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Autoresonant „nonstationary … excitation of a collective nonlinear mode
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The autoresonant~nonlinear phase locking! manipulation of the diocotron mode in a non-neutral
plasma is investigated. Autoresonance is a very general phenomenon in driven nonlinear oscillator
and wave systems. By sweeping or chirping the drive frequency, autoresonance allows the
amplitude of a nonlinear wave to be controlled without the use of feedback. The experimental
results, including a novel scaling relation, are in excellent agreement with a simple theoretical
model. These are the first controlled laboratory studies of autoresonance in a collective plasma
system. ©1999 American Institute of Physics.@S1070-664X~99!02512-4#
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I. INTRODUCTION

The oscillation frequency of a nonlinear, Duffing-lik
oscillator changes with amplitude. If you excite such an
cillator by driving it at its linear resonant frequency, the o
cillator’s amplitude will grow only marginally before its
shifting frequency causes it to go out of phase with its dri
after which the oscillator’s amplitude will beat back down
zero. By measuring the oscillator’s instantaneous freque
and phase, you could use feedback to grow the oscillat
amplitude arbitrarily. But how can you grow the oscillator
high amplitude without feedback? A general property
weakly driven, nonlinear oscillators is that, under cert
conditions, theyautomaticallystay in resonance with thei
drives even if the parameters of the system vary in ti
and/or space. This phenomenon is called autoresonance
example, consider an oscillator whose frequency increa
with oscillation amplitude. Assume that the oscillator is in
tially phase locked to its drive. In autoresonance, sweep
the drive frequency upwards or downwards will cause a c
responding increase or decrease in the oscillation amplit
so that the nonlinear frequency just matches the drive
quency.

We have demonstrated1 autoresonance in a pure-electro
plasma using the diocotron mode.2 A detailed description of
the diocotron mode follows, but for now regard the diocotr
mode as a very-high-Q oscillator whose frequency increas
with amplitude. Typical examples of the autoresonant ex
tation of this mode by a swept frequency drive are shown
Figs. 1 and 2. Autoresonance can occur for any change in
oscillator parameters, not just for a swept frequency dr
For example, if the linear frequency of the mode decrea
slowly, the mode will grow autoresonantly when driven wi
a constant frequency~Fig. 3!.

For autoresonance to occur, the mode must phase
with the drive. Normally, phase locking occurs automa
cally. As shown in Fig. 4, the mode starts out unlocked to
drive, but quickly locks in. There may be substantial pha

a!Electronic mail: joel@physics.berkeley.edu
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excursions, but when the mode stays phaselocked, it ne
sarily follows the drive frequency to high amplitude. If
loses lock, as shown for the 0.087 Vp2p curve in Fig. 4,
autoresonance fails. Failure occurs only when the drive
quency or system parameters are changed too quickly
when the drive amplitude is too small. For a fixed chirp ra
A ~the change in the drive frequency per second!, there is a
critical drive amplitudeVa below which the maximum mode
amplitude is relatively small and increases with the dr
amplitude, and above which the mode amplitude follows
drive frequency to high amplitude and is independent of
drive amplitude. As shown in Fig. 5, the threshold is ve
sharp. Lower chirp rates have lower critical drive amplitud
Theoretically~see Sec. IV!,

Va}A 0.75, ~1!

and is in excellent agreement with the data, as shown
Fig. 6.

The autoresonance concept dates back to McMillan3 and
Veksler,4 and was further developed by Bohm and Foldy5 for
particle accelerators. The term ‘‘phase stability principle
was used to describe the phenomenon in these early stu
The synchrotron, synchrocyclotron,6 and other, later accel
eration schemes7,8 all are based on autoresonance. Recen
the effect has been studied theoretically in atomic and m
lecular physics,9,10 nonlinear dynamics,11,12 nonlinear
waves,13 and fluid dynamics.14

‘‘Jumps’’ and other hysteretic phenomena have lo
been studied in nonlinear dynamics.15 The swept, or nonsta
tionary excitation of oscillators has also been studied. T
linear case was solved exactly,16 and Mitropolskii17 has stud-
ied the nonlinear case. None of these studies uncover
threshold and scaling effects discussed here. Entrainme
self-excited systems like van der Pol oscillators18 bears some
resemblance to the results discussed here, as do effects
in computer modeling of planetary systems.19

We begin the body of this paper with a discussion of t
diocotron mode. The autoresonant process naturally div
7 © 1999 American Institute of Physics
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into phase-trapping, weakly nonlinear, and strongly non
ear regimes, and each will be discussed in turn.

