Generals Exam 2005, Part II, Problem 1
 MHD Energy Conservation

Clayton Myers - 25 March 2009

The following identity is given at the beginning of the problem and is used throughout the calculation. For a scalar function $f(\mathbf{r}, t)$, define

$$
\begin{equation*}
F(t) \equiv \int_{V} d^{3} \mathbf{r} f(\mathbf{r}, t) \tag{1}
\end{equation*}
$$

where V denotes the volume of integration. Then

$$
\begin{equation*}
\frac{d F}{d t}=\int_{V} d^{3} \mathbf{r} \frac{\partial f}{\partial t}+\int_{S} d^{2} \mathbf{r} \hat{\mathbf{n}} \cdot \mathbf{u} f \tag{2}
\end{equation*}
$$

where S is the bouding surface of $V, \hat{\mathbf{n}}$ is the unit normal vector of this surface pointing outward, and \mathbf{u} is the local velocity of the boundary.

Part (a)

With the MHD energy density given by

$$
\begin{equation*}
w_{p}=\frac{1}{2} \rho v^{2}+\frac{B^{2}}{2 \mu_{0}}, \tag{3}
\end{equation*}
$$

use the ideal MHD equations to find

$$
\begin{equation*}
\frac{d W_{p}}{d t}=\frac{d}{d t} \int_{V_{p}} d^{3} \mathbf{r} w_{p}=\int_{V_{p}} d^{3} \mathbf{r} \frac{\partial w_{p}}{\partial t}+\int_{S_{p}} d^{2} \mathbf{r} \hat{\mathbf{n}}_{p} \cdot \mathbf{u}_{p} w_{p} \tag{4}
\end{equation*}
$$

First compute $\partial w_{p} / \partial t$:

$$
\begin{equation*}
\frac{\partial w_{p}}{\partial t}=\frac{\partial}{\partial t}\left[\frac{1}{2} \rho v^{2}+\frac{B^{2}}{2 \mu_{0}}\right]=\frac{1}{2} v^{2} \frac{\partial \rho}{\partial t}+\rho \mathbf{v} \cdot \frac{\partial \mathbf{v}}{\partial t}+\frac{1}{\mu_{0}} \mathbf{B} \cdot \frac{\partial \mathbf{B}}{\partial t} \tag{5}
\end{equation*}
$$

Subsitute for $\partial \rho / \partial t$ according to the continuity equation, which is given by

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{v})=0 \tag{6}
\end{equation*}
$$

Also substitute for $\partial \mathbf{B} / \partial t$ using Faraday's Law

$$
\begin{equation*}
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \tag{7}
\end{equation*}
$$

and for $\partial \mathbf{v} / \partial t$ using the momentum equation with $p=0$:

$$
\begin{equation*}
\rho \frac{d \mathbf{v}}{d t}=\rho\left[\frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \cdot \nabla) \mathbf{v}\right]=\mathbf{J} \times \mathbf{B} . \tag{8}
\end{equation*}
$$

Now $\partial w_{p} / \partial t$ is given by

$$
\begin{equation*}
\frac{\partial w_{p}}{\partial t}=-\frac{1}{2} v^{2} \nabla \cdot(\rho \mathbf{v})+\rho \mathbf{v} \cdot\left[\frac{\mathbf{J} \times \mathbf{B}}{\rho}-(\mathbf{v} \cdot \nabla) \mathbf{v}\right]-\frac{1}{\mu_{0}} \mathbf{B} \cdot(\nabla \times \mathbf{E}) . \tag{9}
\end{equation*}
$$

Noting that

$$
\begin{align*}
\nabla \cdot\left(\rho v^{2} \mathbf{v}\right) & =v^{2} \nabla \cdot(\rho \mathbf{v})+\rho \mathbf{v} \cdot \nabla v^{2} \\
(\mathbf{v} \cdot \nabla) \mathbf{v} & =\frac{1}{2} \nabla v^{2}-\mathbf{v} \times(\nabla \times \mathbf{v}) \tag{10}
\end{align*}
$$

Equation 9 becomes

$$
\begin{equation*}
\frac{\partial w_{p}}{\partial t}=-\frac{1}{2} \nabla \cdot\left(\rho v^{2} \mathbf{v}\right)+\frac{1}{2} \rho \mathbf{y} \cdot \nabla v^{2}+\mathbf{v} \cdot(\mathbf{J} \times \mathbf{B})-\frac{1}{2} \rho \mathbf{v} \cdot \nabla v^{2}+\rho \mathbf{v} \cdot[\mathbf{v} \times(\nabla \times \mathbf{v})]-\frac{1}{\mu_{0}} \mathbf{B} \cdot(\nabla \times \mathbf{E}) . \tag{11}
\end{equation*}
$$

