d�q=ksin� "�a2 Æ(qa) + �a8 n=1Xn=�1 Æ(qa � �(2n+ 1))# (569)Therefore the answer isp = �2 2��hv 1(2�)2 m�h2 2664�2 + �8 Xj2n+1j<qa� 1r1� ��(2n+1)a �23775 (570)That was the probability of sattering at all angles. If we want to ompute only bakward sattering then we needto take one half of the ontribution from the seond term (in large brakets).3.25 q/q02m1 TEquations of motion are_x(t) = i[H;x℄ = p(t) (571)_p(t) = i[H; p℄ = �x(t) +p2f(t) (572)With onditionx(t = 0) � x̂0 (573)54



p(t = 0) � p̂0 (574)Thus the solution for t < 0 isx(t) = os tx̂0 + sin tp̂0 (575)p(t) = os tp̂0 � sin tx̂0 (576)For t 2 [0; T ℄x(t) = os tx̂0 + sin tp̂0 + p2fo(1�w2) [oswt� os t℄ (577)p(t) = os tp̂0 � sin tx̂0 � p2fow(1�w2) [w sinwt� sin t℄ (578)And for t > Tx(t) = os tx̂0 + sin tp̂0 + p2fo(1�w2)A os(t � T + ') (579)p(t) = os tp̂0 � sin tx̂0 � p2fo(1�w2)A sin(t� T + ') (580)wheretan' = sinT �w sinwTos T � oswT (581)and A =q1 + os2wT + w2 sin2 wT � 2(oswT os T + w sinwT sinT ) (582)). We know that _E = h0j �H�t j0i. Sine at t = 0 x̂ has no C-valued part there is no jump in energy for t = 0.Similarly to avoid jump in energy when we will turn perturbation of we assume that x̂ has no C-valued part at t = Tas well. Using exat solution for w = 1 this means sinT = 0. Using this andE(T )� E(0) = 12  p2f0(1�w2)!2A2 (583)we have in the limit w! 1E(T )� E(0) = f204 T 2 (584)3.26 q/q02m2 Tq02m2 a). xi i+1 = L3 ,S = 1=2,S = S1 + S2 + S3 b). Sine � << 1 then S = 1=2 for new vauum too. Sine Pij doesnot hange Sz we will have two similar vaua for Sz = �1=2.Thus vauum will have form ja; b;  >= aj+;+;� > +bj+;�;+ > +j�;+;+ > with a+ b+  = 0 for S = 1=2 andx12 = x13 = L=3 + �. Then hamiltonian isH = J(1� �L3 )[S2 � 9=4℄ + kL26 + 3k�2 � ��2 [P12 + P13 � 2P23℄ (585)For |-b-,b,> to be an eigenvetor the following equation(s) should be satis�edHj � b� ; b;  >= Ej � b� ; b;  > (586)or (here h = �32J(1� �L3 ) + k[L26 + 3�2℄)hb+ 3��2  = Eb (587)55



h+ 3��2 b = E (588)It is important here that third equation is just the sum of �rst two (no additional onstrains). Then E = h� ��2 (andthe state is ) Now we an minimize with respet to �:� = � �4k (589)but in the both ases a = b and only one eigenvetor (plus the same for S1=2). So the ground state is j � 2a; a; a >; � = +�=4k3.27 q/q02m3 Tq02m3 a). Ay = 0 for x < 0, Ay = B0x for x 2 [0::d℄ and Ay = B0d for x > dH = � �h22m [�2x + (�y + iAy)2℄ (590)We will restrit ourselves for the wave funtions of the form 	 = 	(x) and thus �y = 0H = � �h22m [�2x �A2y ℄ (591)b). When x < 0 and 	 = eikx we have no onstrains on k. When x > 0 and 	 = ei~kx then we have a onstraintk2 = ~k2+ (B0d)2 ). Critial k is equal to B0d. Classialy magneti �eld will rotate (turn the partile and if k < B0dthen it will return bak). At �rst v = km . Then F = mv2r = B0v. Thus the radius of the irle is r = kB0 . If d > r thepartile will return bak. d).Ji = i�h22m [ �	(�i � iAi)	� (�i + iAi) �		℄ (592)x < 0 	 = eikx +RE�ikxx > d 	 = Tei~kx Then Jx = i�h22mk(1� R2); x < 0Jx = i�h22m~kT; x > dJy = �h2mB0xj	j2; x 2 [0::d℄Elsewhere Jy = 0 There is a ow along x-axis,as usual (we will see below that the ow to the left of 0 is equal to theow to the right of d). And there is also probability ow along y-axis, inside the strip, �lled with magneti ux.e). Integrating Shrodinger equation fro 0 to d and taking d to 0 we get that 	(0) = 	(d) and �x	(d)� �x	(0) �d! 0 Thus 	(0) = 	(d), (1 + R) = T and �x	(d) = �x	(0), k(1� R) = ~kR As a resultT = 2kk + ~k; R = k � ~kk + ~k (593)3.28 q/q02j1 TWave funtion has form	(x) =  (x)x (594)Then  <(x) = sinh(kx) (595)56



 =(x) = �eipx + �e�ipx (596)and  >(x) = Ae�k(x�b) (597)Now equation about smoothness of our wave-funtion imply� = 12pe�ipx[p sinh ka� ik osh ka℄ = A2pe�ipb[p+ ik℄ (598)� = 12peipx[p sinh ka+ ik osh ka℄ = A2pe+ipb[p� ik℄ (599)This imply that A is a real quantity or<e�ip(b�a)[p sinhka + ik osh ka℄[p� ik℄ = 0 (600)or tan(p(b � a)) = pk sinh ka osh kap2 sinh ka� k2 osh ka (601)We will follow RHS of the last expression as the funtion of p. At p = 0 our funtion is 0. LHS is also zero butthis is not orret solution. Moreover-there is no suh solution at all-during our onsideration we divided by p and ourformula works only for p 6= 0. Then RHS derease and goes to minus in�nity at the point where p2 sinh ka = k2 osh kaAfter that RHS dereasing from plus in�nity and goes to 1p2mV0a as k! 0. There is only one possibility for this urvedoesn't ross tan urve: its last point should below tan brunh and p2mV0(b � a) < �2 (we still below the �rst tanbrunh).This onditionp2mV0a tanp2mV0(b � a) = 1 (602)is just the ondition for groundstate to have zero energy! And our seond onditionp2mV0(b� a) < �2 (603)means that our wave-funtion has no zeroes and that it is the ground-state of the system.Conlusion: our onsideration demonstrates that maximal symmetry state without zeroes is ground-state and whenground-state energy is large than zero there is no bound-states.3.29 q/q02j2 Ta). Plane wave  = eikx should beame  = ei(k�mv)x and general funtion  (x) beame ~ =  (x)e�imvx. Now wewill also onsider time dependent-wave funtion.If i _ = [� �2m + U ℄ (x; t) (604)then i _~ (x; t) = [� �2m + U ℄ ~ (x; t) = _ (x; t)e�imvx + mv22  (x)e�imvx + iv� (x; t)e�imvx (605)Result:~ (x; t) =  (x + vt; t)e�imvx�imv22 t (606)b). Obviously P = jAj2 andA = h 0j �� 0(x)e�imvx� (607)57