II. THE DIOCOTRON MODE

The diocotron is a very basic mode in pure-electron pl
mas confined in a Malmberg-Penning traps.20 These traps
consist of a series of collimated conducting cylinders i
mersed in a strong, axial magnetic fieldB ~see Fig. 7!. The
plasma forms a cylindrical column inside a center cylind
Longitudinal confinement is provided by appropriately bia
ing the end cylinders. Radial confinement is provided by
axial magnetic field. TheE3B drifts which result from the
plasma’s self-electric field cause the plasma to rotate aro
itself ~see Fig. 8!. In global thermal equilibrium, the plasm
rotates rigidly with frequencyf R; in the partially equili-
brated plasmas used in this work the plasma’s self-rota
rate is only approximately constant. If the plasma is mov

FIG. 1. Autoresonant response to a swept drive.~a! Mode amplitudeD/Rw .
~b! Drive frequency~solid line!, measured linear resonant frequency~dashed
line!, and measured excitation frequencies (d). The driving frequency is
swept from 20 kHz~well below the linear resonant frequency! to 45 kHz
~well above the linear resonant frequency! in 0.067 s and the drive ampli
tude is 0.5 Vp2p. At first, the mode amplitude is small, and has frequen
components at both the drive frequency and the linear diocotron mode
quency. After the drive frequency passes the linear resonant frequency
amplitude grows autoresonantly, and only one frequency is present. Fin
the amplitude grows large enough to send the plasma into the wall, an
mode frequency drops precipitously.

FIG. 2. Autoresonant response to a sawtooth swept drive.~a! Mode ampli-
tudeD/Rw . ~b! Drive frequency~solid line!, measured linear resonant fre
quency ~dashed line!, and measured excitation frequencies (d). The
1.5 Vp2p drive is repeatedly swept up and down between 22 and 31 k
The mode amplitude grows when the drive frequency is swept upwards
damps when the drive frequency is swept downwards. Notice that only
drive frequency is present in the autoresonant region when the drive
quency is above the linear frequency, while the drive and the linear m
frequencies are both present when the drive frequency is below the l
frequency.
-

-

-

.
-
e

nd

n
d

off center, it undergoes an additionalEi3B drift from the
electric field of its image. As this drift always points az
muthally, the plasma orbits around the trap center. This m
tion, at frequencyf, is called the diocotron mode and is ve
stable, lasting for hundreds of thousands of rotations.

Assuming that the plasma column’s charge per u
length is l, the electric field of its image,Ei , is approxi-
mately radial and constant across the plasma,Ei

'2lD/(Rw
2 2D2) ~cgs-Gaussian units!. HereRw is the wall

radius, andD is the offset of the plasma column from th
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FIG. 3. Response to a constant frequency drive. Autoresonance occur
cause the system’s linear resonant frequency drops as the plasma exp
~a! Mode amplitudeD/Rw . ~b! Drive frequency~solid line!, measured linear
resonant frequency~dashed line!, and measured excitation frequencies (d).
The drive frequency is 27.4 kHz and the drive amplitude is 0.04 Vp2p. The
initial linear diocotron frequency is 28.4 kHz, but plasma expansion cau
the linear diocotron frequency to drop~Ref. 24! by about 14% in 0.5 s~The
background residual gas pressure was deliberately set high to increas
expansion rate.! Autoresonant growth occurs only after the linear mo
frequency has dropped to the drive frequency, att50.11 s.