Rearranging the $\mathbf{J} \times \mathbf{B}$ term and substituting for \mathbf{J} from Ampère's Law $\left(\nabla \times \mathbf{B}=\mu_{0} \mathbf{J}\right)$ gives

$$
\begin{equation*}
\mathbf{v} \cdot(\mathbf{J} \times \mathbf{B})=-(\mathbf{v} \times \mathbf{B}) \cdot \mathbf{J}=-\frac{1}{\mu_{0}}(\mathbf{v} \times \mathbf{B}) \cdot(\nabla \times \mathbf{B})=\frac{1}{\mu_{0}} \mathbf{E} \cdot(\nabla \times \mathbf{B}) \tag{12}
\end{equation*}
$$

where the final expression is obtained by substituting for $\mathbf{v} \times \mathbf{B}$ from Ohm's Law $(\mathbf{E}+\mathbf{v} \times \mathbf{B}=0)$. Plugging this expression back into Equation 11 gives

$$
\begin{equation*}
\frac{\partial w_{p}}{\partial t}=-\frac{1}{2} \nabla \cdot\left(\rho v^{2} \mathbf{v}\right)+\frac{1}{\mu_{0}}[\mathbf{E} \cdot(\nabla \times \mathbf{B})-\mathbf{B} \cdot(\nabla \times \mathbf{E})] \tag{13}
\end{equation*}
$$

Noting that

$$
\begin{equation*}
\mathbf{E} \cdot(\nabla \times \mathbf{B})-\mathbf{B} \cdot(\nabla \times \mathbf{E})=-\nabla \cdot(\mathbf{E} \times \mathbf{B}) \tag{14}
\end{equation*}
$$

gives the final expression for $\partial w_{p} / \partial t$ to be

$$
\begin{equation*}
\frac{\partial w_{p}}{\partial t}=-\frac{1}{2} \nabla \cdot\left(\rho v^{2} \mathbf{v}\right)-\frac{1}{\mu_{0}} \nabla \cdot(\mathbf{E} \times \mathbf{B})=\nabla \cdot\left[-\frac{1}{2} \rho v^{2} \mathbf{v}-\frac{1}{\mu_{0}} \mathbf{E} \times \mathbf{B}\right] . \tag{15}
\end{equation*}
$$

Substituting the above expression and w_{p} from Equation 3 into Equation 4 gives

$$
\begin{equation*}
\frac{d W_{p}}{d t}=\int_{V_{p}} d^{3} \mathbf{r} \nabla \cdot\left[-\frac{1}{2} \rho v^{2} \mathbf{v}-\frac{1}{\mu_{0}} \mathbf{E} \times \mathbf{B}\right]+\int_{S_{p}} d^{2} \mathbf{r} \hat{\mathbf{n}}_{p} \cdot \mathbf{u}_{p}\left[\frac{1}{2} \rho v^{2}+\frac{B^{2}}{2 \mu_{0}}\right] \tag{16}
\end{equation*}
$$

Using the Divergence Theorem to convert the volume integral over V_{p} to a surface integral over S_{p} and asserting that the velocity of S_{p} is the plasma fluid velocity at the surface such that $\mathbf{u}_{p}=\mathbf{v}$, the above equation can be rewritten as

$$
\begin{equation*}
\frac{d W_{p}}{d t}=\int_{S_{p}} d^{2} \mathbf{r} \hat{\mathbf{n}}_{p} \cdot\left[-\frac{1}{2} \rho v^{2} \mathbf{v}-\frac{1}{\mu_{0}} \mathbf{E} \times \mathbf{B}+\frac{1}{2} \rho v^{2} \mathbf{v}+\mathbf{v} \frac{B^{2}}{2 \mu_{0}}\right], \tag{17}
\end{equation*}
$$

which gives the final rate of change for the total MHD energy to be

$$
\begin{equation*}
\frac{d W_{p}}{d t}=\int_{S_{p}} d^{2} \mathbf{r} \hat{\mathbf{n}}_{p} \cdot\left[-\frac{1}{\mu_{0}} \mathbf{E} \times \mathbf{B}+\mathbf{v} \frac{B^{2}}{2 \mu_{0}}\right] \tag{18}
\end{equation*}
$$

Part (b)

