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The effect of damping on autoresonant „nonstationary … excitation
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When a nonlinear oscillator with an amplitude dependent frequency is driven by a swept frequency
drive, the oscillator’s amplitude will, in some circumstances, automatically adjust itself so that the
oscillator’s nonlinear frequency closely matches the drive frequency. This phenomenon is called
autoresonance, and allows the amplitude of the oscillator to be controlled simply by sweeping the
drive frequency. Previous studies of autoresonance were in undamped systems; the effect of
damping on autoresonance is considered here. In particular, the question of a threshold for entering
autoresonance in a dissipative system is investigated. The resulting theory accurately describes the
behavior of experiments on the diocotron mode in pure-electron plasmas. ©2001 American
Institute of Physics.@DOI: 10.1063/1.1338539#
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I. INTRODUCTION

When a nonlinear oscillator with an amplitude depe
dent frequency is driven by a swept frequency drive,
oscillator’s amplitude will, in some circumstances, automa
cally adjust itself so that the oscillator’s nonlinear frequen
closely matches the drive frequency. This phenomeno
called autoresonance, and allows the amplitude of the o
lator to be controlled simply by sweeping the drive fr
quency. Autoresonant effects were first observed in part
accelerators,1 and have since been noted in atomic physics2,3

fluid dynamics,4 plasmas,5,6 and nonlinear waves.7,8

Experimental evidence5 and theoretical analysis6 both
show that autoresonance occurs only when the normal
drive amplitude,e, exceeds the critical value

ec5
1

Abv0
S a

3m D 3/4

, ~1!

wherea is the sweep rate,v0 is the linear frequency of the
oscillator, b is a nonlinearity parameter discussed later5,6

and m is close to unity and describes a correction due
inertia. However, this scaling was found for systems with
damping (Q5`) and the inertial corrections were ignore
In this paper we show that autoresonance will still occur w
damping if the damping is not too great. When the drivee is
not much greater than the critical driveec , the damping
cannot be large, but when the drive is significantly grea
thanec , the system can tolerate quite substantial damping
Sec. II we show how autoresonance theory is modified
include the effects of damping, and in Sec. III we pres
experimental measurements confirming the theoretical
sults.

II. THEORY

We will use the action-angle description of our syste
This canonical representation is advantageous in stud

a!Electronic mail: joel@physics.berkeley.edu
4231070-664X/2001/8(2)/423/5/$18.00
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resonantly driven oscillators since, in the absence of driv
and dissipation, the oscillator actionI is constant, while the
angle rotates uniformly in time,u5u01V(I )t, V(I ) being
oscillator’s frequency. In weakly driven and damped syste
the action becomes aslow variable and the equations de
scribing the evolution of the system are6

dI

dt
52gI 22eI 1/2sinF, ~2!

dF

dt
5V~ I !2v02at2eI 21/2cosF, ~3!

whereF5u2*v(t)dt is the phase mismatch between t
oscillator and the drive andv(t) is the driving frequency.
We use normalized~dimensionless! action I and oscillator
strengthe, and g is the damping rate. We start with th
oscillator at rest (I 50) and assume a linear frequency chir
v(t)5v01at, such that the driving frequency passes t
linear oscillator’s frequency,v05V(0) at t50. Different
V(I ) describe different systems. For example,V(I )
5v0 /(12bI ) describes the diocotron mode used in the e
periments discussed below,V(I )5v0(12I /81O(I 2)) de-
scribes a pendulum, andV(I )5v0(11bI ) describes a Duf-
fing oscillator. We will show below that the influence o
V(I ) is well described by its linear simplification; thus, t
determine the existence of autoresonance, all these sys
reduce to the Duffing oscillator. With this simplification, E
~3! becomes

dF

dt
5bv0I 2at2eI 21/2cosF. ~4!

The undamped,g50 realization of this system was de
scribed in Ref. 6 and we will analyze the general case si
larly. We begin by differentiating Eq.~4!, yielding

d2F

dt2
52a1S

dI

dt
1eI 21/2sinF

dF

dt
, ~5!
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where S5bv01e/(2I 3/2)cosF. As in Ref. 6, we assume
that the driven system enters the phase locked stateF'0 at
somet,0, and stays in this state beyond the linear resona
for some appreciable time. Substituting Eq.~2! into Eq. ~5!
yields

d2F

dt2
52a2S~gI 12eI 1/2sinF!2

1

2 S 1

I

dI

dt
1g D dF

dt
,

~6!

where we have used the approximationS'bv01e/(2I 3/2)
[S(I ).

Sinceg ande in Eq. ~6! are both assumed to be sma
the right-hand side of the equation can be expanded aro
the instantaneous equilibrium actionI 0 given by setting the
time derivative in Eq.~4! to zero, namely

2at1bv0I 02eI 0
21/2'0. ~7!