where 0(x) = e�jxja (608)the Hydrogen atom ground state. We do not are here about general oeÆient. After all A(v) would be normalizedfrom the ondition A(0) = 1.P � Z 10 Z �+1�=�1 r2dre�2ra e�imvr�d� � a3(1 + m2v2a24�h2 )2 (609)EventuallyA(v) = 1(1 + m2v2a24�h2 )4 (610)3.30 q/q02j3 Ta). First of all we separate wave funtion of enter of mass. Or ��(x1; x2) =  (x1 + x22 ) 
	��(x1 � x2) (611)The Hamiltonian for enter of mass is trivial (as for free partile with mass 2M ) and  (x) is just the plane wave.At the next step we separate spin and spae wave funtion. Now we have to wave funtions for spin zero 	0(x)and for spin one 	1(x). Corresponding Hamiltonians areH0 = P 2M + 2�h2U0(x) (612)and H0 = P 2M (613)Eigenstates with total spin zero are	0(x) =r 2�a sin �n(x+ a)2a ; En = �2�h2(n1 � 1)4Ma2 (614)with integer n.Eigenstates with total spin one are	S2=1;SZ (x) =r 1Leikx; Ek = k2M (615)with arbitrary k. The energy of the ground state is zero.b).Sine the system is in the groundstate we onlude that momentum of enter of mass is zero. Then expandingexternal �eld in the length of the system we have the following perturbing HamiltonianH1 = Sz�B(x1 + x22 ) + x1 � x22 �B0(x1 + x22 )[S1z � S2z ℄ (616)We have to alulate
	S2=1;Sz (k)��H1 j	0(n = 0)i (617)Sine Sz	0 = 0 we drop the �rst term of H1. We also express os(kx�wt) as <ei(kx�wt) Then we have to alulateP = ÆSz=1r 2�aL Z a�a sin(�(x+ a)2a )12eikx�kB0 (618)dx All this ould be multiplied by phase fator from B(x) � eikx in the enter of mass. Calulating this one getsP = ÆSz=1r 18�aL�B0[ os(ka)ka+ �2 � os(ka)ka� �2 ℄ = ÆSz=1r 18�aL�B0 4� os ka�2 � (2ka)2 (619)Now probability per seond isT�1 = 4�2M�2B20 os2(ka)k(�2 � (2ka)2)2 (620)Halftime T2 is T log 2. 58



3.31 q/q03m1 Ta). Wave funtion ̂ = exp(�i�(t)�z2 ) (t) (621)evolves aording to the HamiltonianHrot = [12 _ + �B0℄�z + exp(�i�(t)�z2 )[�x os �+ �y sin�℄exp(i�(t)�z2 ) (622)Using thate�i�(t)�z2 [�x os �+ �y sin�℄ei�(t)�z2 =  e�i�2 00 e�i�2 ! 0 ei�e�i� 0 ! ei�2 00 ei�2 ! =  0 11 0 ! (623)And eventuallyHrot(t) =  �B0 + 12 _� �B1�B1 �(�B0 + 12 _�) ! (624)In the ase �� = 0 Hrot doesn't depend on t.b). � = w1t. Then Hrot has eigenvalues�r�2B21 + (�B0 + 12w1)2 (625)with eigenvetors (not normalized) 1p�2B21+(�B0+ 12w1)2�(�B0+ 12w1)�B1 ! ; 1�p�2B21+(�B0+ 12w1)2�(�B0+ 12w1)�B1 ! (626)orrespondingly.Sine e�i��z2 preserve up-down diretions we an onsider  ̂ instead of  studying spin ipping. At the momentt = �T spin was direted down. Time-dependent wave-funtion isw �r�2B21 + (�B0 + 12w1)2 (627) ̂(t) = e�iw(t+T ) 1p�2B21+(�B0+ 12w1)2�(�B0+ 12w1)�B1 !+ eiw(t+T ) �1+p�2B21+(�B0+ 12w1)2+(�B0+ 12w1)�B1 ! (628)Condition that at the moment t = T spin will be direted up is� ot(2wT ) = pw2 � �2B21w (629)). Ground level has energy �w(t). At t = �T orresponding vetor has form 1�B1�T�2�B0 +O( 1(�T )2 ) ! (630)spin is up.At t = +T orresponding vetor has form 1� �T�B1 + O(1) ! (631)spin is down. 59



3.32 q/q03m2 Ta). Energy of bound state is E = � k22m . Then equation whih determines these states istan� = � ��p�20 � �2 (632)Here � = r0p2mV0 � k2 and �0 = �(k = 0). These equation has at least one solution if RHS well de�ned to the rightof � = �2 . In the opposite ase there is no solution. Thus there is no solution if �(k = 0) = �2 orVr = �28mr20 (633)This ondition oinides with the ondition k = 0.b).By the de�nition Æl is the shift from the formulaRkl ! sin(kr � �l2 + Æl(k)) (634)For l = 0 equation for Æl istan(p2mV0 + k2r0)p2mV0 + k2 = tan(kr0 + Æ(k))k (635)If k ! 0 thenÆ(k) = k[ tan(p2mV0r0)p2mV0 � r0℄ (636)). A obviously vanishes when V0 ! 0 and goes to in�nity when V0 ! Vr. d).�l = 4�k2 (2l + 1) sin2 Æl(k) (637)In the ase k! 0�l = 4�[ tan(p2mV0r0)p2mV0 � r0℄2 (638)When V ! Vr Æ(k) is not small any more. Thus�l � 1k2 = 1E � E0 (639)or there is pole in ross -setion.3.33 q/q03m3 Ta). Representation J = 3=2jJ = 3=2; Jz = 3=2i = j1i 
 j1=2i (640)jJ = 3=2; Jz = 1=2i = 1p3 [p2 j0i 
 j1=2i+ j1i 
 j�1=2i℄ (641)jJ = 3=2; Jz = �1=2i = 1p3 [p2 j0i 
 j�1=2i+ j�1i 
 j1=2i℄ (642)jJ = 3=2; Jz = �3=2i = j�1i 
 j�1=2i (643)Thus hJ = 3=2; JzjSz jJ = 3=2; Jzi = 13Jz (644)60