Now consider the vacuum energy density, which is given by

$$
\begin{equation*}
w_{v}=\frac{B^{2}}{2 \mu_{0}} . \tag{19}
\end{equation*}
$$

Again look for the rate of change of the total energy of the form

$$
\begin{equation*}
\frac{d W_{v}}{d t}=\frac{d}{d t} \int_{V_{v}} d^{3} \mathbf{r} w_{v}=\int_{V_{v}} d^{3} \mathbf{r} \frac{\partial w_{v}}{\partial t}+\int_{S_{v}} d^{2} \mathbf{r} \hat{\mathbf{n}}_{v} \cdot \mathbf{u}_{v} w_{v} \tag{20}
\end{equation*}
$$

where the vacuum volume V_{v} is the volume between the plasma and the conducting wall. As before, compute $\partial w_{v} / \partial t$:

$$
\begin{equation*}
\frac{\partial w_{v}}{\partial t}=\frac{\partial}{\partial t}\left[\frac{B^{2}}{2 \mu_{0}}\right]=\frac{1}{\mu_{0}} \mathbf{B} \cdot \frac{\partial \mathbf{B}}{\partial t} \tag{21}
\end{equation*}
$$

Substituting from Faraday's Law (Equation 7) and from the vector identity in Equation 14, the above expression for $\partial w_{v} / \partial t$ can be rewritten as

$$
\begin{equation*}
\frac{\partial w_{v}}{\partial t}=-\frac{1}{\mu_{0}} \mathbf{B} \cdot(\nabla \times \mathbf{E})=-\frac{1}{\mu_{0}}\left[\nabla \cdot(\mathbf{E} \times \mathbf{B})+\underline{\mathbf{E} \cdot(\nabla \times \mathbf{B})]=-\nabla \cdot\left[\frac{1}{\mu_{0}} \mathbf{E} \times \mathbf{B}\right] ~}\right. \tag{22}
\end{equation*}
$$

The $\nabla \times \mathbf{B}$ term can be cancelled because $\mathbf{J}=0$ in the vacuum region such that Ampère's Law becomes $\nabla \times \mathbf{B}=0$. Inserting the above expression into Equation 20 along with w_{v} from Equation 19 gives

$$
\begin{equation*}
\frac{d W_{v}}{d t}=\int_{V_{v}} d^{3} \mathbf{r} \nabla \cdot\left[-\frac{1}{\mu_{0}} \mathbf{E} \times \mathbf{B}\right]+\int_{S_{v}} d^{2} \mathbf{r} \hat{\mathbf{n}}_{v} \cdot \mathbf{u}_{v}\left[\frac{B^{2}}{2 \mu_{0}}\right] \tag{23}
\end{equation*}
$$

Again converting the volume integral using the Divergence theorem gives the final expression for the rate of change of the total vacuum energy to be

$$
\begin{equation*}
\frac{d W_{v}}{d t}=\int_{S_{v}} d^{2} \mathbf{r} \hat{\mathbf{n}}_{v} \cdot\left[-\frac{1}{\mu_{0}} \mathbf{E} \times \mathbf{B}+\mathbf{u}_{v} \frac{B^{2}}{2 \mu_{0}}\right] \tag{24}
\end{equation*}
$$

Part (c)

The jump conditions at the plasma-vacuum interface are that

$$
\mathbf{u}_{p}=\mathbf{v} \text { and } \mathbf{J}= \begin{cases}\mathbf{J}, & \text { inside } \tag{25}\\ 0, & \text { outside } .\end{cases}
$$

It is very possible that more stringent jump conditions are required if the surface current of the plasma on the boundary surface S_{p} is considered. Is this extra consideration necessary to obtain a complete solution to the problem?

The rate of change of the total energy is given by

$$
\begin{equation*}
\frac{d W}{d t}=\frac{d W_{p}}{d t}+\frac{d W_{v}}{d t} . \tag{26}
\end{equation*}
$$

To relate $d W_{v} / d t$ to $d W_{p} / d t$, examine the structure vacuum bounding surface S_{v}. This bounding surface has two distinct parts: the inner surface, which is defined by the plasma boundary S_{p}, and
the outer surface, which is defined by the conductor boundary S_{c}. Because the unit normal to the inner surface points out of the vacuum volume and into the plasma, it is given by $\mathbf{n}_{v}=-\mathbf{n}_{p}$ on the surface S_{p}. Likewise, the unit normal to the outer surface points out of the vacuum volume and into the conductor, so $\mathbf{n}_{v}=-\mathbf{n}_{c}$ on the surface S_{c}. Rewriting $d W_{v} / d t$ from Equation 24 in terms of separate integrations over S_{p} and S_{c} gives

$$
\begin{equation*}
\frac{d W_{v}}{d t}=-\int_{S_{p}} d^{2} \mathbf{r} \hat{\mathbf{n}}_{p} \cdot\left[-\frac{1}{\mu_{0}} \mathbf{E} \times \mathbf{B}+\mathbf{u}_{p} \frac{B^{2}}{2 \mu_{0}}\right]-\int_{S_{c}} d^{2} \mathbf{r} \hat{\mathbf{n}}_{c} \cdot\left[-\frac{1}{\mu_{0}} \mathbf{E} \times \mathbf{B}+\mathbf{u}_{c} \frac{B^{2}}{2 \mu_{0}}\right] \tag{27}
\end{equation*}
$$

