Generals Exam 2005, Part II, Problem 1
MHD Energy Conservation
Clayton Myers — 25 March 2009

The following identity is given at the beginning of the problem and is used throughout the calcu-
lation. For a scalar function f(r,t) , define
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where V' denotes the volume of integration. Then
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where S is the bouding surface of V, i1 is the unit normal vector of this surface pointing outward,
and u is the local velocity of the boundary.

Part (a)

With the MHD energy density given by
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use the ideal MHD equations to find
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First compute dw,/0t:
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Subsitute for dp/0t according to the continuity equation, which is given by

dp
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Also substitute for 0B /0t using Faraday’s Law
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and for 0v/0t using the momentum equation with p = 0:
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Now Ow,,/0t is given by
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Noting that
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Equation 9 becomes
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Rearranging the J x B term and substituting for J from Ampere’s Law (V x B = ppJ) gives

V- xB)=—(vxB)-J= - (vxB) (VxB) = —E-(V x B), (12)
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where the final expression is obtained by substituting for v x B from Ohm’s Law (E+v x B = 0).
Plugging this expression back into Equation 11 gives
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Noting that
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gives the final expression for dw, /0t to be
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Substituting the above expression and w),, from Equation 3 into Equation 4 gives
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Using the Divergence Theorem to convert the volume integral over V), to a surface integral over S,
and asserting that the velocity of S, is the plasma fluid velocity at the surface such that u, = v,
the above equation can be rewritten as
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which gives the final rate of change for the total MHD energy to be
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Part (b)

Now consider the vacuum energy density, which is given by
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Again look for the rate of change of the total energy of the form
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where the vacuum volume V,, is the volume between the plasma and the conducting wall. As before,
compute Jw, /0t:
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Substituting from Faraday’s Law (Equation 7) and from the vector identity in Equation 14, the
above expression for dw, /0t can be rewritten as
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The V x B term can be cancelled because J = 0 in the vacuum region such that Ampere’s Law
becomes V x B = 0. Inserting the above expression into Equation 20 along with w, from Equation
19 gives

2
Wo _ [ pry. {——E X B] / &ri, - u, B— (23)
dt Vo 2410

Again converting the volume integral using the Divergence theorem gives the final expression for
the rate of change of the total vacuum energy to be
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Part (c)

The jump conditions at the plasma-vacuum interface are that
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It is very possible that more stringent jump conditions are required if the surface current of the
plasma on the boundary surface S}, is considered. Is this extra consideration necessary to obtain a
complete solution to the problem?

The rate of change of the total energy is given by
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To relate dW, /dt to dW),/dt, examine the structure vacuum bounding surface S,. This bounding
surface has two distinct parts: the inner surface, which is defined by the plasma boundary S,,, and



the outer surface, which is defined by the conductor boundary S.. Because the unit normal to the

inner surface points out of the vacuum volume and into the plasma, it is given by n, = —n,, on the
surface S),. Likewise, the unit normal to the outer surface points out of the vacuum volume and
into the conductor, so n, = —n. on the surface S.. Rewriting dW, /dt from Equation 24 in terms
of separate integrations over S, and S, gives
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The boundary conditions at the conducting wall are
u. =0 and E | f.. (28)

The first condition is valid because the conductor is a fixed object, and the second is a physical
consequence of the perfect conductivity of the wall. With E || fi., the first term of the S, integration
will vanish because fi.-(ExB) = 0, and with u. = 0, the second term vanishes as well. Consequently,
the contribution of the integration over S, vanishes entirely. This leaves
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Substituting Equations 18 and 29 into Equation 26 gives
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With dW/dt = 0, the total energy in the system is conserved.

Part (d)
Defining the respective electromagnetic field energy densities to be
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the ratio of the two densities will be
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According to Ohm’s Law, E = —v x B such that
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This expression is at a maximum when v L B such that
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Thus, the maximum ratio of electromagnetic field energies will be
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Because velocities in ideal MHD are assumed to be non-relativistic, v < ¢ and
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so the electric field energy density wg is negligible compared to the magnetic field energy density
wpg. It therefore can be neglected in the expression for w, given in Equation 3.