Representation J = 1=2jJ = 1=2; Jz = 1=2i = 1p3 [p2 j1i 
 j�1=2i � j0i 
 j1=2i℄ (645)jJ = 1=2; Jz = �1=2i = 1p3 [p2 j�1i 
 j1=2i � j0i 
 j�1=2i℄ (646)Thus hJ = 1=2; JzjSz jJ = 1=2; Jzi = �13Jz (647)b). Assuming thathJ; JzjSz jJ; Jzi = gJJz (648)we an alulate gJ for only one Jz.For J = l + 1=2 we take jJ = l + 1=2; Jz = l + 1=2i = jli 
 j1=2iand thushl + 1=2; l+ 1=2jSz jl + 1=2; l+ 1=2i = 1=2 (649)Conlusiongl+1=2 = 11 + 2l (650)For J = l� 1=2 we will also take vetor with Jz = J . In order not to write down it expliitly we note that [Sz; Jz℄.Let us onsider all (two) vetors with Jz = l � 1=2. They arejai = jl + 1=2; l� 1=2i (651)and jbi = jl � 1=2; l� 1=2i (652)Now Sz jai = 2l � 12(2l + 1) jai+ xb (653)sine haj jbi = 0 and hajSz jai = 2l�12(2l+1) . Let us at by Sz to Sz jai one again. Using that S2z = 1=4 (property ofS2 = 3=2 representation) we have14[1�� 2l � 1(2l + 1)�2℄ jai = xSzb+ x 2l � 12(2l + 1) jbi (654)Now using orthogonality one getshbjSz jbi = � 2l � 12(2l + 1) (655)or gl�1=2 = � 11 + 2l (656)). Here �!A = �!S and�!A�!S = S2 + 12[J2 � L2 � S2℄ = 12[J2 + S2 � L2℄ (657)For J = l + 1=2 it is �!A�!S = 12 (l + 3=2) And J(J + 1) = 12 (2l + 1)(l + 3=2).For J = l � 1=2 it is �!A�!S = �12(l � 1=2) And J(J + 1) = �12 (2l + 1)(l � 1=2).61



4 Statistial Physis4.1 s/s98j1 VWe onsider that the massless quarks are Fermi-distribute inside the on�ned volume of a ball with the radius R.Tnen, if the degeneray fator is b = 18 we get from the � = 0 Fermi distribution (using d3p = d
E2dE)N = 43�R3b 4�(2��h)3 Z 10 E2dEeE=T + 1 = 43�R3b 4�(2��h)3T 31 (658)E=2 = 43�R3b 4�(2��h)3 Z 10 E3dEeE=T + 1 = 43�R3b 4�(2��h)3T 42 (659)where1 = 32�(2); 2 = 7120�4 (660)AndN = �ER�h �3=4� b24�� 14 a1a� 342 (661)4.2 s/s98j2 VWe onsider that � = ��From the grand anonial distributionwnN = e
+�N�EnNT (662)in the limit T � j�j, when e�=T � 1 we have (Boltzman statistis)
 = �TXk log(1� e��EkT ) � TXk e��EkT (663)For lassial non interating gas in the box sum the sum is readily omputed withPV = �
 = e�=TTX e�EkT = e�=TT Z d3pd3x(2��h)3 e�E(p)T = V T 5=2e�=T � m2��h2�3=2 (664)Therefore a)P = T 5=2e�=T � m2��h2�3=2 (665)b)� = T log�PT�5=2�2��h2m �� (666)) _Q = l _N = � _V PT (667)62



4.3 s/s98j3 Va,b) The partition funtion isZ = (1 + e�E=T )N (668)where E = g�b�hH. ThenF = �T logZ; S = �dFdT (669)S = N �log(1 + e�E=T ) + ET e�E=T1 + e�E=T � (670)The entropy S = 0 at T = 0 and S = log2N at T =1 as it should be.) When the external �eld inrease the system tends more to oupy ground state, therefore it emits heat.ÆQ = T (Sf � Si) (671)d) In the adiabati proess S is onserved, thereforeHf=Tf = Hi=Ti (672)4.4 s/s98m1 VFor the ideal gas with onstant v the adiabati proess takes the form pV  = onst, where  = pv . The isotermifollows from the equation of state pV = �RT . The work isW = I pdV = p1V1 log V2V1 + p2V2 1 � 1  1� �V2V3��1! � p3V3 log V3V4 � p1V1 1 � 1  1��V1V4��1! (673)Sine p3V3 = p2V2 �V2V3��1, and p1V1 = p2V2 = �RT1, and p3V3 = p4V4 = �RT2 we get the answerT1 = W�R " 1��V2V3��1! log V3V4#�1 (674)T2 = T1�V2V3��1 (675)and the onsisteny ondition V2V3 = V1V4 (therefore one value of volume is unneessary to speify).4.5 s/s98m2 VTo hek whether the bose-ondensation takes plae or not ount the possible number of partiles on the exited levelswith � = 0.N = V(2��h)3 Z d3peET � 1 (676)with d3p = 4�p2mEmdE (677)and Z 10 x��1dxex � 1 = �(�)�(a) = �(�) (678)63



equalsN =  LpmT2��h !3 4p2��(3=2) = 1:2 � 1017 (679)Sine it is less than the given number of partiles, bose ondensation takes plae, and the ground level is oupied bymarosopi number of partiles. Sine in this approximation j�j � jE1 � E0j, the number of partiles on the �rstexited energy level with g = 3 and �E1 = E1 � E0 = �h22m � �L�2 (22 � 1) is given�n1 = geE1�E0T � 1 = 8 LpmT2��h !2 = 1:8 � 1011 (680)4.6 s/s98m3 VThe limit T ! 0 is the limit of � = 1T ! 1, when the perturbation theory for omputing Z = Tr e��H forapproximately quadrati hamiltonian works.Z = Z dpdx2��h e��H(p;x) = 12��h Z dpe�� p22m Z dxe��(x2+gx3+fx4) =s�22m�2 �1� 34 1� f2 + 1516 g2�3 +O(��2)�(681)Z = onst � T �1� 34 f2T + 1516 g23 T +O(T 2)� (682) = dEdT = T dSdT = T ddT ��dFdT � ; F = �T logZ (683)therefore = 1� 3f22T + 158 g23 T + O(T 2) (684)4.7 s/s99j1 Ts99j1 a).< n� >= [ex � 1℄�1 � 3[e3x � 1℄�1; x = (�� �)=� (685)(�� �)=� = �1 < n� = 0 >(�� �)=� = 0 < n� = 1 >(�� �)=� = +1 < n� = 2 >b). dN = L��hp m2EdE). � = �2�2�h28m , � = N=Ld). < E >= N�=3 Substitute � from ).e). CV = NT2�(T=0) R1�1 dxx < n� > (x) and � = �14.8 s/s99j2 Ta). Sine P = � �F�V and F = V f we haveP = �(1 � �� log � )f(T; �) (686)b). Obviously�P�� = �f 00 > 0 (687)64