The boundary conditions at the conducting wall are

$$
\begin{equation*}
\mathbf{u}_{c}=0 \text { and } \mathbf{E} \| \hat{\mathbf{n}}_{c} . \tag{28}
\end{equation*}
$$

The first condition is valid because the conductor is a fixed object, and the second is a physical consequence of the perfect conductivity of the wall. With $\mathbf{E} \| \hat{\mathbf{n}}_{c}$, the first term of the S_{c} integration will vanish because $\hat{\mathbf{n}}_{c} \cdot(\mathbf{E} \times \mathbf{B})=0$, and with $\mathbf{u}_{c}=0$, the second term vanishes as well. Consequently, the contribution of the integration over S_{c} vanishes entirely. This leaves

$$
\begin{equation*}
\frac{d W_{v}}{d t}=-\int_{S_{p}} d^{2} \mathbf{r} \hat{\mathbf{n}}_{p} \cdot\left[-\frac{1}{\mu_{0}} \mathbf{E} \times \mathbf{B}+\mathbf{v} \frac{B^{2}}{2 \mu_{0}}\right] \tag{29}
\end{equation*}
$$

Substituting Equations 18 and 29 into Equation 26 gives

$$
\begin{equation*}
\frac{d W}{d t}=\int_{S_{p}} d^{2} \mathbf{r} \hat{\mathbf{n}}_{p} \cdot\left[-\frac{1}{\mu_{0}} \mathbf{E} \times \mathbf{B}+\mathbf{v} \frac{B^{2}}{2 \mu_{0}}\right]-\int_{S_{p}} d^{2} \mathbf{r} \hat{\mathbf{n}}_{p} \cdot\left[-\frac{1}{\mu_{0}} \mathbf{E} \times \mathbf{B}+\mathbf{v} \frac{B^{2}}{2 \mu_{0}}\right]=0 \tag{30}
\end{equation*}
$$

With $d W / d t=0$, the total energy in the system is conserved.

Part (d)

Defining the respective electromagnetic field energy densities to be

$$
\begin{equation*}
w_{E} \equiv \frac{\epsilon_{0} E^{2}}{2} \text { and } w_{B} \equiv \frac{B^{2}}{2 \mu_{0}}, \tag{31}
\end{equation*}
$$

the ratio of the two densities will be

$$
\begin{equation*}
\frac{w_{E}}{w_{B}}=\epsilon_{0} \mu_{0} \frac{E^{2}}{B^{2}}=\frac{1}{c^{2}} \frac{E^{2}}{B^{2}} \tag{32}
\end{equation*}
$$

According to Ohm's Law, $\mathbf{E}=-\mathbf{v} \times \mathbf{B}$ such that

$$
\begin{equation*}
E^{2}=(\mathbf{v} \times \mathbf{B}) \cdot(\mathbf{v} \times \mathbf{B})=v^{2} B^{2}-(\mathbf{v} \cdot \mathbf{B})^{2} . \tag{33}
\end{equation*}
$$

This expression is at a maximum when $\mathbf{v} \perp \mathbf{B}$ such that

$$
\begin{equation*}
\left(E^{2}\right)_{\max }=v^{2} B^{2} . \tag{34}
\end{equation*}
$$

Thus, the maximum ratio of electromagnetic field energies will be

$$
\begin{equation*}
\left(\frac{w_{E}}{w_{B}}\right)_{\max }=\frac{1}{c^{2}} \frac{v^{2} B^{2}}{B^{2}}=\frac{v^{2}}{c^{2}} \tag{35}
\end{equation*}
$$

Because velocities in ideal MHD are assumed to be non-relativistic, $v \ll c$ and

$$
\begin{equation*}
\left(\frac{w_{E}}{w_{B}}\right)_{\max } \ll 1, \tag{36}
\end{equation*}
$$

so the electric field energy density w_{E} is negligible compared to the magnetic field energy density w_{B}. It therefore can be neglected in the expression for w_{p} given in Equation 3.

