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Abstract: New results elucidating FRC equilibrium and stability are reported.  Both prolate and oblate 
configurations are considered.  For prolate FRC’s, macrostability is calculated incuding effects beyond static 
MHD.  Hall MHD gives a stability condition similar to an empirically-based limit.  At finite Ti, gyroviscosity 
and resonant ion effects are included.  Full 3D kinetic-ion calculations show resonant ion destabilization and 
nonlinear saturation via wave-particle trapping.  Advances in two-fluid equilibrium with flow are reported.  A 
Fourier-Beltrami state with two modes has approximate equipartition between flow and magnetic energy, and 
may explain experimentally observed features.  Effects of mirror-trapped electrons near the field line ends is 
considered in both collisional and collisionless regimes, and found to reduce growth rates significantly for 
elongation of 5 or greater.  Oblate FRC’s are shown to be interchange stable for moderate separatrix pressure 
and to be accessible to formation by spheromak merging.  The interchange stability condition for doublet shaped 
FRC’s is also reported. 
 
1. Introduction and Motivation 
 
The FRC (Field-Reversed Configuration) [1] is a poloidal-only B, high-β compact torus.  
Typical FRC’s are very elongated, and macroscopic stability is inferred experimentally.  For 
usual parameters, macroscopic modes are not observed in static situations.  Even when large 
deformations are produced in a dynamic situation (e.g. during translation) the axisymmetric 
state is restored.  It seems that plasma instabilities, if present at all, are associated with 
observed enhanced transport.  Further, some observations [2] suggest that the FRC state is a 
preferred state realized by relaxation from a range of initial states. 
 
A zero gyroradius FRC is subject to virulent MHD instabilities, with growth on the axial 
transit time.  If these modes were operative, confinement would scale with τA = zs/vA, where zs 
is the ½ length of the (separatrix of the) configuration and vA is the Alfven speed computed 
with peak Bm and peak nm.  In contrast, it is observed that τE ~ C R2/ρi [3], where R = rs/√2 is 
the major radius (rs is the maximum separatrix radius), and ρi is the ion gyroradius, again 
using Bm, greatly exceeding the τA scaling.  Thus, MHD modes are stabilized in the 
experimental regime, apparently by sufficient kinetic effects.  A key parameter from 
observations is the normalized Hall or gyroradius parameter G = S*/E, where S* = rs/di with 
di the collisionless ion skin depth computed with nm, and E = zs/rs the elongation.  Radial 
pressure balance shows that S* is also proportional to the number of ρi between R and rs .  
Well behaved FRC experiments usually operate with G < 3.5 [4], providing an empirical 
macrostability limit, and instabilities may and occasionally have been observed when this 
condition is violated. 
 
These empirical laws almost uniquely determine the reactor extrapolation in terms of a single 
system parameter, the peak pressure P.  Earlier work [5] assumed compression by a 
converging conducting wall with kinetic energy (KE) comparable to the final plasma thermal 
energy.  In a steady-state system (P ~ 1000 atmospheres), these results still apply with 
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thermal energy ½ of KE.  Results show that a steady state FRC requires a quite large and 
energetic system, over 100m of length and 100 GJ of energy.  While such a regime is not of 
great economic interest, if a different technology can increase P to the megabar regime, an 
attractively small system is indicated. The proposed MTF (Magnetized Target Fusion) 
approach operates at these extreme pulsed pressures.  In an intermediate regime (P ~ 3x104 
atmospheres), there exists the attractive option of rotating liquid metal walls in a system like 
LINUS [6].  Because confinement is only dependent on radial dimensions, while energy 
increases linearly with length (or E), the advantage of increasing G is evident. Thus, it 
becomes quite important to precisely quantify physical limits of G. 
 
The empirical scaling suggests three approaches toward FRC reactor conditions: 

• Achieve a scientific understanding of the empirical laws and design for the 
indicated high P (in a pulsed system). 

