
Generals Exam 2005, Part II, Problem 1
MHD Energy Conservation

Clayton Myers – 25 March 2009

The following identity is given at the beginning of the problem and is used throughout the calcu-
lation. For a scalar function f(r, t) , define

F (t) ≡
∫

V
d3r f(r, t), (1)

where V denotes the volume of integration. Then

dF

dt
=

∫
V

d3r
∂f

∂t
+

∫
S

d2r n̂ · u f, (2)

where S is the bouding surface of V , n̂ is the unit normal vector of this surface pointing outward,
and u is the local velocity of the boundary.

Part (a)

With the MHD energy density given by

wp =
1
2
ρv2 +

B2

2μ0
, (3)

use the ideal MHD equations to find

dWp

dt
=

d

dt

∫
Vp

d3rwp =
∫

Vp

d3r
∂wp

∂t
+

∫
Sp

d2r n̂p · up wp, (4)

First compute ∂wp/∂t:

∂wp

∂t
=

∂

∂t

[
1
2
ρv2 +

B2

2μ0

]
=

1
2
v2 ∂ρ

∂t
+ ρv · ∂v

∂t
+

1
μ0

B · ∂B
∂t

(5)

Subsitute for ∂ρ/∂t according to the continuity equation, which is given by

∂ρ

∂t
+ ∇ · (ρv) = 0. (6)

Also substitute for ∂B/∂t using Faraday’s Law

∇× E = −∂B
∂t

(7)

and for ∂v/∂t using the momentum equation with p = 0:

ρ
dv
dt

= ρ

[
∂v
∂t

+ (v · ∇)v
]

= J ×B. (8)

Now ∂wp/∂t is given by

∂wp

∂t
= −1

2
v2∇ · (ρv) + ρv ·

[
J× B

ρ
− (v · ∇)v

]
− 1

μ0
B · (∇×E) . (9)
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Noting that
∇ · (ρv2v) = v2∇ · (ρv) + ρv · ∇v2

(v · ∇)v = 1
2∇v2 − v × (∇× v),

(10)

Equation 9 becomes

∂wp

∂t
= −1

2
∇·(ρv2v)+

�����1
2
ρv · ∇v2+v·(J×B)−

�����1
2
ρv · ∇v2+

����������
ρv ·

[
v × (∇× v)

]
− 1

μ0
B·(∇×E) . (11)

Rearranging the J × B term and substituting for J from Ampère’s Law (∇× B = μ0J) gives

v · (J × B) = −(v × B) · J = − 1
μ0

(v × B) · (∇× B) =
1
μ0

E · (∇× B), (12)

where the final expression is obtained by substituting for v×B from Ohm’s Law (E + v×B = 0).
Plugging this expression back into Equation 11 gives

∂wp

∂t
= −1

2
∇ · (ρv2v) +

1
μ0

[
E · (∇× B) − B · (∇× E)

]
. (13)

Noting that
E · (∇× B) −B · (∇× E) = −∇ · (E × B) (14)

gives the final expression for ∂wp/∂t to be

∂wp

∂t
= −1

2
∇ · (ρv2v) − 1

μ0
∇ · (E × B) = ∇ ·

[
−1

2
ρv2v − 1

μ0
E× B

]
. (15)

Substituting the above expression and wp from Equation 3 into Equation 4 gives

dWp

dt
=

∫
Vp

d3r∇ ·
[
−1

2
ρv2v − 1

μ0
E × B

]
+

∫
Sp

d2r n̂p · up

[
1
2
ρv2 +

B2

2μ0

]
(16)

Using the Divergence Theorem to convert the volume integral over Vp to a surface integral over Sp

and asserting that the velocity of Sp is the plasma fluid velocity at the surface such that up = v,
the above equation can be rewritten as

dWp

dt
=

∫
Sp

d2r n̂p ·
[
−

�
�

��1
2
ρv2v − 1

μ0
E × B +

�
�

��1
2
ρv2v + v

B2

2μ0

]
, (17)

which gives the final rate of change for the total MHD energy to be

dWp

dt
=

∫
Sp

d2r n̂p ·
[
− 1

μ0
E × B + v

B2

2μ0

]
(18)
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Part (b)

Now consider the vacuum energy density, which is given by

wv =
B2

2μ0
. (19)

Again look for the rate of change of the total energy of the form

dWv

dt
=

d

dt

∫
Vv

d3rwv =
∫

Vv

d3r
∂wv

∂t
+

∫
Sv

d2r n̂v · uv wv, (20)

where the vacuum volume Vv is the volume between the plasma and the conducting wall. As before,
compute ∂wv/∂t:

∂wv

∂t
=

∂

∂t

[
B2

2μ0

]
=

1
μ0

B · ∂B
∂t

(21)

Substituting from Faraday’s Law (Equation 7) and from the vector identity in Equation 14, the
above expression for ∂wv/∂t can be rewritten as

∂wv

∂t
= − 1

μ0
B · (∇× E) = − 1

μ0

[
∇ · (E × B) +������E · (∇× B)

]
= −∇ ·

[
1
μ0

E × B
]
. (22)

The ∇ × B term can be cancelled because J = 0 in the vacuum region such that Ampère’s Law
becomes ∇×B = 0. Inserting the above expression into Equation 20 along with wv from Equation
19 gives

dWv

dt
=

∫
Vv

d3r∇ ·
[
− 1

μ0
E × B

]
+

∫
Sv

d2r n̂v · uv

[
B2

2μ0

]
(23)

Again converting the volume integral using the Divergence theorem gives the final expression for
the rate of change of the total vacuum energy to be

dWv

dt
=

∫
Sv

d2r n̂v ·
[
− 1

μ0
E× B + uv

B2

2μ0

]
(24)

Part (c)

The jump conditions at the plasma-vacuum interface are that

up = v and J =

{
J, inside
0, outside.

(25)

It is very possible that more stringent jump conditions are required if the surface current of the
plasma on the boundary surface Sp is considered. Is this extra consideration necessary to obtain a
complete solution to the problem?

The rate of change of the total energy is given by

dW

dt
=

dWp

dt
+

dWv

dt
. (26)

To relate dWv/dt to dWp/dt, examine the structure vacuum bounding surface Sv. This bounding
surface has two distinct parts: the inner surface, which is defined by the plasma boundary Sp, and
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the outer surface, which is defined by the conductor boundary Sc. Because the unit normal to the
inner surface points out of the vacuum volume and into the plasma, it is given by nv = −np on the
surface Sp. Likewise, the unit normal to the outer surface points out of the vacuum volume and
into the conductor, so nv = −nc on the surface Sc. Rewriting dWv/dt from Equation 24 in terms
of separate integrations over Sp and Sc gives

dWv

dt
= −

∫
Sp

d2r n̂p ·
[
− 1

μ0
E × B + up

B2

2μ0

]
−

∫
Sc

d2r n̂c ·
[
− 1

μ0
E × B + uc

B2

2μ0

]
(27)

The boundary conditions at the conducting wall are

uc = 0 and E ‖ n̂c. (28)

The first condition is valid because the conductor is a fixed object, and the second is a physical
consequence of the perfect conductivity of the wall. With E ‖ n̂c, the first term of the Sc integration
will vanish because n̂c·(E×B) = 0, and with uc = 0, the second term vanishes as well. Consequently,
the contribution of the integration over Sc vanishes entirely. This leaves

dWv

dt
= −

∫
Sp

d2r n̂p ·
[
− 1

μ0
E ×B + v

B2

2μ0

]
(29)

Substituting Equations 18 and 29 into Equation 26 gives

dW

dt
=

�����������������∫
Sp

d2r n̂p ·
[
− 1

μ0
E ×B + v

B2

2μ0

]
−

�����������������∫
Sp

d2r n̂p ·
[
− 1

μ0
E × B + v

B2

2μ0

]
= 0 (30)

With dW/dt = 0, the total energy in the system is conserved.

Part (d)

Defining the respective electromagnetic field energy densities to be

wE ≡ ε0E
2

2
and wB ≡ B2

2μ0
, (31)

the ratio of the two densities will be
wE

wB
= ε0μ0

E2

B2
=

1
c2

E2

B2
(32)

According to Ohm’s Law, E = −v × B such that

E2 = (v × B) · (v × B) = v2B2 − (v · B)2. (33)

This expression is at a maximum when v ⊥ B such that(
E2

)
max

= v2B2. (34)

Thus, the maximum ratio of electromagnetic field energies will be(
wE

wB

)
max

=
1
c2

v2��B2

��B2
=

v2

c2
(35)

Because velocities in ideal MHD are assumed to be non-relativistic, v � c and(
wE

wB

)
max

� 1, (36)

so the electric field energy density wE is negligible compared to the magnetic field energy density
wB . It therefore can be neglected in the expression for wp given in Equation 3.
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