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1 Part a.

An alternate and easy way to determine the kinematic equations for the rela-
tivistic particle is to use the relativistic Lagrangian. The relativistic Lagrangian
for a classical particle in an electromagnetic field is:
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where the EM field is represented by the scalar and vector potentials, ¢ is the
particle electronic charge, and v = /1 + mpT; =1/4/1— ‘C’—; is the standard

relativistic mass factor. The equations of motion are calculated using exactly
the same Euler-Lagrange equations:
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where the ¢; are the generalized coordinates for the particle.
From the given form of B and the vector potential equation V x A = B, we
can see that
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Now that we have the vector potential for the wiggler field, we can immediately
write the single particle relativistic Lagrangian using Eqs. 1 and 3:
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Determining the equations for vj,vy, and v} is now trivial. For instance,

notice that both x and y are cyclic coordinates, i.e. they are not present in



the Lagrangian £. Thus 9L/0x = 0L/Jy = 0, and there are two conserved
quantities that will immediately yield v; and vj:

oL eBy,
—— = constant = ymuv, — —— cos k2,
vy ckqy

eBy,
—— = constant = ymuv, — —— sin k2.
Ovy Ty cky w

Our condition that v;, = 0 = v, if B,, = 0 means that we should choose both
constants to be zero, and thus we find:
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Finally, the full Euler-Lagrange equation for v, gives
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where the use of equations 5 and 6 led to the result that v, = 0, so v, is a
constant, implying 2/(t') = z 4+ v.(t’ —t). We now have equations for all of
the relevant velocities in this problem. Inspection of Eqs. 5 and 6 leads to
the conclusion that energy, and thus 7/, is conserved, but a more formal proof
involves taking the time derivative of 7' and using the Lorentz force equation:
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