FIG. 4. ~a! Mode amplitudeD/Rw as a function of time for drive amplitudes
of 0.087, 0.093, 0.115, and 0.200 Vp2p. ~b! Mode phase relative to the
drive as a function of time. Phase locking occurs in 30 ms or less.
improve visibility, the curves are displaced by 0.05 in~a! and 360 degrees in
~b!. The phases fort,75 ms are noisy because the mode amplitude is sm
All data are taken at a chirp rate ofA56.83104 Hz/s, starting atf init

520.0 kHz.
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center, i.e., the mode amplitude. The diocotron mode
quencyf follows by equating 2p f D to cEi3B/B2, giving

f 5 f 0S 1

12D2/Rw
2 D , ~2!

where f 05v0/2p[cl/pBRw
2 is the linear resonant fre

quency. Note that the mode frequency increases with m
amplitude.21,22 Experimentally, we can determine both th
mode frequency and amplitude by measuring the im
charge at a particular angle on the trap wall as a function
time. More precisely, we measure the time dependence o
surface charge on an azimuthal sector like the one labeleVu

in Fig. 8. The received signal is calibrated to the displa
mentD by imaging the plasma on the phosphor screen at
end of the trap.

FIG. 6. Critical amplitudeVa vs. chirp rateA. Measured results (d), and
theoretical prediction from Eq.~1! ~solid line!. The proportionality constan
in Eq. ~1! is fit to the data.

FIG. 5. Autoresonant response near threshold.~a! Mode amplitudeD/Rw as
a function of time for drive amplitudes of 0.100, 0.190, 0.195, a
0.300 Vp2p. Note that the response to the 0.195 and 0.300 Vp2p drives is
essentially identical.~b! Maximum mode amplitude as a function of driv
amplitude. Near the drive threshold voltage 0.193 Vp2p, the response is
bimodal; some shots stay low, while other shots go to high amplitude~c!
The fraction of shots near threshold that go to high amplitude. All data
taken at a chirp rate ofA523105 Hz/s.
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The experiments reported here were done atB51485 G
in a trap with wall radiusRw51.905 cm. The plasma densit
was approximately 23107 cm23, temperatureT51 eV, and
plasma radius 0.6 cm. The measured linear diocot
frequency23 was approximately 26.5 kHz. The plasma w
confined within negatively biased cylinders separated
10.25 cm. Finite length and radius effects, discussed in R
24, increase the linear frequency from that given by Eq.~2!
by approximately 40% and also modify the dependence
D. We have obtained similar autoresonance effects for p
mas of various lengths, densities, and radii, confined by m
netic fields of various strengths.

We drive the mode by applying a signal to a secon
driving sectorVD .25 This driving signal creates electric field
which induce additional drifts. As we generally use we
driving signals, these drifts are much smaller than the ro
tion and diocotron drifts. Nevertheless, because of ph
locking, these drifts are sufficient for efficient control of th
diocotron mode.

Formally, the mode obeys the following equations26

Ḋ52
c

BD

]V

]u
,

~3!

FIG. 7. Basic trap geometry. The plasma is emitted from the filament,
loaded into the trap by temporarily grounding the left cylinder. Details of
trap operation can be found in Ref.~20!.

FIG. 8. Endview of the trap showing the confining wall atRw , the pickup
Vu and driveVD sectors, the plasma at angleu and distanceD from the trap
center, the self-electric fieldE, the self-rotation driftf R , the plasma image,
the image electric fieldEi , and the diocotron drift at frequencyf.

e
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u̇5
c

B F 2l

Rw
2 2D2

1
1

D

]V

]D G ,

where the drive potential is

V~D,u,t !5ReF(
l 50

`

Al S D

Rw
D l

exp@ i ~ lu2f!#V0 G , ~4!

andV0 andf[*v(t) dt are the amplitude and phase of th
drive. TheAl are the appropriate geometric factors for eacl
component. If we assume that the drive frequency is sw
linearly, the drive frequency is

v~ t !5v0~ t !1at, ~5!

wherea52pA is the chirp rate. To account for variations
the system parameters, we allowv0(t) to be a slow function
of time. Usuallyv0(t) is constant, but variations inv0(t)
can be caused by plasma expansion~as in Fig. 3!, azimuth-
ally dependent static potentials applied to the trap walls,27 or
other system manipulations.

Equation ~3! is best transformed to action-angle va
ables. We retain only the resonant (l 51) term in Eq.~4!,
define the actionI 5(D/Rw)2, and rewrite Eq.~3! as

İ 52eI 1/2sinF,
~6!

Ḟ5
v0~ t !