Or f 00 > 0.).(In this proess we start from very small � and inrease it during speulations.) We an derease f if hangingit into a straight line! Really, at �rst f 00 > 0 and then f 00 < 0. And the straight line will be below f urve. Thatstraight line means that instead of pure gas with given f(T; �) there are gas and liquid (ondensed from this gas).Now we will onstrut ~f .At the point �g we understand that gas beame into gas plus liquid. In this ase fg = f(�g ) (the orrespondingpressure is the pressure of liquid with given temperature) and do not inreases at all. All additional matter (gas)beame liquid. Its free energy per volume we denote as fl assuming that this quantity orresponds to the given pressureof the gas Pl = Pg(�g) or� P = fg � �gf 0(�g) = fl � �lf 0(�l) (688)Here the density of liquid is �l. This equation determines �l as a funtion of �g . (* See below)We apply this onditions by hands from the physial sense but we an hange it by the ondition that ~f weonstrut should be smooth! Now we onstrut ~f and an do anything. After onstrution we will hek or result.So, we proeed with onstrution ~f and will hek this ondition afterwards.Now we have the following equations for volumesVg + Vl = V (689)and Vg�g + Vl�l = V � (690)Finally~f = VgV fg + VlV fl = �(fl � fg) + fg�l � fl�g�l � �g (691)for � > �g and ~f = f for � < �g. Obviously ~f 00 = 0 and this is better than f 00 > 0 at �rst and f 00 < 0 than.This formulas works well until ~f < f . At the point �1 where ~f = f we have to swith to f again.We understand that this swithing should our when all our matter will be liquid. And now we will demonstratethat this is so. Our equation is (�st hek of smoothness ~f )~f(�1) = f(�1) (692)(*)Using that our liquid is the phase of our gas it should also be desribed by our urve. We onlude that fl = f(�l).Now it is easy to hek that �1 = �l is the solution and~f(�l) = f(�l) � fl (693)One again, we onstrut ~f for �g < � < �l and one ould simply hek that ~f (�g) = f(�g) and ~f (�l) = f(�l).Only one ambiguity we do not know preise value of �g .So the equation to determine �g is our seond hek: ~f 0(�g) = f 0(�g) and ~f 0(�l) = f 0(�l). We an not solve thisequation expliitly but generally it spei�es �g . Now one an say that we have two equation to speify one variable�g , but using equation for �l(�g)� P = fg � �gf 0(�g) = fg � �gf 0(�g) (694)we leave only one of it.We end with onstrution of f and now going to pressure.d). Now the speulations about the pressure are trivial: P = �f 0 � f and if ~f is smooth (with its �rst derivative)then P is also smooth. And it is obvious that for �l > � > �g pressure is onstant. So we hange the urve with loalminimum and maximum by the horizontal line. 65



4.9 s/s99j3 Ts99j3EÆieny of refrigerator is equal to the ratio of the temperatures of refrigerated stu� and the medium outsideAQ = TmediumTr:stuff (695)A is a work spent by the mahine, Q is the heat taken from refrigerated stu�. Tmedium ould be arbitrary, but largethan room temperature-the room (medium) should refrigerate(!) the mahine. To minimize A Tmedium should beequal to room's temperature. During the proessdQ = �mdT (696)and A = TmediumT dQ (697)Integrating this equation one getsA = mTroom ln(Troom=Tie) (698)And at the end heat to turn the water to ie is m� when the eÆieny is Troom=Tie . FinallyA = mTroom [ �Tie +  ln(TroomTie )℄ (699)4.10 s/s99m1 VThe �rst step is to �nd the equation of adiabati proess in the T; V oordinates:� �T�V �S = �(T; S)�(V; S) = �(P; V )�CVT �(V; T ) = � T�CV ��P�T �V (700)In the problem CV = onst, p = nRTV (1 + ��V ), thus at S = onst proessZ �CV dTT = � Z nRV (1 + ��V )dV (701)�CV log TfTi = �nR�log VfVi + ��� 1Vi � 1Vf �� (702)If denote 1; 2; 3; 4 point on the PV diagram going lokwise from the left upper orner, thenT2 = T1� (703)T3 = T4� (704)where� = exp�� RCV �log VfVi + ��� 1Vi � 1Vf ��� (705)and, sine CV = onst the energy of gas U = �CvT + f(V ), where f(V ) does not need to be determined� = AQ = T1 � T2 + T3 � T4T1 � T4 = 1� � (706)66



4.11 s/s99m2 VSine all states have equal energy the thermodynamis of this system is governed just by the entropy S(L), i.e. lognumber of states for a given L. Let l be length in the a units l = L=a. Then N+ = 12(N + l), N� = 12 (N � l).S = logCN+N = logN !� log(((N � l)=2)!)� log(((N + l)=2)!) (707)At x!1logx! � x(logx� 1) (708)thereforeS � N log 2� l2N = onst � L2Na2 (709)Then, fromdE = TdS � FdL (710)and dE = 0 we getF = T dSdL = �2T LNa2 (711)The required work to streth from 0 to Lmax is isW = �A = T L2maxNa2 (712)With strething the entropy dereases, and therefore the rubber gives out the heat (0 > Q = TdS = A).4.12 s/s99m3 VThe exitations !2 = � k3 obey Bose statistis with � = 0. Therefore the density of the energy per areaE = 1(2��h)2 Z d2p "e "T � 1 (713)with d2p = ��h2d(k2) = ��h2d( � ( "�h )2) 23 = ��h2 � ��h2� 23 d" 43 is equal toE = 1(2��h)2��h2� ��h2� 23 43T 73 I (714)whereI = Z 10 dxx 73�1ex � 1 = ��73� � �73� (715)and V = dEdT = 79��73� � �73� 1� � ��h2�23 T 43 (716)
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4.13 s/s00j1 TUsing ideal gas approximationZ = Z d3nXN e�N(En��)T 2NshN (g�bH) (717)Using ideal gas approximation this will be justZ = Z d3n(1 + e�(En��)T 2sh(g�bH) (718)and lnZ = Z d3ne�(En��)T 2sh(g�bH)) = 2sh(g�bH))lnZ0 (719)Pressure is given byP = �F�V = ��T lnZ�V = P02sh(g�bH)) (720)Thus P (H1)P (H2) = sh(g�bH1)sh(g�bH1) = ZH (1)ZH (2) (721)Vivod-magnitnoe pole soset.4.14 s/s00j2 TWe deal with adiabati expansion (inverse) of ideal gas. Seond low of thermodynamis saysdQ = 0 = dU + PdV (722)and dU = J2NkdT (723)where J is the number degrees of freedom. Then using following relation for ideal gasPV = NkT (724)one simply getsPV  = Const (725)where  = J+2J = n Thus for N2 n = 75 sine J = 5.4.15 s/s00j3 Ta). When � < rhor then � < 0 and determined from the equationN = Z d�(E) < n(E) >= Z d3n 1e�E(n)+�T � 1 (726)E(n) = k22m ; 2�n = kL b). When � > �r � = 0. Distribution of partiles at any exited state is given by formula froma. with � = 0. This time N = N (T )-number of partiles at the exited states and all other partiles (N-N(T)) at theground level.). Nr is just the number of partiles equal to N (T ) from a. It is orresponds to the ase, when � = 0, but stillmirosopi number of partiles at the ground level. It is easy to alulate Nr(T; V ):Nr(T; V ) = V T 3=2m3=2 A21=2�2 (727)68



