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The effect of damping on autoresonant  (nonstationary ) excitation
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When a nonlinear oscillator with an amplitude dependent frequency is driven by a swept frequency
drive, the oscillator’s amplitude will, in some circumstances, automatically adjust itself so that the
oscillator’'s nonlinear frequency closely matches the drive frequency. This phenomenon is called
autoresonance, and allows the amplitude of the oscillator to be controlled simply by sweeping the
drive frequency. Previous studies of autoresonance were in undamped systems; the effect of
damping on autoresonance is considered here. In particular, the question of a threshold for entering
autoresonance in a dissipative system is investigated. The resulting theory accurately describes the
behavior of experiments on the diocotron mode in pure-electron plasma00® American
Institute of Physics.[DOI: 10.1063/1.1338539

I. INTRODUCTION resonantly driven oscillators since, in the absence of driving
and dissipation, the oscillator actidris constant, while the

When a nonlinear oscillator with an amplitude depen- le rotat iformlv in ti — 0+ 0Dt O bei
dent frequency is driven by a swept frequency drive, thefNY€ rotates uniformly in imetf= 6+ Q(1)t, (1) being

oscillator’'s amplitude will, in some circumstances, automati—osc'”"jItor s frequency. In weakly driven and damped systems

cally adjust itself so that the oscillator’s nonlinear frequencythe action becomes slow variable and the equations de-

closely matches the drive frequency. This phenomenon igcnbmg the evolution of the system &re

called autoresonance, and allows the amplitude of the oscil-

lator to be controlled simply by sweeping the drive fre- at

guency. Autoresonant effects were first observed in particle

accelerator$ and have since been noted in atomic phy$its,

fluid dynamics’ plasmas,® and nonlinear waves® —=Q(l)— wy— at—el ~Y2cosd, 3
Experimental evidenceand theoretical analySisboth dt

shpw that .autoresonance occurs pnly when the normalizegnere g = 9— [ w(t)dt is the phase mismatch between the
drive amplitude.e, exceeds the critical value oscillator and the drive ana(t) is the driving frequency.

1 o |34 We use normalizeddimensionlessaction | and oscillator
—(—) , (1)  strengthe, and vy is the damping rate. We start with the
VBuw | 31 oscillator at restl(=0) and assume a linear frequency chirp,
wherea is the sweep ratay is the linear frequency of the @(t)=wo+at, such that the driving frequency passes the
oscillator, 8 is a nonlinearity parameter discussed I&r, linear oscillator's frequencywo={1(0) at t=0. Different
and u is close to unity and describes a correction due tof2(1) describe different systems. For examplé€(l)
inertia. However, this scaling was found for systems without= @o/(1— 1) describes the diocotron mode used in the ex-
damping Q=) and the inertial corrections were ignored. Periments discussed below(1)=wo(1—1/8+0O(1%)) de-

In this paper we show that autoresonance will still occur withscribes a pendulum, add(1) = wo(1+ Bl) describes a Duf-
damping if the damping is not too great. When the devis fing oscillator. We will show below that the influence of
not much greater than the critical drive., the damping Q(I) is well described by its linear simplification; thus, to
cannot be large, but when the drive is significantly greateﬂetermine the existence of autoresonance, all these systems
thane., the system can tolerate quite substantial damping. Ifieduce to the Duffing oscillator. With this simplification, Eq.
Sec. Il we show how autoresonance theory is modified td3) becomes

include the effects of damping, and in Sec. Ill we present

exlperimental measurements confirming the theoretical re- E=,8wol—at—el‘1’zcos<b. (4)

sults.

=—yl —2el?sind, 2

€Ec=

The undampedy=0 realization of this system was de-
scribed in Ref. 6 and we will analyze the general case simi-
We will use the action-angle description of our system.larly. We begin by differentiating Eq4), yielding
This canonical representation is advantageous in studying

IIl. THEORY

d’® di -, do

—2=—a+S—+eI sin® —, (5)
dElectronic mail: joel@physics.berkeley.edu dt dt dt
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where S= Bwg+ €/(21%? cosd. As in Ref. 6, we assume 10000 g
that the driven system enters the phase locked diat® at ; 3
somet<<0, and stays in this state beyond the linear resonance

for some appreciable time. Substituting E8) into Eq. (5) 1000
yields S i
I -

d’d Lt oe V2gingy_ S(Ldl, | dP 100 ¢
P a—S(y el“sin®) A TaRdTS ;

