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1 Part a.

An alternate and easy way to determine the kinematic equations for the rela-
tivistic particle is to use the relativistic Lagrangian. The relativistic Lagrangian
for a classical particle in an electromagnetic field is:

L =
−mc2

γ
− qφ(x, t) +

q

c
v ·A(x, t), (1)

where the EM field is represented by the scalar and vector potentials, q is the

particle electronic charge, and γ =
√

1 + p2

m2c2 = 1/
√

1− v2

c2 is the standard
relativistic mass factor. The equations of motion are calculated using exactly
the same Euler-Lagrange equations:

d

dt

∂L
∂q̇i

=
∂L
∂qi

, (2)

where the qi are the generalized coordinates for the particle.
From the given form of B and the vector potential equation ∇×A = B, we

can see that

B = x̂ (−Bw cos kwz) + ŷ (−Bw sin kwz)

= x̂
(
−∂Ay

∂z

)
+ ŷ

(
∂Ax

∂z

)
⇒ A =

Bw

kw
(x̂ cos kwz + ŷ sin kwz) . (3)

Now that we have the vector potential for the wiggler field, we can immediately
write the single particle relativistic Lagrangian using Eqs. 1 and 3:

L = −mc2
√

1−
v2

x + v2
y + v2

z

c2
− eBw

ckw
(vx cos kwz + vy sin kwz) (4)

Determining the equations for v′
x,v′

y, and v′
z is now trivial. For instance,

notice that both x and y are cyclic coordinates, i.e. they are not present in
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the Lagrangian L. Thus ∂L/∂x = ∂L/∂y = 0, and there are two conserved
quantities that will immediately yield v′

x and v′
y:

∂L
∂vx

= constant = γmvx −
eBw

ckw
cos kwz,

∂L
∂vy

= constant = γmvy −
eBw

ckw
sin kwz.

Our condition that v′
x = 0 = v′

y if Bw = 0 means that we should choose both
constants to be zero, and thus we find:

v′
x =

awc

γ
cos kwz

′, (5)

v′
y =

awc

γ
cos kwz

′, (6)

with
aw ≡

eBw

mc2kw
. (7)

Finally, the full Euler-Lagrange equation for vz gives

γmv̇z = −eBw

c
(−vx sin kwz + vy cos kwz) = 0,

where the use of equations 5 and 6 led to the result that v̇z = 0, so v′
z is a

constant, implying z′(t′) = z + vz(t′ − t). We now have equations for all of
the relevant velocities in this problem. Inspection of Eqs. 5 and 6 leads to
the conclusion that energy, and thus γ′, is conserved, but a more formal proof
involves taking the time derivative of γ′ and using the Lorentz force equation:

∂γ′

∂t′
=

d

dt′

(√
1 +

p′2

m2c2

)
=

1
γ′

p′ · dp′

dt′

m2c2
=

v′ ·
(

e
cv

′ ×B
)

mc2
= 0. (8)
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