A = Z 10 dt t1=2et � 1 (728)So �r � T 3=2 or  = 3=2. d). For system remains in the ondensed phase A should be large enough: dereasing oftemperature should be faster then dereasing of density (number of partiles) for density to satisfy � < �r(T ). Wewill �nd now ritial value for A when to remain in the ondensed phase is still possible.So we assume that system is in ondensed phase, but without any additional funds: any time � is just equal to�r. Sine volume of the system is onstant this meansdNN = 3dT2T (729)The energy of the system at ritial point is justE = V T 5=2m3=2 B21=2�2 (730)whereB = Z 10 dt t3=2et � 1 (731)Number of partiles, whih go away from the system is �dN > 0. They arry out the energy AEN jdN j (here is nodi�erene between mean energy of the partiles before same part go away or before that-they arry small amount ofenergy � dN thus di�erene before or after will be � dN2). Aording to the relation E = Er(T;N )dE = AEdNN = E5dT=2T (732)Thus AdNN = 5dT=2T; dNN = 3dT2T (733)Answer:A > 53 (734)4.16 s/s00m1 VWhen two phases are present in the system at given temperature T the onentrations of omponents in them aredetermined by rossing of the horizontal line T with the urves separating phase areas. In the given problem, whileboth phases are present in the system, the onentration of x in the liquid is always three times less than that in thegas (during boiling the onentration of A in the liquid dereases). From onservation of the total amount of A:xi = (1 � p)xf + 3pxf (735)where p is the part of liquid that was turned into gas, and xi = x; xf = 12 .p = xi � xf2xf = 12 (736)4.17 s/s00m2 Ta).The Brownian partile started at t = 0 with zero initial speed from the point r = 0._r(t) = 1M Z t0 d�F (�)� 6��br(t) (737)Let F(t) = 1M Z t0 d�F (�) (738)69



Then r(t) = Z dt0G(t; t0)F(t0) (739)_G+ 6��bG = Æ(t� t0) (740)and G(t� t0) = �(t � t0)e�6��b(t�t0) (741)As a resultr(t) = Z t0 dt0e�6��b(t�t0)F(t0) (742)To make this result easy we an integrate by parts over t0 noting that (ex)0 = ex Thenr(t) = 16��b [F(t)� Z t0 dt0e�6��b(t�t0)F (t0)M ℄ (743)Now it is simple to alulate _r_r(t) = Z t0 dt0e�6��b(t�t0)F (t0)M (744)b). We know that in equilibrium at temperature T every partile (non only elementary) should have energy 32kT or32kT = M2 < _r2(t) >= C24M��b [1� e�12��bt℄ (745)Or alulations show us that energy, indeed, doesn't hange with time short while after beginning of the proess. ThusC = 48MkT��b (746)).< r2(t) >= C(6��bM )2 [t+ 112��b (�3� e�12��bt + 4e�6��bt)℄ (747)or after several mean relax times � = (6��b)�1< r2(t) >= 8kT�M [t� �4 ℄ (748)k ould be measured through the angle in the graph < r2 > v.s. t.Another solution(V)From the equation of motion for the partile_v + �v = f; (749)where v = _x; � = bM ; f = FM follows the solution for the response to the f = Æ(t)v(t) = e��t; t > 0; x(t) = 1� (1� e��t) (750)and by the linearity for the general f(t):1v(t) = Z t0 d�e��(t��)f(� ) x(t) = Z t0 d� 1� (1 � e��(t��))f(� ) (752)1 Note, that the seond formula ould be also obtained diretly from the �rst by hanging order of integration:x(t) = Z t0 dt0 Z t00 f(�)e��(t0��)d� = Z t0 d� Z t� dt0f(�)e��(t0��) = Z t0 d�f(�) 1�(1� e��(t0��)) (751)70



In Fourie deomposition, where x! = 12� R dte�i!tx(t) and x(t) = R d!x!ei!tv! = f!i! + � (753)and sine hf(t)f(t0)i = Æ(t� t0) with  = CM2hf!f!0 i = 1(2�)2 Z dtdt0e�i!te�i!0t0 hÆ(t� t0)i = 12�Æ(! + !0) (754)we gethv(t)v(t0)i = Z d!d!0 1i! + � 1i!0 + �ei!tei!0t0 12�Æ(! + !0) = Z d! 1�2 + !2 2� = 2�e�jt�t0j (755)and therefore 
r2(t)� is linearly growing at large tddt 
r2(t)� = ddt �Z t0 v(� )d� Z t0 v(� 0)d� 0� = 2 Z t0 2�e��(t�� 0)d� 0 = �2 (1 � e��t) (756)The onstant  = CM2 = 2� 
v2� and at t!1 the growth is 
r(t)2� = 2t hv2i� = t2�3kbT=M6��R=M = t kbT��R4.18 s/s00m3 Ta). We will start from partition sumZ = (1 + �)N (1 + �e��T )Ni (757)(here � = e �T ) ThenF = �T logZ = �TN [log(1 + �) + � log(1 + �e��T )℄ (758)and f = FN = �T [log(1 + �) + � log(1 + �e��T )℄ (759)Now we will determine � from the ondition that total number of partiles equal to N :N = N [ �1 + � + � �e �T + � ℄ (760)and �(�; T; �) = 1� �+p(1� �)2 + 4�e �T2� (761)b). Density of defets is justn(T ) = � �e �T + � = �1 + ��1e �T (762)). When T !1 then�(T )! ��1[1 + �T �1 + � +O( �2T 2 )℄ (763)and n(T ) = �1 + � � �T ( �1 + � )2 +O( �2T 2 ) (764)When T ! 0 then�(T )! ��1=2e �2T +O(1) (765)71



