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1 Trapping condition

Setting the mass of the particle to 1, we can state the trapping condition as
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Recall B = B0 (1− ε cos θ), with ε = r/R. The trapped-passing boundary is
found by setting Bref = Bmax = B(θ = π) = B0 (1 + ε). So
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or ∣∣∣∣ v‖v⊥
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θ=0

≈ ε1/2. (3)

2 Banana Orbit Width

The first method to find the banana orbit width utilizes the conservation of
angular momentum. First note that the function ψ = −RAφ is proportional
to the poloidal flux function. From Diagnostics we found that ∇ψ = RBP ψ̂,
where BP = ∇×Aφ. The conserved momentum is

Pφ = mRvφ + eRAφ = mRvφ − eψ. (4)

This form is written in cylindrical coordinates. The calculations below will be
done in toroidal coordinates, where R = R0 + r cos θ. At the turning point
(r, θ) = (r, θt), we have

Pφ = −eψ(r). (5)

At the midplane (r, θ) = (r + Λ, 0), we have

Pφ = m(R0 + r + Λ)vφ − eψ(r + Λ). (6)
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But note that

ψ(r + Λ) ≈ ψ(r) + Λr̂ · ∇ψ = ψ(r) + Λ(R0 + r)BP . (7)

Setting Eqs. 5 and 6 equal to one another and utilizing Eq. 7, we find:

����−eψ(r) ≈ m(R0 + r + Λ)vφ −���eψ(r)− eΛ(R0 + r)BP .

Thus we find
Λ ≈ mvφ

eBP
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. (8)

Now recall that
q = ε

BT
BP

,

and |vφ| ≈
∣∣v‖∣∣ ≈ |v⊥| ε1/2 ≈ vthε1/2, so Eq. 8 becomes

Λ ≈ mvthε
1/2q

eεBT
= ρqε−1/2, (9)

where ρ is the thermal gyroradius of the corresponding species.
The other method for calculating Λ requires first calculating the bounce

frequency. Note that for a trapped particle, the bounce period is given by:
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where ds = R0qdθ is the differential distance traversed along a field line over
the interval dθ, E is the particle energy, λ = µB0/E, and

∣∣v‖(θ)∣∣ is calculated
according to:
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We can once again use our approximation
∣∣v‖∣∣ ≈ vthε1/2, and finally we have
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,
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Additionally, we need to know the approximate radial grad-B drift velocity,
which is given by:
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Thus, we can find how Λ scales by combining Eqs. 11 and 12:
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∼ ρvth
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vthε1/2
∼ ρqε−1/2. (13)
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3 Pfirsch-Schluter (i.e. plateau regime) Diffu-
sion

Classical diffusion in a toroidal device increases substantially even in the short
mean-free-path limit. In this case we say that:

DP−S ∼
(∆xP−S)2

∆t‖
= ((vd)r)

2 ∆t‖, (14)

where ∆xP−S = (vd)r ∆t‖, and ∆t‖ is the parallel diffusion time. We already
calculated (vd)r in Eq. 12 above, so all that remains is the calculation of ∆t‖.
Now, note that parallel diffusion scales like:
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If we say that ∆x‖ ∼ R0q, i.e. that it scales like the length of a field line around
the torus, then we determine that
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2
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Combining the results of Eqs. 12 and 16, we find that
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4 Banana Diffusion

The determination of the banana diffusion coefficient is simple. First, we note
that in the strongly-trapped regime the effective collision frequency νeff goes
like ν90◦

ei /ε. Additionally, the flux-surface-averaged trapped-particle fraction
〈fT 〉 ∼ ε1/2, owing to our determination that the slope of the trapped-passing
boundary in v⊥-v‖ space scales like ε1/2. If we look at a fixed-energy shell in
three-dimensional v-space, with two perpendicular directions and one parallel
direction, and assume we have an isotropic distribution, we find that of the 4π of
solid angle subtending the shell, a fraction scaling like ε1/2 subtends the portion
of the shell corresponding to trapped particles.

With this information, we find the simple result that

Dban ∼ 〈fT 〉Λ2νeff ∼ ν90◦

ei ρ2q2ε−3/2. (18)

5 Ware Pinch

The presence of a parallel electric field E‖ shifts the turning points of a banana
orbit by an angle ∆θ ≈ ∆v‖/v‖, where we continue to approximate v‖ ≈ vthε1/2.
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∆v‖ is approximately given by
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An effective net radial Ware velocity vW can be approximated as:
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This effective velocity accounts for the asymmetric radial drift near the turning
points and distributes the extra drift over the entire bounce interval, so that
representing the net effect over many bounce intervals yields the same result in
both the discrete and smoothed perspectives. The corresponding particle flux
is given by

(ΓW )r = −〈fT 〉n0vW ∼ −
cE‖

BP
ε1/2n0. (21)

6 Bootstrap Current

This heuristic derivation is somewhat different and more “back of the envelope”
than Martin’s, but one important difference is that it doesn’t require setting
νei = νee. We claim that the bootstrap current jb is given by

jb = ev‖fc−c, (22)

where fc−c is the difference in density between co-moving and counter-moving
passing particles. Essentially, the trapped particles do not carry a signifi-
cant net current because particles on a banana orbit bounce back and forth
at the corresponding bounce frequency ωb; time-averaging the effective current
over an entire bounce interval for any particle will yield a net current of zero.
However, the trapped particles establish a collisional equilibrium with co- and
counter-moving passing particles, which do not suffer the same current-negating
time-averaging fate as the trapped particles, such that the densities of co- and
counter-moving passing particles are proportional to the densities of co- and
counter-moving trapped particles. We estimate

fc−c ∼ Λ
dn

dr
∼ ρqε−1/2 dn

dr
. (23)

In other words, the density difference between co- and counter-moving particles
scales like the variation of the equilibrium density over a banana width. Finally,
we get

jb ∼ evth
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· εBT
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dr
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BP
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. (24)

Note that we used v‖ ∼ vth here and not v‖ ∼ vthε
1/2 because the current is

carried by the passing particles, not the trapped particles. The overwhelming
majority of the passing particles have v‖ much larger than v‖ for the trapped
particles.
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