• Improve both stability and confinement in a steady-state elongated system. 
• Find an alternative geometry or kinetic regime with improved stability and 

confinement (such as an oblate configuration). 
 
All of these approaches are being pursued in the world FRC program.  Because of the 
importance and ubiquity of the scaling observations, a key science element is linking these 
relations with a theoretical understanding.  Here, we describe theoretical work related to the 
question of FRC equilibrium and (kinetic) stability.  We do not consider confinement further 
here.  Because of the prevalence of prolate experimental configurations, our main focus is 
placed there. 
  
2. Prolate FRC Equilibrium 
 
Rather than find FRC equilibria from a model P(ψ) by adjusting a few parameters, it has 
emerged recently that capturing some FRC features requires an alternative approach.  A 
natural approach is to order the z variation small, order ε = 1/E compared to the transverse 
variations, thus requiring uniformly slow z variation.  In this case, (essentially) only one 
pressure profile is allowed by equilibrium.  The profile depends on the vacuum boundary 
conditions and has been found for the experimentally relevant case of a uniform cylindrical 
flux-conserving wall [7].  In this case, ψccP 10' +≈ .  Further, the shape is very sensitive to 
the pressure profile, determined by order ε2 corrections.  Solutions have a similarity shape 
which uniformly elongates as ε decreases, and the MHD drive also decreases uniformly, 
leading to less unstable configurations.  Finally, there are reasons to believe that these 
profiles are achieved experimentally.  Besides providing good agreement with observed 
profiles and having the least MHD instability drive, marginal stability to tearing holds for 
these profiles.  Thus, a different profile might relax toward the uniformly long state by 
relatively benign tearing activity, rearranging the flux to achieve the marginal profile.  
Additionally, observed anomalous FRC resistivity, might also be partly associated with 
tearing driven by weak deviations from this marginal state in addition to microinstabilities.  
These conjectures are the subject of continuing theoretical work. 
 
Additional FRC features may be explained by a two-fluid equilibrium theory.  Recent work 
[8] has established the formalism for finding stationary energy states (a pre-requisite for 
stability) with appropriate conserved quantities.  These quantities are the electron and the ion 
helicities, independently, defined as: 
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where A is vector potential and u flow velocity.  The variational solution has two arbitrary 
constants and no arbitrary functions. An analytic solution is obtained for uniform density.  
The plasma “condenses” to either single-mode or double-mode states. In compact toroids 
these are analyzed by a Fourier-Beltrami expansion [9].  Analytic solutions are found.  
Double-mode states always have lower ordered energy (higher disordered energy) than 
single-mode states.  Double-mode states appear in two branches, one with higher energy and 
one with lower.  The latter is energetically favorable, but has exceedingly fine structure of the 
flow.  As such it is an unlikely end state of a relaxation.  The higher-energy branch states 
have significant toroidal and poloidal flows and an approximate equipartition between flow 
and magnetic energy.  Ongoing work is developing details of these solutions for comparison 
to experimental observations. 
 
3. Prolate FRC Stability 
 
Recent FRC stability calculations have focused on issues related to the empirical stability 
limit given in the Introduction.  Numerical calculations using the HYM [10,11] and FLEX 
[12] simulations codes have been performed with a range of equilibria and for varying G.  A 
semi-analytic theory has also been obtained by applying the small ε expansion to the stability 
problem [13].  Results of these two studies have been compared.  The general stability picture 
shows unstable MHD modes (for G large) with axial polarization (ξz dominant) at all modest 
toroidal mode numbers n = 1,…,E.  These modes are the small ε branch of the internal tilt, 
which is known to be unstable for prolate compact toruses.  In the relevant regime (G ~ 1 – 
10) Hall and FLR effects strongly affect these modes.  The simplest theories [13,14] show 
reactive stabilization for G < Gcrit, where the limit depends on model details, and is in semi-
quantitative agreement with the empirical picture. 
 