12bI
2v~ t !1eI 21/2cosF,

where the phaseslip isF5u2f, ande5cA1V0 /BRw
2 is the

normalized drive amplitude. The factorb generalizes Eq.~3!
to account for a broad class of finite length and radius c
rections to the linear frequency.24 For our experiments,b is
measured to be approximately 0.60. These equations
follow from the isolated-resonance action-angle Hamilton
for the diocotron mode26

H~ I ,u;t !52
v0~ t !

b
ln~12bI !12eI 1/2cos~u2f!. ~7!

Note that Eqs.~6! differ from those in the classical theory o
nonlinear resonance by the slow variation ofv0 andv with
time.

III. LINEAR, PHASE-TRAPPING REGIME

Since the drive amplitude is assumed to be small,
mode is in the linear regime when the drive is first applie
Then Eq.~6! describes a driven simple harmonic oscillat
~SHO!:

İ 52eI 1/2sinF,
~8!

Ḟ5v0~ t !2v~ t !1eI 21/2cosF.

The linear regime extends from timets,0 when the drive is
first applied, to roughlyt50 when the drive frequency
equals the linear resonant frequency. Equations~8! were
solved exactly in terms of Fresnel sine and cosine functi
by Lewis.16 However, the behavior of the solution can b
understood quite simply. Like any SHO, the sudden appl
tion of the drive excites a driven mode at the drive frequen
and an undriven, homogeneous mode at the linear freque
pt

r-

lso
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e
.

s

-
y
cy.

Assuming that the net amplitude att5ts is zero, the two
modes have equal amplitude, are proportional to the dr
and inversely proportional to the deviationDv(ts)5v(ts)
2v0(ts)5ats from the linear frequency. Thereafter, ju
like in a steady state SHO, the amplitude of the driven mo
continues to be approximately inversely proportional
Dv(t). Thus the mode grows proportional to 1/t. Remark-
ably, the homogeneous mode is not further excited by
sweeping frequency. This behavior is demonstrated in Fig
Other experiments~not shown! have verified all the propor-
tionalities ~with a, e, ts , etc.!.

The driven mode locks to the drive, while the homog
neous mode free runs. The net motion of the plasma colu
is the sum of the driven and homogeneous modes. Initia
the net motion will not be phaselocked to the drive beca
the amplitudes of the two modes are comparable. But si
the driven mode amplitude grows while the homogene
mode amplitude is constant, the driven mode will soon do
nate, and the net motion will quickly phaselock. The pha
locking process is easily visible in Fig. 4~b!. The occurrence
of automatic phase locking is not self-evident, as the syst
in a Hamiltonian picture, has to cross the separatrix betw
streaming and trapped orbits.

IV. WEAKLY NONLINEAR REGIME

Near t50, the mode grows out of the linear regime a
stops increasing like 1/t. Retaining the first nonlinear correc
tion to the frequency in Eq.~6! yields

İ 52eI 1/2sinF, ~9!

Ḟ5v0~11bI !2v1eI 21/2cosF, ~10!

where we have suppressed the time dependencies inv0 and
v. Assuming that these frequencies are slowly varying,
write I 5I 01D; the action oscillates with quickly-varying
amplitudeD(t) around the slowly evolving average actio
I 0(t). By further assuming thatD is small, andF5p1F̃,
Eq. ~10! simplifies to

FP 5S bv01
e

2I 0
3/2

cosF̃ D D2at1bv0I 02
e

I 0
1/2

cosF̃. ~11!

FIG. 9. Linear regime growth. The drive for the lower data, 0.050 mVp2p,
is 25 times lower than the drive for the upper data. Averaging techniq
used to obtain the lower data preclude measuring the homogeneous
for this drive. All data were taken with a chirp rate ofA51.73105 Hz/s.
The initial frequency wasf init515.0 kHz.
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Next, we assume thatF̃ is small, and set cosF̃'1 in this
equation. We defineI 0(t) by setting the last three terms o
the right-hand side to zero:

2at1bv0I 0~ t !2
e

I 0~ t !1/2
50. ~12!

This is equivalent to definingI 0(t0) to be equal to the steady
state excitation amplitude for a drive of amplitudee and
constant drive frequencyv01at0 . Using Eq.~12!, Eq. ~11!
reduces to

FP 5SD, ~13!

where the slowly varying parameterS is

S5bv01
e

2I 0
3/2

. ~14!