This equilibrium action is simply the action plotted in th
classical driven nonlinear oscillator response curves give
many references.9–11 Note that as time increases, the equili
rium action will increase correspondingly, always keepi
the oscillator frequency near the drive frequency. Using
equilibrium action, Eq.~6! reduces to

d2F

dt2
52

]Vpseudo

]F
2geff

dF

dt
, ~8!

where the pseudopotential is defined by

Vpseudo5@a1gI 0S~ I 0!#F22eI 0
1/2S~ I 0!cosF, ~9!

and the effective dissipation rate is

geff5
1

2 S 1

I 0

dI0

dt
1g D . ~10!

Note that the time dependence in the pseudopotential and
effective dissipation rate comes only through the time dep
dence ofI 0 . Thus, the system behaves like a pseudopart
moving in a slowly varying pseudopotential in the presen
of a small effective friction force.

If we temporarily neglect the dissipative terms, t
analysis of Eq.~8! is equivalent to that given in Ref. 6. Th
pseudopotential consists of a series of tilted wells when
amplitude of the cosine term exceeds the slope of the lin
term, namely when

2eI 0
1/2S~ I 0!.a. ~11!

If this condition is not met, the cosine term is overwhelm
by the pseudopotential tilt, and no wells exist.

Assuming that condition~11! is met, and the system i
initially trapped in one of the pseudopotential wells, the s
tem will remain trapped in that well so long as the pseu
potential changes slowly. Then the phase mismatchF will
stay small, the oscillator and drive frequency will phaselo
I will be forced to stay nearI 0 , and the oscillator amplitude
will increase appropriately. The condition~11! is most diffi-
cult to meet whenI 0

1/2S(I 0) is small; this quantity has a mini
mum at the critical action
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D 2/3

. ~12!

When this formula is evaluated in the limite/bv0!1 com-
mon to many realistic systems,I c will be rather small. This is
the origin of theV(I ) invariance of this system: as only th
linear correction toV(I ) is needed, allV(I ) can be reduced
to the Duffing oscillatorV(I ).

We have found that we can slightly relax condition~11!,
i.e., we can write it as 2meI 0

1/2S(I 0).a, wherem*1. The
factor m reflects the effect of inertia and damping: if th
system briefly violates condition~11!, the pseudoparticle
may not have enough time to escape before the pseud
tential well is established again. Substitution ofI c into the
relaxed condition~11! leads directly to the autoresona
drive amplitude threshold, Eq.~1!. Numerical simulations
show thatm'1.15[mc for the undamped case. Thus th
threshold@Eq. ~1!# is reduced bymc

23/4'0.9 by these inertial
effects.

Now we return to the case where the damping is n
zero. In an analogy with condition~11!, the relaxed condition
for the existence of the pseudopotential wells becomes

2emI 0
1/2S~ I 0!.a1gI 0S~ I 0!. ~13!

Clearly, this condition is stricter than in the case of no dam
ing; at the minimum ofI 0

1/2S(I 0), e.ec . For a givene we
can find the minimumQ[v0 /g that will allow the system
to be in autoresonance12

Q.
v0I 0S~ I 0!

2emI 0
1/2S~ I 0!2a

~14!

5
v0I 0

1/2

2em2a/@ I 0
1/2S~ I 0!#

[Q̄~ I 0!. ~15!

The functionQ̄(I 0) always asymptotes to a line proportion
to I 0

1/2 at large actionI 0 ~see Fig. 1!. For drivese5ec(1
1d), d!1, not much greater thanec , Q̄(I 0) has a local
maximum at smallI 0 very near the critical actionI c . Since
the system generally starts with the action near zero, it w
encounter this local maximum first when the maximum e

FIG. 1. The functionQ̄(I 0) defined by Eq.~15!. The system’sQ must
exceed this function for the pseudopotential wells to exist and for the sys

to stay in autoresonance.Q̄(I 0) is plotted as a function ofI 0 for three values
of drive strengthe5(11d)ec . The arrow marks the critical action ford
50, andb50.6.
t to AIP copyright, see http://ojps.aip.org/pop/popcr.jsp



o
fo

he
he

nt

al
e

ac

t
, t

e

-

to
e
n

i
-

s
f
ia

n
lin-
tic

ro-

y,
, at
ry
s of

nit

the

and
the

e

e

ck
the

ils

425Phys. Plasmas, Vol. 8, No. 2, February 2001 The effect of damping on autoresonant . . .
ists. Assuming that the first order correction tom nearec can
be written asm5mc(11rd), then, to orderd, the maximum
value ofQ̄(I 0) is

Qc'
3v0I c

1/2

2~413r !dec
, ~16!

where the expansion coefficientr will be found later. Substi-
tuting for I c andec gives

Qc'
3v0

2~413r !d~a/3!1/2
. ~17!