Several complications to this picture emerge, however.  First, finite temperature (ion and/or 
electron) effects interfere with reactive stabilization of the fundamental modes by introducing 
other branches which become unstable as G is decreased.  Second, the reactively stabilized 
modes form a slow-mode/fast-mode pair, with the slow-mode a negative energy wave.  
Individual ions have frequencies which resonate with this slow-mode, and resulting Landau 
damping causes destabilization.  Much of our work has thus focused on the question of 
whether linearly or nonlinearly stable FRC states exist, and how they avoid or obscure effects 
of these residual instabilities. 
 
Recent HYM simulations have studied the uniformly long equilibria obtained in Ref. 6, and 
compared them to those obtained with a earlier different P(ψ).  These results confirm MHD 
predictions of growth rate and mode structure.  Namely, elongation scaling holds only for the 
special profile with γ ~ ε and a similarity of mode structure.  Other profiles give equilibria 
which become “racetrack” with all variation concentrated at the ends, with modes also 
concentrating there and γ saturating (not decreasing) beyond some modest value of E. 
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Including Hall effects, γ is found to decrease only moderately as G is decreased.  In contrast 

to the simple reactive 
theory, stabilization is not 
observed.  Instead, a 
different structure appears 
as the most unstable mode 
with γ about ½ the MHD 
value (Fig. 1).  In the 
kinetic regime (small G), 
the mode rotates 
oppositely to the current, 
that is in the electron 
diamagnetic direction, 
rather than in the ion 
direction as predicted by 
the reactive theories and 
observed at large G. 
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 Figure 1: Growth rate and negative real frequency from HMHD 
calculations 
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To understand these results, the previous small ε stability theory has been extended to include 
all effects of finite temperature [15].   There are several terms [14,16] previously neglected, 
so that earlier results apply only in case both fluids are isothermal (Γe = 1 = Γi). 
 
In the general case, remarkably, the analysis proceeds in a similar manner, and the previous 
structure is recovered.  Namely, following Ishida, et al. a symmetric quadratic form is 
obtained.  Only derivatives along the field direction survive to leading order, and it is 
possible to eliminate the transverse displacement components, which appear only through D  
=  ∇•ξ, by minimizing with respect to D.  The result is of the same form as obtained earlier 
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where ω is the mode frequency, ω * = -n P'/Gne is the diagmagnetic frequency, ξ is the axial 
component of the electron displacement, ne the number density, θi,e = Ti,e/(Ti+Te), and l is a 
switch for including/excluding FLR effects.  All quantities in (2) are normalized as in Ref. 
12, except that rs has been used as the unit of length and Bm the unit of B to simplify some 
coefficients.  The inertia A and restoring force F are given by 
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where ωωω /*= , Γ+Γ=Γ iiee θθ , ( )θθ ii 1−Γ= , PBz

2c = , and Pe the external pressure 
as in Ref. 12, with the indicated derivatives as d/dz.  Notice that when Γe = 1 = Γi, (2) reduces 
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to the previous form except for an overall factor of ω−1 .  Since ω* is a flux function, the 
resulting field line o.d.e. is the same as previously solved. 
 
Eigenvalues and eigenfunctions are obtained by integrating the field-line o.d.e. resulting from 
(2) using a shooting method.  It is found that, as in the simpler theories, a threshold Gcrit ~ 0.8 
exists and that this value is insensitive to the thermodynamic parameters (θi, Γi, Γe).  Thus, 
the modes found numerically either should disappear at very large elongation, where the 
present analysis may be applied, or they are not perturbations of the axial displacement 
branch, as assumed in this analysis.  Including FLR effects in the asymptotic theory [l = 1 in 
(2)] greatly expands the stable region.  A threshold of Gcrit ~ 8 is found.  Since resonant ion 
effects destabilize these reactively stabilized modes, it is expected that the actual threshold 
would be lower, perhaps in reasonable agreement with the experimental value of 3.5. 
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Figure 2: HYM calculations with and without Hall terms.: a) 
growth rates; b) real frequencies. 
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The effect of FLR is also seen from particle ion HYM calculations which include or exclude 
the Hall terms.  Figure 2 shows that the FLR effects are mostly responsible for stabilization, 
while the Hall effects are very important in determining the mode rotation and structure. 
 