L 1
®) N N
0.001 0.010 0.100 1.000
1y

where we have used the approximati8s Bwg+ €/ (21%?)
=S . _
Sincey ande in Eq. (6) are both assumed to be small, FIG. 1. The functionQ(l,) defined by Eq.(15). The system’sQ must
the right-hand side of the equation can be expanded arourgkceed this function for the pseudopotential wells to exist and for the system

the instantaneous equi|ibrium actid)51 given by setting the to stay in autoresonanc@(l,) is plotted as a function df, for three values

time derivative in Eq(4) to zero name|y of drive strengthe=(1+ 8)e.. The arrow marks the critical action faf
’ =0, andB=0.6.
— at+ Bwglo— el y ?~0. 7)
This equilibrium action is simply the action plotted in the e \2B3
classical driven nonlinear oscillator response curves given in = |¢= (,BT) (12
0

many reference$.}! Note that as time increases, the equilib-
rium action will increase correspondingly, always keepingWhen this formula is evaluated in the limit fwo<1 com-
the oscillator frequency near the drive frequency. Using thenon to many realistic systemis, will be rather small. This is

equilibrium action, Eq(6) reduces to the origin of the()(I) invariance of this system: as only the
linear correction td) (1) is needed, alf2(l) can be reduced
d*®  Vpseudo dd to the Duffing oscillator)(1).
FTET Yeft gt ® We have found that we can slightly relax conditidr),
i.e., we can write it as el 5S(15)> @, whereu=1. The
where the pseudopotential is defined by factor u reflects the effect of inertia and damping: if the

system briefly violates conditiorill), the pseudoparticle

Voseuds= [+ 710S(10) 10— 2¢l g°S(1 ) cos, ©) may not have enough time to escape before the pseudopo-
and the effective dissipation rate is tential well is established again. Substitutionlgfinto the
relaxed condition(11) leads directly to the autoresonant
1/1 dlg drive amplitude threshold, Eql). Numerical simulations
YeffT5 EH+7)' 10 show thatu~1.15=pu. for the undamped case. Thus the

' _ ' threshold Eq. (1)] is reduced by *“~0.9 by these inertial
Note that the time dependence in the pseudopotential and thgfects.

effective dissipation rate comes only through the time depen-  Now we return to the case where the damping is non-

dence ofl 5. Thus, the system behaves like a pseudoparticlgerg. |n an analogy with conditiaf1 1), the relaxed condition

moving in a slowly varying pseudopotential in the presenceor the existence of the pseudopotential wells becomes
of a small effective friction force.

1/2
If we temporarily neglect the dissipative terms, the  2€#lg S(lo)>a+ y1oS(lo). (13
analysis of Eq(8) is equivalent to that given in Ref. 6. The clearly, this condition is stricter than in the case of no damp-
pseudopotential consists of a series of tilted wells when thr?ng; at the minimum ofl 3/25“0)' e>e.. For a givene we

amplitude of the cosine term exceeds the slope of the lineafan find the minimunQ=w,/y that will allow the system

term, namely when to be in autoresonantée

26|3/28(|0)>C¥. (ll) wolos(lo) (14)
If this condition is not met, the cosine term is overwhelmed 2eul ?S(19)—
by the pseudopotential tilt, and no wells exist. 1o

Assuming that conditiori1l) is met, and the system is _ wol g —0(ly) (15)
initially trapped in one of the pseudopotential wells, the sys- 2em— a/[|(1)/2s(| 0] ook
tem will remain trapped in that well so long as the pseudo- - _ _
potential changes slowly. Then the phase mismaitchvill ThelgmctlonQ(lo) always asymptotes to a line proportional

stay small, the oscillator and drive frequency will phaselockto I5° at large actionl, (see Fig. 1 For drivese=e(1
| will be forced to stay neal,, and the oscillator amplitude +6), §<1, not much greater thas;, Q(l,) has a local

will increase appropriately. The conditigfl) is most diffi- ~ maximum at small, very near the critical actioh.. Since
cult to meet wherh(l)’ZS(lo) is small; this quantity has a mini- the system generally starts with the action near zero, it will
mum at the critical action encounter this local maximum first when the maximum ex-
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ists. Assuming that the first order correctiorgtoneare, can
be written asu= u.(1+r ), then, to orde®, the maximum

value of Q(l,) is Filament

3wl Y? @
Qc~ 2(4+3r)de,’ (16)

where the expansion coefficienwill be found later. Substi-
tuting for |, and . gives

