2008 Part II, Question 3, General Plasma Phenomena

Paul Schmit

March 31, 2009

1 Part a.

An alternate and easy way to determine the kinematic equations for the relativistic particle is to use the relativistic Lagrangian. The relativistic Lagrangian for a classical particle in an electromagnetic field is:

$$
\begin{equation*}
\mathcal{L}=\frac{-m c^{2}}{\gamma}-q \phi(\mathbf{x}, t)+\frac{q}{c} \mathbf{v} \cdot \mathbf{A}(\mathbf{x}, t) \tag{1}
\end{equation*}
$$

where the EM field is represented by the scalar and vector potentials, q is the particle electronic charge, and $\gamma=\sqrt{1+\frac{\mathbf{p}^{2}}{m^{2} c^{2}}}=1 / \sqrt{1-\frac{\mathbf{v}^{2}}{c^{2}}}$ is the standard relativistic mass factor. The equations of motion are calculated using exactly the same Euler-Lagrange equations:

$$
\begin{equation*}
\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}}=\frac{\partial \mathcal{L}}{\partial q_{i}} \tag{2}
\end{equation*}
$$

where the q_{i} are the generalized coordinates for the particle.
From the given form of \mathbf{B} and the vector potential equation $\nabla \times \mathbf{A}=\mathbf{B}$, we can see that

$$
\begin{align*}
\mathbf{B}=\hat{\mathbf{x}}(& \left.-B_{w} \cos k_{w} z\right)+\hat{\mathbf{y}}\left(-B_{w} \sin k_{w} z\right) \\
& =\hat{\mathbf{x}}\left(-\frac{\partial A_{y}}{\partial z}\right)+\hat{\mathbf{y}}\left(\frac{\partial A_{x}}{\partial z}\right) \\
\Rightarrow \mathbf{A} & =\frac{B_{w}}{k_{w}}\left(\hat{\mathbf{x}} \cos k_{w} z+\hat{\mathbf{y}} \sin k_{w} z\right) \tag{3}
\end{align*}
$$

Now that we have the vector potential for the wiggler field, we can immediately write the single particle relativistic Lagrangian using Eqs. 1 and 3:

$$
\begin{equation*}
\mathcal{L}=-m c^{2} \sqrt{1-\frac{v_{x}^{2}+v_{y}^{2}+v_{z}^{2}}{c^{2}}}-\frac{e B_{w}}{c k_{w}}\left(v_{x} \cos k_{w} z+v_{y} \sin k_{w} z\right) \tag{4}
\end{equation*}
$$

Determining the equations for $v_{x}^{\prime}, v_{y}^{\prime}$, and v_{z}^{\prime} is now trivial. For instance, notice that both x and y are cyclic coordinates, i.e. they are not present in
the Lagrangian \mathcal{L}. Thus $\partial \mathcal{L} / \partial x=\partial \mathcal{L} / \partial y=0$, and there are two conserved quantities that will immediately yield v_{x}^{\prime} and v_{y}^{\prime} :

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial v_{x}} & =\text { constant }=\gamma m v_{x}-\frac{e B_{w}}{c k_{w}} \cos k_{w} z \\
\frac{\partial \mathcal{L}}{\partial v_{y}} & =\text { constant }=\gamma m v_{y}-\frac{e B_{w}}{c k_{w}} \sin k_{w} z
\end{aligned}
$$

Our condition that $v_{x}^{\prime}=0=v_{y}^{\prime}$ if $B_{w}=0$ means that we should choose both constants to be zero, and thus we find:

$$
\begin{align*}
v_{x}^{\prime} & =\frac{a_{w} c}{\gamma} \cos k_{w} z^{\prime} \tag{5}\\
v_{y}^{\prime} & =\frac{a_{w} c}{\gamma} \cos k_{w} z^{\prime} \tag{6}
\end{align*}
$$

with

$$
\begin{equation*}
a_{w} \equiv \frac{e B_{w}}{m c^{2} k_{w}} \tag{7}
\end{equation*}
$$

Finally, the full Euler-Lagrange equation for v_{z} gives

$$
\gamma m \dot{v}_{z}=-\frac{e B_{w}}{c}\left(-v_{x} \sin k_{w} z+v_{y} \cos k_{w} z\right)=0
$$

where the use of equations 5 and 6 led to the result that $\dot{v}_{z}=0$, so v_{z}^{\prime} is a constant, implying $z^{\prime}\left(t^{\prime}\right)=z+v_{z}\left(t^{\prime}-t\right)$. We now have equations for all of the relevant velocities in this problem. Inspection of Eqs. 5 and 6 leads to the conclusion that energy, and thus γ^{\prime}, is conserved, but a more formal proof involves taking the time derivative of γ^{\prime} and using the Lorentz force equation:

$$
\begin{equation*}
\frac{\partial \gamma^{\prime}}{\partial t^{\prime}}=\frac{d}{d t^{\prime}}\left(\sqrt{1+\frac{\mathbf{p}^{\prime 2}}{m^{2} c^{2}}}\right)=\frac{1}{\gamma^{\prime}} \frac{\mathbf{p}^{\prime} \cdot \frac{d \mathbf{p}^{\prime}}{d t^{\prime}}}{m^{2} c^{2}}=\frac{\mathbf{v}^{\prime} \cdot\left(\frac{e}{c} \mathbf{v}^{\prime} \times \mathbf{B}\right)}{m c^{2}}=0 \tag{8}
\end{equation*}
$$