Finally, HYM has extensively addressed the issue of resonant ion effects.  Recently several 
encouraging results have been obtained.  Diagnostics have been developed which distinguish 
stochastic ion orbits from integrable ones.  The latter are those most likely to be associated 
with resonant effects, although weakly stochastic orbits (with slowly varying orbit 
frequencies) still contribute significantly to resonant effects.  Results have been obtained 
which indicate nonlinear stabilization.  Under appropriate initial conditions, resonant ions are 
accelerated and decelerated to flatten f and a long-lived FRC is produced [17]. 
 
The effects of resonant ions are also found to be sensitive to the details of the equilibrium.  
There is a general argument which indicates that uniform elongation will cause all small orbit 
ions to be stochastic, with correlation time comparable to transit time.  Slow z variation 
implies weak curvature, along the length of each field line.  Of course, the integral of the 
curvature must give a turning angle of 2π over the entire length.  This means that the 
curvature is almost entirely concentrated at the ends of each line.  Since the field is also weak 
there, G ~ 1 implies that the local gyroradius is larger than the radius of curvature, leading to 
a loss of adiabatic invariants (e.g. µ) at each transit of the line.  In this way, all small orbit 
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ions will have a magnetized motion along the lines, with a pseudo-random µ changing with 
each transit.  This has already been reported by Glasser and Cohen [18] for the Solovev 
(Hill’s vortex) equilibrium, which is a uniformly elongated case with different vacuum 
boundary conditions.  The exception is large orbit ions which do not sample the end region 
by virtue of having pitch angle such that z velocity is small.  Figure 3 shows ½ the poloidal 
plane of two ion orbits.  Histories for these two orbits show that the orbit in (a) is integrable, 
while the one in (b) is strongly stochastic, consistent with the picture advanced previously. 
 

(a) (b)

Figure 3: Comparison of integrable orbit (left hand) with stochastic orbit (right hand).  One-
half of each orbit is shown and reflection symmetry holds. 

 
A comparison of long equilibria with uniformly slow z variation with a comparable case with 
racetrack ends (i.e. one using the special profile with one using a smooth, but different 
profile) further illustrates this point.  In Fig. 4 a comparison of comparable E cases with and 
without the uniformly long profile shows that the particle distribution in frequencies is wider 
in racetrack configurations, indicating more resonant particles, larger growth rates, and 
increased difficulties in avoiding strong resonant ion effects.  Much additional work on ion 

orbit distributions remains for the 
future.  For example, internal 
islands, which are likely to appear 
near the marginally tearing stable 
low B region may lead to an 
additional decrease of integrable 
ions. 
 
All results to this point have 
treated the electrons as a fluid.  
Additional stabilizing effects may 
arise from individual electron 
motion [19].  Near the FRC ends 
the magnetic field is weak, so that 
almost all particles residing there 
are mirror-trapped (along the field 
lines). On the other hand the ∇B 
and curvature drifts near the FRC 
ends are fast (because of a weak 
magnetic field and large field line 
curvature). Therefore, the drift 
frequency Ωd of trapped particles 
may exceed the instability growth 
rate γ and therefore make electron 

response different from the fluid (MHD) response.  For the equilibria where the X-point 
structure is just the cusp structure, one has the following estimate for Ωd in the vicinity of the 
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Ion response vs. frequencies. 
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Figure 4: Ion response vs. frequencies. 
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X-point  Ω , where δΨ  is the flux between the separatrix and flux 
surface we are considering, and Ψ is the flux between the separatrix and the O-point. 
Assuming that the normalized MHD growth rate is order unity, we find that non-MHD 
electron response takes place at the surfaces where 