and n(T ) = p�e��2T + O(e��T ) (766)Conlusion: n(T ) starts from 0 at zero temperature and inreases up to �1+� at in�nite temperature. d). C = dEdT andE = n(T )�. SoC = �n0(T ) = ��T 2 e �T ��1n2(T )[1� e �Tp(1� �)2 + 4�e �T ℄ (767)FinallyS(T ) = �N [�e �T log(�e �T )� log(1 + �e �T )℄ (768)4.19 s/s01j1 Ts01j1 a).dQ = dU + PdV � �dN Sine dN = 0 (ontainer is losed), U = CvT; dT = 0 (where Cv = JkT2 , J-numer degrees of freedom) and PV = NkT (ideal gas, N-total number of partiles in the ontainer) total heat Q =NkT1ln(V2V1 ) < 0-the system gives heat. b). For the �rst ontainerdQ = CvdT +NkT dVV (769)For the seonddQ0 = CvdT 0 +NkT 0 dV 0V 0 ; dV 0 = �dV; dQ0 = �dQ; V + V 0 = V1 + V2 (770)We want to maximize mehanial work R dV (P � P 0) = R dV Nk( TV � T 0V1+V2�V ). To do it we an maximize thedi�erential in the last formula treating T as maximal as possible and T 0 as minimal as possible. In the proess weonsider at �rst both ontainers had the same temperature. Then �rst ontainer started to expand and it's temperatureT dereases, when seond dereases it's volume, but inrease it's temperature T 0. The ontainers exhange heat dQattempting to inrease T and derease T 0 making them equal. But T ould not be large then T 0 sine at the moment,when T = T 0 heat ow stops. Thus system produe maximal amount of mehanial work if the expansion will be slowand ontainers will be able to atten their temperatures. Now we treat T 0 = T anddA = dV (P � P 0) = NkT (dVV � dV 0V 0 ) = JNkdT (771)Solving this equation one hasT = T1( V2VV1(V1 + V2 � V ) ) 1J (772)Aording to previous equationW = JNk(T1 � T (V )) (773)Obviously maximal work will be done if we stop when the volume of both ontainers oinides 2V = V1 + V2. ThenW = JNkT1(1� (V2V1 ) 1J ) (774)). Now we want to ompare Q and W . Let us introdue the variable x = V2V1 2 (0::1℄. Note that Q(x = 1) = W (x =1) = 0. Aording to the hint we an onsiderdWdx = �NkT1x J�1J (775)and dQdx = �NkT1x (776)Sine dQdx < dWdx for any x 2 (0::1) and Q(1) = W (1) then W < Q for any x 2 (0::1).72



4.20 s/s01j2 Ta). We treat bound state of two biomoleules as a new type of biomoleules. Obviously hemial potential of themoleule of new type is just a sum of hemial potential of the parts, shifted by bound energy. Then the grand sum isZ = ZA(T; �A)ZB(T; �B)ZC(T; �C )ZAC(T; �A + �C + �AC)ZBC (T; �B + �C + �BC) (777)We also assume that �AC and �BC are large enough so there are no pure C moleules and we drop ZC from thesum.We also believe that lassial (Boltzman) distribution is valid here and that the energy levels of biomoleules donot depend on their type: they are very massive and large-thus only their position ould ontribute. (Generally weould also assume that partition funtion of boundstate is not equal to partition funtion of a part, but their produt.This ase desribes (almost) independent strutures.)Now (all partition funtions are the Boltzman summ of the form Z =PE e�E=T )NA = ZA(T )e�AT + ZA(T )ZCe�A+�C��ACT (778)NB = ZB(T )e�BT + ZB(T )ZCe�B+�C��BCT (779)and NC = ZAZC(T )e�A+�C��ACT + ZB(T )ZCe�B+�C��BCT (780)Generally eah Z ould be multiplied by Z0 (for enter of mass) but we absorb it to unknown Ni-number of partiles.We absorb orresponding Z to � and havefA = 11 + e�B��A+�BC��AC (781)fB = 11 + e�A��B+�AC��BC (782)b). We already used �rst assumption about fA = 1 when �B !�1. For n we havenC = nA1 + e��C+�ACT + nB1 + e��C+�BCT (783)Sine we know that nC should muh smaller than nA and nB we onlude that we ould drop 1 in the denominatorsand get for ffA = 11 + nBnA e �BC��ACT (784)). Let �BC��ACkT = x. Then0:1 = 11 + 0:01ex (785)or x = log900 � 6:8. Using that 10000K � 1eV we have �BC � �AC � 0:2eV.4.21 s/s01j3 Ts01j3 a). Hamiltonian has a simmetry Si !�Si thus < Si >= 0. E�etive hamiltonian isH = NXi (S2i�1S2ilnsh(S2i�1 + S2i)) + Nln2 (786)b).Hamiltonian of single triangle isH = 12(S1 + S2 + S1�2)2 � 32 (787)73



Thus we have 6 = 3� 2 ground states, where 3 is a number of possible hoies of partile with spin opposite to othertwo partiles and 2 is a number of possible spins of this partile. ). Let VN be the number of ground states for thesystem of N triangles with given value of spin in the left bottom orner (obviously VN does not depend on this value).Aording to b. �rst (at the left) triangle has 3 on�guration of spins with minimal energy. ThusVN = 3VN�1 (788)And V0 = 1. Now we simply multiply this result by 2 as the number of di�erent values of the spin in the left bottomorner. Answer:2� 3N (789)d). We onsider < SiSj >. Let i be a right orner of p-th triangle and j be the left orner of q-th triangle. Then thereare k = N � p� q full triangles between i and j (i < j). Now we want to alulate Wk(s)-number of ground states inthe system of k triangles with given boundary onditions: s = 1 if spins on the boundary oinides and �1 otherwise.We already know that Wk(1) +Wk(�1) = 2� 3k.From the previous speulations (slightly generalize them) we an onlude thatWk�1(1) = Wk(1) + 2Wk(�1) (790)and similarlyWk�1(�1) =Wk(�1) + 2Wk(+1) (791)Or the problem is equivalent of the problem of alulating 1 22 1 !k (792)The eigenvalues of this matrix is �1 and 3 with eigenvetors 11 ! (793)and  1�1 ! (794)respetively. As a result Wk(+) = [3k + (�1)k℄ and Wk(�) = [3k + (�1)k℄. Finally< SiSj >= Vp(Wk(+) �Wk(�))Vq2VN = (�1)k3k (795)For k = 0 we get 1 as expeted.4.22 s/s01m1 Va) Consider the blak body radiation. From the Bose-Einstein distribution:d " = 42d3ph3 "e h�kT � 1dS = 2��22 h�e h�kT � 1dSd� (796)From the extremum �max in the power spetra follows the relationh�max = �kT; (797)where 1 is the dimensionless numerial onstant (obtained from solving the extremum equation).74



At the low frequenies the spetrum has asymptotidE = 2��22 kTd�dS (798)The energy emitted from the area of the size of one wavelength, during the the time interval of the one period isdE = 2�kT d�� : (799)From this measurement one an �nd the Boltzman onstantk = 12�T � dEd� (800)and the Avogadro number A = Rk . After k has been found, from (797) follows the formula for h:h = �kT�max (801)b) Sine A is dimensionless, then whatever they mean by "pure thermodynamis mean" one needs something thathas dimension of time to get the dimension of h = energy � time from the dimension of Q (energy). By heating abox with photons from zero temperature and measuring the heat input one gets the relationh = �VQ 8�5(kT )4153 �3 : (802)The fator V=3 an be expressed as �3 where � is a time for light to ross the box.4.23 s/s01m2 VThe anonial partition funtion at onstant pressure (we use notation P = �t, where t is tension, and V for thelength)1 =X eF�EnT =X e��pV �EnT (803)from whih follows� = �TN log�e�Ea+PlaT + e�Eb+PlbT � (804)and sine d� = �SdT + V dPV = ����P �T = N lae�Ea+PlaT + lbe�Eb+PlbTe�Ea+PlaT + e�Eb+PlbT (805)4.24 s/s01m3 Va) In the magneti �eld the partile with hamiltonianH = 12m �px � eBy�2 + 12mp2y (806)has energy levels of the harmoni osillator Ek = �h!(n + 12 ) with ! = eBm . The oordinate of the enter of the irleis y = pxeB , the motion is on�ned into 0 < y < Ly if 0 < px < Ly eB . The number of suh states g = Lx2��hLy eB .b) From the anonial grand distribution
 = �TX log(1 + e��EkT ) (807)in the low density regime we have
 = �TX e��EkT = �T V(2��h)2 eB (2�mT ) 12 e�� 1sinh �h!2T = �PV (808)75