Phosphor
Screen

3w
Q.~ 0 T (17 FIG. 2. Basic trap geometry. The plasma is emitted from the filament, and
2(4+3r)8(alld) loaded into the trap by temporarily grounding the left cylinder. Details of the

. . . trap operation can be found in Ref. 18.
Comparison of this threshold formula with the results of

numerical simulations yields excellent agreement for

r~—0.66, i.e.,Q.~(3wy/45)(a/3) Y2 If the systemQ is

below Q., autoresonance will terminate at a value of themagnetic-fieldB. The plasma forms a cylindrical column

action less thar; the damping has a strong effect on the jnside a center cylinder, and appropriately biased end cylin-

system. ders provide longitudinal confinement. The axial magnetic
If the systemQ is greater tharQ., the action will suc-  field provides radial confinement. THix B drifts that result

cessfully pass through the critical region and autoresonantljtom the plasma’s self-electric field cause the plasma to ro-

continue to a maximum actidn,,, set byQ=0Q(lo). When  tate around itsel{see Fig. 3. If the plasma is moved off

the drive amplitude: is not too much greater than the critical center, it undergoes an additioriak B drift from the elec-

drive €., this action will be significantly greater than the tric field of its image. As this drift always points azimuthally,

critical actionl, and Eq.(15) will simplify to the plasma orbits around the trap center. This motion, at
112 frequency wp, is called the diocotron mode and is very
6“0)% ; o (18) stable when undamped, lasting for hundreds of thousands of
€ rotations.

Inverting gives the maximum attainable action, i.e., the ac- Assuming that the plasma column’s charge per unit

tion at which the pseudopotential wells finally disappear length is\, then the electric field of its imag&, is approxi-
mately radial and constant across the plasBa2\D/(R?

:(26Q>2 (19) —D?) (cgs-Gaussian unitsHereR is the wall radius, an®

wo |’ is the offset of the plasma column from the center, i.e., the
as a function of the syste@. Sincel 5> 1. here, the system Mode amplitude. The d'°°°t2°” mode frequengy follows

will appear to have a shar@ threshold: for systenQ’s  PY €quatingwpD to cEXB/B?, giving

below Q., the final action will be small, foQ’s aboveQ,.

the final action will be large. Indeety,,, may be so large that

the growth is stopped by some other process. In this case, the

system will appear to be unaffected by damping. ©B

As shown in Fig. 1, the local maximum nelaris small Image
when the drive amplitude is significantly greater than the
critical drive €. If the actual systen® is not much larger
than Q., the action may not grow much larger thgn In
this case th&). threshold will not be significant. For suffi-
ciently largee it will disappear entirely.

The limit described by Eq.18) or Eq.(19) has a physi- }
cal explanation. Referring back to B@), the value ofl y,, is
simply the action at which the drive is no longer sufficient to
overcome the damping losses at the most favorable value ¢
&, namely— 7/2. This is the conventional maximum action
described in many references.

om

o~

IIl. EXPERIMENT FIG. 3. Endview of the trap showing the confining wall at radRjsthe

. . . plasma at anglé and distanc® from the trap center, the plasma image, the
The effects described above have been confirmed witfiage electric fielcE, and the diocotron drift at frequenay/2ar. For our

experiments using thé=1 diocotron mode of a pure- experimentswy/2m=26.5 kHz. The mode is detected by monitoring the
electron plasma confined in a Malmberg—Penning tFg. image charge on the pickup sectdy, and driven by applying a voltage to

: : e drive sectoV . Damping is introduced in the system by feeding back
2). This mode has been used to confirm many aspects cﬁﬁe appropriately phase-shifted signal detected by the pickup sector to the