Differentiating Eq.~12! and solving forİ 0 yields

İ 05
a2bv̇0I 0

bv01e/2I 0
3/2

5
a2bv̇0I 0

S
. ~15!

This expression can be used to evaluateḊ5 İ 2 İ 0 . To lowest
order,

Ḋ522eI 0
1/2sinF̃2

a2bv̇0I 0

S
. ~16!

Together Eqs.~13! and~16! form a Hamiltonian system with

H~F̃,D!5SD2/21Vpseudo~F̃ !, ~17!

where

Vpseudo~F̃ !522eI 0
1/2cosF̃1

a2bv̇0I 0

S
F̃. ~18!

The potential,Vpseudo, looks like a tilted series of potentia
wells ~see Fig. 10!. Consequently, the system reduces to
pseudoparticle of slowly varying massS21 moving in a
slowly varying pseudopotentialVpseudo.

The initial phase trapping regime traps the pseudop
ticle into the pseudopotential. Once trapped, the pseudo
ticle will tend to stay trapped so long as~1! its massS21 and

FIG. 10. Critical~dashed line! and typical above-threshold~solid line! nor-

malized pseudopotentialsVpseudo/2eI 0
1/252cosF̃1g F̃ as a function of the

phaseslipF̃, whereg5(a2bv̇0I 0)/2eI 0
1/2S. The critical pseudopotential is

defined by Eq.~19!; i.e., g51.0. The particular above threshold pseudop
tential drawn here is defined byg50.25.
a

r-
r-

the pseudopotential vary slowly, and~2! the pseudopotentia
wells continue to exist. Translated back to the original s
tem, the diocotron mode amplitude will stay locked to dri
frequency@through Eq.~12!# so long as the pseudoparticle
trapped.

We tested the above model by measuring the sm
amplitude oscillation frequency of the pseudoparticle in
well, vosc52p f osc5A2eI 0

1/2S @derived by ignoring thea
2bv̇0I 0 term in Eq. ~18!.# The pseudoparticle oscillation
manifest themselves as the amplitude and phase oscilla
in Fig. 4. Experimentally,f osc scales appropriately withe
~data not shown!. More interesting is the dependence off osc

on the actionI 0 ; f oschas a minimum at an intermediate valu
of the action~see Fig. 11!. The pseudopotential wells are a
their shallowest at this minimum, and, taking into accou
the linear term@(a2bv̇0I 0)F̃/S# in the pseudopotential, ar
in danger of disappearing altogether. Indeed,dVpseudo/dF̃

must be negative at some phaseF̃ for the wells to exist.
Thus, from Eq.~18!

2eI 0
1/2.

a2bv̇0I 0

S
. ~19!

Rewriting,

2eI 0
1/2S5vosc

2 .a2bv̇0I 0 . ~20!

The minimum invosc occurs whend(I 0
1/2S)/dI0 equals zero,

at the critical actionI 0crit5(e/bv0)2/3. Using I 0crit to evalu-
ate the minimum value ofI 0

1/2S yields the minimum oscilla-
tion frequencyvosc min

2 53(bv0)2/3e4/3. Thus, condition~20!
is always satisfied only when the drive amplitude exceed

e.
1

Abv0

S a2bv̇0I 0

3
D 3/4

[ea. ~21!

Above this critical value the pseudopotential has wells, wh
below the wells disappear. Note that~ignoring thebv̇0I 0

term! this condition is identical to the threshold scaling la
Eq. ~1!.

For most system parameters,I 0crit is quite small. Fore
near the critical value@Eq. ~21!#, I 0crit is approximately

FIG. 11. Action versus pseudoparticle oscillation frequency. The dots
measured experimentally, and the line plotsf osc}AI 0

1/2S, where the position
of the minimum and the frequency at the minimum are fit to the data.
drive amplitude was 0.15 Vp2p. The discrepancy between the experime
and theory at large action is due to the supralinear terms in the nonli
frequency@Eq. ~2!#, which are not included in the weakly nonlinear theor
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321/2(bv0)21(a2bv̇0I 0)1/2, which is indeed small for any
reasonable chirp rate. Most of this discussion assume
chirping drive frequency@v̇(t),0# and a constant linea
mode frequency@v̇0(t)50#, yielding aÞ0. When the drive
frequency is constant@v̇(t)50# and the linear mode fre
quency droops@v̇0(t),0#, by Eq. ~5!, a is still nonzero,
namelya52v̇0(t). BecauseI 0crit is small, thea term will
dominate thebv̇0I 0 term in Eq.~21! and the threshold con
dition will remain essentially unchanged.