Comparison of this threshold formula with the results
numerical simulations yields excellent agreement
r'20.66, i.e.,Qc'(3v0/4d)(a/3)21/2. If the systemQ is
below Qc , autoresonance will terminate at a value of t
action less thanI c ; the damping has a strong effect on t
system.

If the systemQ is greater thanQc , the action will suc-
cessfully pass through the critical region and autoresona
continue to a maximum actionI 0m set byQ5Q̄(I 0m). When
the drive amplitudee is not too much greater than the critic
drive ec , this action will be significantly greater than th
critical actionI c , and Eq.~15! will simplify to

Q̄~ I 0!'
v0I 0

1/2

2e
. ~18!

Inverting gives the maximum attainable action, i.e., the
tion at which the pseudopotential wells finally disappear

I 0m5S 2eQ

v0
D 2

, ~19!

as a function of the systemQ. SinceI 0m@I c here, the system
will appear to have a sharpQ threshold: for systemQ’s
below Qc , the final action will be small, forQ’s aboveQc

the final action will be large. Indeed,I 0m may be so large tha
the growth is stopped by some other process. In this case
system will appear to be unaffected by damping.

As shown in Fig. 1, the local maximum nearI c is small
when the drive amplitudee is significantly greater than th
critical drive ec . If the actual systemQ is not much larger
than Qc , the action may not grow much larger thanI c . In
this case theQc threshold will not be significant. For suffi
ciently largee it will disappear entirely.

The limit described by Eq.~18! or Eq. ~19! has a physi-
cal explanation. Referring back to Eq.~2!, the value ofI 0m is
simply the action at which the drive is no longer sufficient
overcome the damping losses at the most favorable valu
F, namely2p/2. This is the conventional maximum actio
described in many references.

III. EXPERIMENT

The effects described above have been confirmed w
experiments using thel 51 diocotron mode of a pure
electron plasma confined in a Malmberg–Penning trap~Fig.
2!. This mode has been used to confirm many aspect
autoresonance theory.5,6,13,14The traps consist of a series o
collimated conducting cylinders immersed in a strong, ax
Downloaded 04 Apr 2001 to 128.32.210.147. Redistribution subjec
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magnetic-fieldB. The plasma forms a cylindrical colum
inside a center cylinder, and appropriately biased end cy
ders provide longitudinal confinement. The axial magne
field provides radial confinement. TheE3B drifts that result
from the plasma’s self-electric field cause the plasma to
tate around itself~see Fig. 3!. If the plasma is moved off
center, it undergoes an additionalE3B drift from the elec-
tric field of its image. As this drift always points azimuthall
the plasma orbits around the trap center. This motion
frequencyvD , is called the diocotron mode and is ve
stable when undamped, lasting for hundreds of thousand
rotations.

Assuming that the plasma column’s charge per u
length isl, then the electric field of its image,E, is approxi-
mately radial and constant across the plasma,E'2lD/(R2

2D2) ~cgs-Gaussian units!. HereR is the wall radius, andD
is the offset of the plasma column from the center, i.e.,
mode amplitude. The diocotron mode frequencyvD follows
by equatingvDD to cE3B/B2, giving

FIG. 2. Basic trap geometry. The plasma is emitted from the filament,
loaded into the trap by temporarily grounding the left cylinder. Details of
trap operation can be found in Ref. 18.

FIG. 3. Endview of the trap showing the confining wall at radiusR, the
plasma at angleu and distanceD from the trap center, the plasma image, th
image electric fieldE, and the diocotron drift at frequencyv/2p. For our
experiments,v0/2p526.5 kHz. The mode is detected by monitoring th
image charge on the pickup sectorVu , and driven by applying a voltage to
the drive sectorVD . Damping is introduced in the system by feeding ba
the appropriately phase-shifted signal detected by the pickup sector to
drive sector. TheQ is set by the amplitude of the feedback. Further deta
are given in Refs. 6 and 18.
t to AIP copyright, see http://ojps.aip.org/pop/popcr.jsp
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vD5v0S 1

12I 2D , ~20!

wherev052cl/BR2 is the linear resonant frequency andI
5(D/R)2 is the action. Note that the mode frequency
creases with the action.15,16 We can determine the mode am
plitude by measuring the image charge at a particular an
on the trap wall as a function of time. More precisely, w
measure the time dependence of the surface charge o
azimuthal sector like the one labeledVu in Fig. 3. The re-
ceived signal is calibrated to the displacementD by imaging
the plasma on a phosphor screen at the end of the trap
drive the diocotron mode by applying a signal to a drivi
sectorVD .17 This signal creates electric fields which indu
the additional drifts responsible for driving the mode.

