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a) Linearize the cold electron fluid equations:

∂ñ

∂t
+∇ · (n0ṽ) = 0 (1)

men0
∂ṽ

∂t
= −e ~E (2)

∇ · ~E = −eñ
ε0

(3)

Linearize using ∂t → −iω, ∇ → ik, eliminate E, ñ, ṽ to get ω2 = n0e
ε0me

= ω2
pe.

b)Using Poisson’s equation from above:

∇ · ~E(t = 0) = −E0ksin(kx) = −eñ
ε0

(4)

from which ñ(t = 0) and ṽ(t = 0) = ω
kn0

ñ(t = 0) follow directly.

c) If the wave is not completely extinguished, it has completely flattened the
distribution function for some width ∆v around v = ω/k. See the very well-
graph graph below. d) Electrons with velocities between ω

k −∆v are accelerated,
and those with velocities ω

k − ∆v are decelerated. We can approximate the
number of accelerated particles Na ≈ ∆vf0(ωk −∆v) and similarly the number
of decelerated particles Nd ≈ ∆vf0(ωk + ∆v). Since we are out on the tail of the
distribution function, we can Taylor expand:
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So the net number of accelerated electrons is:

N = Na −Nd ≈ (∆v)2
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The average energy gained by one of these electrons:
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Figure 1: Note that the flattening should really be farther out on the tail in this
case, but the idea is the same.

Now we look at the (linearized approximation of) the maximum energy the
~E field could transfer to an electron:

W =

∫
~F · dl ≈ eE0

k
(8)

Within a factor of unity, Egained and W are equal, so we equate them to

get a value for ∆v =
√
eE0/mk = vtr. Thus, vtr corresponds to the maximum

velocity of an electron that could remained trapped in the potential well of this
standing wave.

For E(x, t→∞) to remain finite despite Landau damping, we require that
the total energy of the wave is greater than the energy spent flattening the
distribution function:

ε0|E0|2 > N × Egained = me(∆v)3
ωp
k
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where we noted that ω ≈ ωp. Rearranging and using ∆v = vtr we obtain

vtr >
ω3
p

k3
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as desired.
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