,13,14 H H
aUthesonance the_OW- _ The tr_aps C0n5|s_t of a series o_f drive sector. The is set by the amplitude of the feedback. Further details
collimated conducting cylinders immersed in a strong, axiakre given in Refs. 6 and 18.
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FIG. 4. The maximum action attained during an autoresonance sweep asfg. . The measured minimum autoresor@pias a function of the sweep
function of theQ. Below the threshold ne&p~ 1800 the action is very low,  rate o, for 5=0.03. The resultscircles are compared to the prediction

while above the threshold the action takes a big jump and quick risks to (line) of Eq. (17); there are no adjustable parameters. Notematll\/a.
~0.4. (At 1=0.4 the plasma column hits the trap wall and the autoresonantry,q parametes is relative to the measureg} .

interaction end$.For Q’s in the shaded region, the maximum action de-

pends on very small differences in the initial conditions, and oscillates be-

tween the high and low values for different runs. For this déta0.03, and

@=1.131x 10° rad/$. detected signal is proportional to the mode amplitude, and

the mode’s response to a drive is proportional to the drive
strength, the mode is thus driven by a signal proportional to
1 its amplitude. This results in exponential mode growth or
aCh wo(ﬁz), (20 damping, as selected by the phase of the feedback signal. We
select the correct phase to give damping, and control the
damping rate by adjusting the pickup signal amplification.

=(D/R)? is the action. Note that the mode frequency in- h iting d R il | h
creases with the actidli:1We can determine the mode am- | 1¢ resulting damping is exponential over at least three or-
' ders of magnitude, and can be varied fr@w»=20 to Q>5

plitude by measuring the image charge at a particular anglg< 10° with an accuracy of about 5%

on the trap wall as a function of time. More precisely, we The ex erimentsy reported hére were done Rt
measure the time dependence of the surface charge on a 485G inpa trap with pwall radiusR=1.905cm. The
azimuthal sector like the one label&tj, in Fig. 3. The re- plasma density was-2x 107 cm™3, temperatureT=1 eV,

ceived signal is calibrated to the displacemrity imaging nd plasma radius 0.6 cm. The measured linear diocotron
the plasma on a phosphor screen at the end of the trap. We

. . ) : P "trequency® was ~26.5 kHz. The plasma was confined
drive the diocotron mode by applying a signal to a drlVmgwithin negatively biased cylinders separated by 10.25 cm
sectorVp .1" This signal creates electric fields which induce 9 y y b y oo .

the additional drifts responsible for driving the mode. Finite length and plasma radius effects, discussed in Ref. 20,

The Q of the system can be controlled by using negativeTZﬁZseTLheesgn;?égtrs 1lljseon %;rr? n; ttrr]1aet f?le:/ el?elr?c/ l"a;pzut))rx:linear
feedback® This technique was developed by Warren White | ' g quency

at U.C. San Diego, but has not been published in a refereedepleng.ence' VZe fmf_r?ﬁ n the'formulaﬂ(l)—wol(l
journal. It is used extensively by experimentalists. In brief,_ﬂ ) discussed in the theory section.

the signal detected on the pickup sectdy,, appropriately
phased and amplified, is applied to the drive sector. Since the

where wy=2c\/BR? is the linear resonant frequency ahd

10000
: 1000 |
S E
o 1000 L
Al E
100 + L L 4
10! 102 10°
-1
100 | e(sec’)
Coaal L L I R | L L 1
0.01 0.1 FIG. 7. The measured minimum autoreson@nmas a function of the drive
S strength e, that allows the mode to autoresonantly grow to at ldast

=0.39. The resultgcircles are compared to the predictigfine) of Eq.
FIG. 5. The measured minimum autoreson@gtas a function of the drive  (18); there are no adjustable parameters, but the drive strengtiist be
amplitudee= (1+ 8) €. . The resultgcircles are compared to the prediction related to the unnormalized drive amplitude used in the experiments. Previ-
(line) of Eq. (17); there are no adjustable parameters. Note @at1/5. ously (see Ref. we showed that=cA1Vpp/BR,2N, whereA; comes from
The sweep rate was=1.131x 10" rad/€. The paramete# is relative to the  the geometry, an¥,, is the voltage applied to the drive seciy . From
measured,, which can be determined to better than 0.2%. Qitéreshold the geometry and the other system parameters{60v,,. The sweep rate
value can be determined to about 5%. was a=1.131x 10’ rad/$. Note thatQoc1/e.
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