TheQ of the system can be controlled by using negat
feedback.18 This technique was developed by Warren Wh
at U.C. San Diego, but has not been published in a refer
journal. It is used extensively by experimentalists. In bri
the signal detected on the pickup sector,Vu , appropriately
phased and amplified, is applied to the drive sector. Since

FIG. 4. The maximum action attained during an autoresonance sweep
function of theQ. Below the threshold nearQ'1800 the action is very low,
while above the threshold the action takes a big jump and quick risesI
'0.4. ~At I'0.4 the plasma column hits the trap wall and the autoreson
interaction ends.! For Q’s in the shaded region, the maximum action d
pends on very small differences in the initial conditions, and oscillates
tween the high and low values for different runs. For this data,d50.03, and
a51.1313105 rad/s2.

FIG. 5. The measured minimum autoresonantQc as a function of the drive
amplitudee5(11d)ec . The results~circles! are compared to the predictio
~line! of Eq. ~17!; there are no adjustable parameters. Note thatQc}1/d.
The sweep rate wasa51.1313107 rad/s2. The parameterd is relative to the
measuredec , which can be determined to better than 0.2%. TheQ threshold
value can be determined to about 5%.
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detected signal is proportional to the mode amplitude, a
the mode’s response to a drive is proportional to the dr
strength, the mode is thus driven by a signal proportiona
its amplitude. This results in exponential mode growth
damping, as selected by the phase of the feedback signal
select the correct phase to give damping, and control
damping rate by adjusting the pickup signal amplificatio
The resulting damping is exponential over at least three
ders of magnitude, and can be varied fromQ'20 to Q.5
3105 with an accuracy of about 5%.

The experiments reported here were done atB
51485 G in a trap with wall radiusR51.905 cm. The
plasma density was;23107 cm23, temperatureT51 eV,
and plasma radius 0.6 cm. The measured linear dioco
frequency19 was ;26.5 kHz. The plasma was confine
within negatively biased cylinders separated by 10.25 c
Finite length and plasma radius effects, discussed in Ref.
increase the linear frequency from that given by Eq.~20! by
;40%. These effects also change the frequency’s nonlin
dependence. We findb50.6 in the formulaV(I )5v0 /(1
2bI ) discussed in the theory section.

s a

nt

-

FIG. 6. The measured minimum autoresonantQc as a function of the sweep
rate a, for d50.03. The results~circles! are compared to the prediction
~line! of Eq. ~17!; there are no adjustable parameters. Note thatQc}1/Aa.
The parameterd is relative to the measuredec .

FIG. 7. The measured minimum autoresonantQ as a function of the drive
strength e, that allows the mode to autoresonantly grow to at leasI
50.39. The results~circles! are compared to the prediction~line! of Eq.
~18!; there are no adjustable parameters, but the drive strengthe must be
related to the unnormalized drive amplitude used in the experiments. P
ously ~see Ref. 6! we showed thate5cA1Vpp /BRw

2 , whereA1 comes from
the geometry, andVpp is the voltage applied to the drive sectorVD . From
the geometry and the other system parameters,e5460Vpp . The sweep rate
wasa51.1313107 rad/s2. Note thatQ}1/e.
t to AIP copyright, see http://ojps.aip.org/pop/popcr.jsp
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The results of measuring the maximum action attaine
a givenQ are shown in Fig. 4. As expected, there is a lar
threshold sincee is nearec . Below the threshold, the mod
amplitude never makes it past the critical action. Above
threshold, the mode grows until it hits the trap wall.

Figure 5 compares the measured minimumQ that yields
autoresonance to the value predicted by Eq.~17! asd varies.
The data follows the predicted 1/d scaling. Figure 6 com-
pares the minimum autoresonantQ to the predicted value a
the sweep ratea varies. As expected, theQ scales as 1/Aa.

We have also measured~Fig. 7! the minimumQ that
permits the mode to grow to at leastI 50.39 as a function of
the drive strengthe. This data falls in the conventional re
gime in which the energy lost to damping overcomes
energy supplied by the drive. As expected, the results
close to that predicted by Eq.~18!.

IV. CONCLUSION

Autoresonance is a very general phenomenon foun
many nonlinear oscillators. Previous papers have descr
autoresonance with drives at the fundamental,5,6 sub-
harmonics13,21 and superharmonics,14 but studied undamped
systems. Here we found that the presence of damping d
not necessarily inhibit autoresonance. As in the undam
systems, the drive strength must exceed a critical value@Eq.
~1!#, but if the drive is significantly stronger than this critic
value, autoresonance will occur up to a value of the oscilla
action set by the rate at which the drive can pump ene
into the oscillator. This is the steady-state limit, famili
from many references on nonlinear oscillators. Close to
critical drive strength, however, there is a new, significan
more stringent limit on the damping, which had not be
previously identified.
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