In summary, autoresonance will occur when the dr
amplitude exceeds the critical value given in Eq.~21!. As
shown in Fig. 4, the trapping oscillations start small~after
the initial trapping period!, reach a maximum at a mode am
plitude corresponding toI 0crit , and then, assuming that de
trapping does not occur, diminish. When the drive amplitu
is well above critical value, the pseudoparticle is dee
trapped and the trapping oscillations are small. But when
drive amplitude approaches the critical value, the trapp
oscillations grow to almost 180°. When the oscillations e
ceed 180° the pseudoparticle escapes by rolling out of
now-vanished pseudopotential wells, and autoresona
fails. SinceI 0crit is small, the autoresonant behavior is det
mined at low mode amplitude. When autoresonance fail
fails at low amplitude; when it succeeds, it grows well b
yond I 0crit , thereby explaining the sharp threshold observ
in Fig. 5.

The critical threshold condition@Eq. ~21!# is exact only
when the system reaches the critical actionI 0crit with little
initial oscillation amplitude. If the frequency sweep is start
too close to the linear frequencyv0 ~Fig. 12!, or if the mode
is already excited before the sweep begins~Fig. 13!, the
threshold condition changes. Sometimes the initial osci
tion lowers the critical drive amplitude, and sometimes
increases the critical drive amplitude, but in all cases
change is surprisingly small.

Finite length and self-shielding effects make it difficu
to calculate the geometric factorA1 required to relate the
threshold drive voltageVa andea in Eq. ~21!. Nevertheless,
the calibration can be found indirectly by expressingVa in
terms of the measured minimum pseudopotential oscilla
frequencyvosc min. One finds

FIG. 12. Experimentally determined critical drive amplitude as a function
( f init2 f 0)/ f 0 , where f init is the drive frequency at the beginning of th
sweep. The drive amplitude is normalized to unity at large2( f init

2 f 0)/ f 0 , andA51.53106 Hz/s.
a

e
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Va5
Vosc

vosc min
3/2

a3/4, ~22!

whereVosc is the drive voltage used to obtain the oscillatio
frequency curve. Using the data in Fig. 11,Vosc

50.15 Vp2p and vosc min/2p5136 Hz, yields Va52.38
31025A 3/4, about 15% higher than the experimental val
~from Fig. 6! of Va5(2.056.05)31025A 3/4. Note that nu-
merical simulations typically find thresholds within 10%
the value predicted by Eq.~21!.

V. STRONGLY NONLINEAR REGIME

In the strongly nonlinear regime, the action approach
one, and theeI 21/2cosF term in Eq.~6! can be neglected
Defining the slowly varying average action via

v0~ t !

12bI 0~ t !
2v~ t !50 ~23!

and usingI 5I 01D allows us to transform Eq.~6! to

Ḋ'22eI 0
1/2sinF̃, ~24!

FP '
bv0~ t !

~12bI 0!2 D, ~25!

or

F̈̃522ebv0

I 0
1/2

~12bI 0!2
sinF̃. ~26!

Thus small oscillations around the slowly varying avera
actionI 0 have frequencyvosc

2 52ebv0I 0
1/2/(12bI 0)2. If the

amplitudes of these oscillations ofD andF̃ aredI anddF̃,
then, from Eq.~24!, voscdI 52eI 0

1/2dF̃. For the system to
stay locked, we requiredF̃,p, while dI /I 0!1 for the va-
lidity of our expansion procedure. On the other hand,
product dF̃dI 5J remains constant under adiabatic con
tions, so we must have simultaneously

f
FIG. 13. Experimentally determined critical drive amplitude as a function
the amplitudeD/Rw of the diocotron mode just before the sweep begi
The parameter space is divided into the three regions indicated on the fi
In the ‘‘sometimes autoresonant’’ region, an individual experimental s
will be autoresonant or not depending on the random phase relation
between the preexisting mode and the drive. The critical drive amplitud
normalized to one at zero initial mode amplitude. For this data,A51.5
3106 Hz/s, andf init515.0 kHz.
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dI

I 0
5

@J~12bI 0!#1/2

I 0
7/8 S 2e

bv0
D 1/4

!1 ~27!

and

dF̃5
J1/2

I 0
1/8~12bI 0!1/2S 2e

bv0
D 21/4

,p. ~28!