thus P = T 1(2��h)2 eB (2�mT ) 12 e�� 1sinh �h!2T (809)from N = ��
d� one gets that at B = 0, 
 = �NT and from � = � �2
�B2 one �nds� = �16 NT � �hem�2 (810)The gas is diamagneti (Landau).4.25 s/s02j1 Ta). Using thatP = ��F�V = RTV � b � aV 2 (811)we haveF = �RT log(V � b) � aV + f(T ) (812)Funtion f(T ) is unknown, but using thatCv = �U�T (813)and U = �T 2 ��T FT (814)we getCv = �T �2F�T 2 = �Tf 00 (815)or f(T ) = �CvT logT + T (816)where  is unknown onstant. EventuallyF = �RT log(V � b) � aV �CvT logT + T (817)b). Using the low of onservation of energy applied for small amount of gas traveled from one reservoir to another:dE = dU1 � dU2 = dA1 � dA2 = �P1dV1 + P2dV2 (818)Using that dPi = 0 we get dH1 = dH2 ).H = CvT + RTVV � b � 2aV (819)d). From b. we know that H = onst and this explains that�T = �V � �T�V �H (820)So Tinv is the temperature when � �T�V �H = 0 Using thatdH = 0 = dT (Cv + RTV � b) + dV (2aV � RT(V � b)2 ) (821)76



we have� �T�V �H = Rb(V � b)2 T � TintCv +RV=(V � b) (822)where Tint = 2abR (1� bV )2At the last step we will determine �V from �P . Using thatH(P; V ) = CvR (V � b)(P + aV 2 )� aV + PV (823)we obtain�V = ��P [V + CvR (v � b)℄[CvR (P � aV 2 ) + (P + aV 2 + 2abCvRV 3 )℄ (824)For relatively large pressure (PV 2 > a) volume inreases and temperature inreases/dereases depending on T > or <Tint.4.26 s/s02j2 Ts02j2 a).Z = Z d�(E)ln(1 + 2h(�BHT )e��ET + e 2(��E)T ) (825)N� = Z d�(E) e��E��BHT + e 2(��E)�BHT1 + 2h(�BHT )e��ET + e 2(��E)T (826)b). When T ! 0 �! �F by de�nition of �(T = 0). ThenN+ = 4�V3(2��h)3 (2m(�F + �BH))3=2 (827)and N� = 4�V3(2��h)3 (2m�F � �BH)3=2 (828)).N = N+ +N� (829)and M = (N+ �N�)�B (830)d). � = 3N�2B2�F (831)4.27 s/s02j3 Ts01j1 a). E = �hwMS = klnW (M )b). System is isolated, in the Stirling approximationn! � p2�nnne�n (832)S = klnW (M ) = k[(N +M � 1=2)ln(N +M � 1)� (M + 1=2)lnM +Const℄ (833)77



Then, by de�nition1T = dSdE = k�hw [ln(M + N � 1M ) + 12(M + N � 1) � 12M ℄ (834)We also assume that N;M >> 1. ThenMN = 1e �hwkT � 1 (835)as expeted. To get the same result through Boltzman partitions it is onvenient to notie that1Xn1=0 ::: 1XnN=0 Æ(M � NXi=1 ni) = (N +M � 1)!M ! (836)In this way our partition sum isZ =XM e��hwMkT W (M ) = 1(N � 1)!(e �hwkT � 1)N (837)Then < M >N = < E >�hwN = d logZ�hwNdT�1 = 1e �hwkT � 1 (838)). StraightforwardlyCv = dEdT = �h2w2NkT 2 e �hwkT(e �hwkT � 1)2 (839)d). This was already derived in b). Now we give alternative derivation using Boltzman partition. At �rst we notethat instead of oordinates E;M where S = lnW (M ) in oordinates T;M entropy is S =PP lnP orS = �k 1XM=0 W (M )e��hwMkTZ ln[e��hwTZ ℄ (840)whereZ = 1XM=0 e��hwMkT W (M ) (841)This sum ould be sum up:S = k(lnZ + 1XM=0 W (M )�hwMe��hwMkTkTZ ) = kd(T lnZ)dT (842)We want to hek whetherdSdE = dSdT dTdE = kd2(T lnZ)dT 2 dTdE = 1T (843)Or in another wordsd2(T lnZ)dT 2 = dEkTdT = dTdT T 2dlnZdT (844)aording to the de�nition of E = k T2dlnZdT . Butd2(T lnZ)dT 2 = dTdT T 2dlnZdT = 2dlnZdT + d2lnZdT 2 (845)is just the trivial identity!e). Any partiular on�guration ould be imagined as the row of objets: bosons and osillators. Then all bosonsto the left of any partiular osillator (up to the next osillator) belong to it. Thus no bosons should be to the right ofthe "rightest" osillator. We assume that number of the "rightest" osillator is N -the number is not important here78



beause aording to our assumption all osillators are equal to eah other. Then number of series of M bosons andN � 1 osillators (the last is already on the right side) is just (N +M � 1)!. But here all objets are equal. We haveto dived this number by number of permutations of bosons itself M ! (without hanging the series) and also osillators(N � 1)!. Result isW (M;N ) = (M + N � 1)!M !(N � 1)! (846)4.28 s/s02m1 Ts01m3 a).�(h) = �0e�mghT (847)Derivation: we assume that gas is lassial (governed by Boltzman statistis). Then using that � doesn't depend onh and that "e�etive" �(h) = � �mgh we derive the dependene N(h)V assuming that we onsider very small volumewhere we an neglet the dependene of potential energy mgh on height h. b). This is usual Maxwell distribution (itdoesn't depends on h up to normalization )F (p) = e�E(p)T e�(h)T (848)). Under stritly ideal (not lassi) gas we have to understand gas governed by bose (fermi) statistis. Then e�etive�(h) is still the same, but dependene �(h) is more ompliated. It is the funtion, whih expressed total number ofpartiles through hemial potentialN = dlnZd� (849)with substituted e�etive potential �(h) = � �mgh. Nevertheless this funtion is not elementary for both B and Fstatistis.F (p) remains the same (up to normalization). It isF (p; h) = e�E(p)+�(h)TZ(T; �(h)) � e�E(p)T (850)d). The same up to normalization onstant whih is the ration of densities at bottom and at the top. How to alulatethe densities is explained in .4.29 s/s02m2 Ts02j2 a).Using approximation of Boltzman gas: total number of protons is (E0 = 13:6 eV)NpV = �MpT2��h2�3=2 e�pT +�MHT2��h2 �3=2 e�p+�e+E0T (851)and eletrons isNpV = �MeT2��h2�3=2 e�eT + �MHT2��h2 �3=2 e�p+�e+E0T (852)From this moment we will treat Me << Mp and thus MH = Mp. We know that at the temperature T0 = 0:3eVnumber of atoms is equal to the number of free protons. Or�MHT2��h2 �3=2 e�pT = �MpT2��h2�3=2 e�p+�e+E0T (853)Thus �e(T0) = �E0. To determine both quantities NeV and NpV we need one more equation.How to get it? 79