( ΨΨ≈ δ/)/( 2
smed reBT )

SE // <ΨΨδ . where E is the FRC 
elongation, */ isrS ρ≡ , and meii eBTmc /2* ≡ρ  is the ion gyroradius evaluated for the 
electron temperature.  Note that effects we are discussing are very different from FLR effects. 
This can most clearly be seen from considering a limiting case where Ti=0 and FLR effects 
are absent, whereas the effect of non-MHD electron response remains large. 
 
For illustration purpose, we discuss in more detail the limiting case of Ti=0. In such a 
situation, the ion response is purely MHD (i.e., the E×B drift, plus polarization drift).  The 
response of the majority of electrons is adiabatic, because their parallel transit time is much 
shorter than the instability e-folding time, and yields the standard MHD contribution to the 
eigenmode equation.  However, the electrons trapped near the ends produce an absolutely 
different response, leading to an apparent build-up of a net charge in every flux-tube. As the 
quasineutrality constraint prohibits such effect, in reality this means that perturbations vanish 
near the ends of FRC. In terms of the MHD analysis, this forces  imposing line-tying 
constraints near the ends therefore prohibiting any non-axisymmetric displacements. This 
adds a substantial stabilizing factor to tilt modes. 
 
As equation SE // <ΨΨδ  shows, even at S  as high as 20 or 30, of interest for some reactor 
designs, and a moderate elongation of 5 or 6, the outer shell of FRC (δΨ/δΨ<0.25) will 
experience substantial stabilization.  How these effects interfere with the effects of stability 
theory developed in the earlier part of this paper (especially with the effects of ion non-
adiabaticity at Ti~Te) is a subject of future work.  
 
4. Oblate FRC Equilibrium and Stability 
 
Conventional FRCs are highly prolate, but, as already noted, for diffusive transport, τE 
increases with the square of the shortest distance between the hot core and the cool edge [20], 
and near-spherical geometry would yield the lowest power, most compact FRC fusion 

reactors. Therefore, we are 
investigating short, oblate and 
doublet FRCs. Oblate FRCs do 
not have a very weak minimum 
of |B| on a magnetic surface, 
except for surfaces near the 
separatrix, so they have fewer 
stochastic ion orbits than 
elongated FRCs. Numerical 
studies [11] show stabilization 
of the current-driven tilt and 
shift modes in oblate FRCs by a 
close fitting conducting shell, 
even in the reactor-relevant, 
large–s, MHD fluid limit. In 
contrast, oblate FRCs without a 
nearby wall are not  

Figure 5: Computed doublet FRC equilibrium. 
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simultaneously stable to both modes [11]. Peaked pressure profiles are favorable to 
compressional stabilization of both n = 1 and high-n pressure-driven interchange modes [21]. 
Doublet FRCs might be especially interesting, because they have regions of favorable 
average magnetic curvature. Interchange stability calculations were obtained for a family of 
equilibria with a quadratic pressure profile (Fig. 5), . The 

neighborhood of the O–point (ψ =1), is the region of least stability, and we derived an 
analytical expression for the marginal stability condition. It was found that doublets are more 
stable than standard FRCs; oblate doublets are more stable than elongated doublets; and more 
indentation improves stability. Therefore, doublets require less pressure at the separatrix (ψ 
 = 0) than standard FRCs to achieve stability, and may be less vulnerable to transport induced 
by interchange turbulence. 

P = (P0 − Psep )ψ2 + Psep

 
5. Summary and Conclusions 
 
Recent numerical and analytical work has advanced the study of FRC kinetic stability.  A 
combination of uniformly slow z variation with proper internal structure and finite Te effects 
may show a regime of true linear stability and lead to a quantitative, verifiable picture of 
stability limits consistent with empirical scaling observations. 
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