Let us remind that our Universe is eletrially neutral. And that is why the next equation isNeV = NpV (854)This is not a result of statistial physis, but new assumption about system we onsider. Using this one ould simplygets NeV = NpV = 2�MeT2��h2�3=2 e�E0T (855)We learn that our approximation is orret sine the density we deal with is e�E0T � E�45 times (!) than ritial one.Density of free eletrons is equal to density of free protons and to the density of Hydrogen atoms and is Ne2V b). FromPlank formula density of photons isNphV = T 32�23�h3 Z 10 dxx2ex � 1 (856)Let us ompare Ne and Nph. Roughly speakingNeNph = meT 3=2e�E0=T (857)At T = T0 = 0:3eV we haveNeNph � 5110:3 3=2e�45 � �104 � 10�20 << 17 (858)Or Ne << Nph.4.30 s/s02m3 Ts02m3a). S = log gwhere g is a number of mirostates with given energy. At the zero temperature energy is also zero. If S 6= 0 thenthere are more than one ground states of the ie's hamiltonian. This is of ourse possible, but unusual.b).There are 2N bonds (this ould be get by simple ombinatoris, but also from main formula of hemistry H2O)and eah bond has exatly 2 quantum states. Result g = 22N and S = 2N log 2). Let us onsider one partiular oxygen atom (and bonds end on it) and forget about all others (aording theassumption). There are 24 states of suh system if we want to take into aount all other bonds as well). The numberof on�gurations, when exatly two of hydrogen atom are lose to this oxygen atom are 6 = 4!2! (bonds are di�erent,no matter in what oder we will selet them). Fration is624 = 38 (859)Now g = N2 log6 (860)My result is twie larger than Pauling's!!!!!4.31 s/s03m1 TTdS = dQ = dU + dA (861)where dA = �fdx. When x is �xed dA = 0 andTdS = dQ = C(x)dT = dU = �U�T dT (862)80



or C(x) = �U�T (863)and thusU = A(x)2 T 2 + g(x) (864)where g(x) unknown arbitrary funtion.At the onstant zero temperatureTdS = dQ = 0 = dU + f(x; T = 0)dx = [g0 � f(x; 0)℄dx (865)thus g = �2x2 +Const (866)Now U = A(x)2 T 2 + �2x2 (867)After we have determined exat form of U (up to additive onstant) we an alulate S:TdS = dU � fdx = dT [A(x)T ℄� dx[�A0(x)2 T 2 � �T + �xT ℄ (868)Let us divide both sides of these equation by T . Now for the right side to be full di�erential following property of Sshould be satis�ed�2S�T�x = �2S�x�T (869)or A0(x) = A0(x)2 (870)or b). A0 = 0 and A = onst!a).�S�x = �� �x). �S�T = AS = AT + �x� �2x2 + B (871)d). Zero tension f = 0 = �x� �T + �xT ) dx[�+ �T ℄ = dT [�� �x℄CF = T ��S�T �f=0 = T [�S�T + �S�x �� �x�+ �T ℄ = (872)CF = T [A+ (�� �x)�� �x� + �T ℄ (873)Using that f = 0 implies x = �T�+�T thenCF ℄ = T [A+ �2�2(�+ �T )3 ℄ (874)81



4.32 s/s03m2 Ta). Sine we assume that density is uniform we substitute the spherial star by a ube of size L with periodi boundaryonditions. Than k = 2�neL and total number of eletrons N should be equal to 4�3 n3e, whereEf = �2�neL �2 12m = 1m �3�2NVp2 �2 (875)And total kineti energy isE = Z ne0 dnn2 k22m = 3(2��h)2N10m �3N4� �2=3 (876)b). Solving the equation�R(Uk + Ug) = 0 (877)we simply �ndR = (2��h)225=2m5=2p meG � 34��4=3M�1=3 �M�1=3 (878)). ne remains the same. Ef now is equal toEf = ke = 2�neL = 2�� 3N4�V �1=3 (879)and total energy isE = 4� Z ne0 dnn2k = 3(2��h)N4 � 3N4�V �1=3 (880)d). This ondition is Uk < Ug (this ondition doesn't depend on R). It yieldsM 22 > 5(2��h)821=3m5=3G � 34��2=3 (881)4.33 s/s03m3 Ta). Sum for lassial partile isZl =Xn e�ET (882)Here n is a set of quantum numbers n1; n2; n3 whih speify quantum state of partile byki = 2�ni�hL (883)and V = L3. Then partition sumZl = 1Xn1=�1 1Xn2=�1 1Xn3=�1 e�ET (884)ould be substituted by integral over dn. Really using variable k instead of n we will get at �rst sum over lattie withsale 2��hL and if m and T �nite sum goes to integral as sale of lattie approahes zero.Taking this gaussian integral now we will haveZl = Z d3ne�EnT = V=�3 (885)as expeted. b). 82



Going bak to the sum we haveZ = V�3 X e�x2 (886)where we sum over 3D lattie with size (roughly) �hLpmT . The sum ould not be substituted by integral if the funtionwe want to integrate hanges suÆiently at lattie sale. Exponent hange suÆiently if x hanges by 1 and ourapproximation breaks if �hLpmT � 1 or large. ResultT <� �h2mV 2=3 (887)). Two partile partition sum for quantum partiles di�ers from the same sum for lassial partiles beause in thequantum ase partiles are idential.Thus for bosonsZB = 12 Xn6=m e�EnT e�EmT +Xn e�2EnT (888)for fermionsZF = 12 Xn6=m e�EnT e�EmT (889)Using that Thus for bosons2En(m) = En(m2 ) (890)we havefor bosonsZB = 12Xnm e�EnT e�EmT + 12Xn e�2EnT = 12Z(m;T )2 + 12Z(m2 ; T ) (891)for fermionsZF = 12Xnm e�EnT e�EmT � 12Xn e�2EnT = 12Z(m;T )2 � 12Z(m2 ; T ) (892)d). Using expliit form of ZZ(T; V;m) = V�3 (893)E = T 2 d logZdT = 32T [1 + 11� Z�1(m; 2T ) ℄ (894)C = dEdT = 32[1 + 11� Z�1(m; 2T ) ℄� 9Z�1(m; 2T )4(1� Z�1(m; 2T ))2 (895)As was expeted (thanks to Daniel) at the lassial limit Z !1 the pure lassial result restores.
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