By combining these two inequalities,

J2

p4I 0
1/2~12bI 0!2

,
2e

bv0
!

I 0
7/2

@J~12bI 0!#2
. ~29!

Note that if satisfied initially, the right inequality in Eq.~29!
improves continuously asI 0 grows in autoresonance. Th
left inequality also improves untilbI 050.2, or@see Eq.~23!#
until ( f 2 f 0)/ f 05bI 0 /(12bI 0)50.25. Consequently, in the
strongly nonlinear regime, the drive amplitude can be low
at high mode amplitude than at low mode amplitude. T
counter-intuitive phenomenon is illustrated in Fig. 14.

VI. CONCLUSIONS

Autoresonance is a powerful technique for controlli
the amplitude of nonlinear modes. It is a robust method
cause, over a broad range of parameters, it does not de
on the details of the system, nor on the amplitude or ex
range of the sweeping drive. It is insensitive to any init
noise. To the best of our knowledge, the amplitude-chirp r
scaling law@Eq. 21!# is novel to plasma physics and to no
linear dynamics. As with autoresonance in general, the s
ing law does not depend on the details of the system.

The data reported here were all taken atQ’s of approxi-
mately 105. While we have observed autoresonant pheno
enon in diocotron systems withQ’s as low as 60, too low aQ
suppresses autoresonance. Not surprisingly, damping
presses autoresonance more readily at low drive amplit

FIG. 14. Two autoresonant drive amplitude envelopes that experimen
yield autoresonance. The drive frequencies are scaled to the linear res
frequencyf 0 . The standard minimum@Eq. ~21!# autoresonant drive enve
lope is independent of frequency, and, with the normalization used in
graph, would have value one. Autoresonance will still occur if, as the d
frequency is swept upwards, the drive amplitude is decreased accordi
either of the two envelopes shown. Other envelopes will also work so l
as their amplitude in the vicinity of the critical action~just abovef 0) is
greater or equal to one.
r
s

-
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ct
l
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l-

-

p-
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The effects of intermediateQ values include an upward shif
of the critical action, and a reduced amplitude jump at
threshold. As the system is no longer Hamiltonian, our t
oretical analysis is no longer strictly valid and more soph
ticated techniques must be employed. However, whenQ is
sufficiently low, the chirp rate sufficiently small, and th
drive sufficiently large, Mitropolskii’s analysis17 becomes
relevant.

Our theoretical analysis assumes that the oscillato
nonlinear frequency shift scales as the amplitude squa
but since the critical amplitude is low, higher-order corre
tions are unimportant. Thus, the results extend beyond
Duffing equation@ f (D)5 f 0(11bD2)# to the driven pendu-
lum equation, the diocotron mode@ f (D)5 f 0 /(12bD2)#,
and many other driven nonlinear systems.

ACKNOWLEDGMENTS

The authors thank the Office of Naval Research and
Binational U.S.–Israel Science Foundation for funding t
project, and Professor J. S. Wurtele for his helpful co
ments.

1J. Fajans, E. Gilson, and L. Friedland, Phys. Rev. Lett.82, 4444~1999!.
2W. D. White, J. H. Malmberg, and C. F. Driscoll, Phys. Rev. Lett.49,
1822 ~1982!.

3E. M. McMillan, Phys. Rev.68, 143 ~1945!.
4V. Veksler, J. Phys.~USSR! 9, 153 ~1945!.
5D. Bohm and L. Foldy, Phys. Rev.70, 249 ~1946!.
6M. S. Livingston,High-Energy Particle Accelerators~Interscience, New
York, 1954!.

7K. S. Golovanivski, IEEE Trans. Plasma Sci.PS-11, 28 ~1983!.
8L. Friedland, Phys. Plasmas1, 421 ~1994!.
9B. Meerson and L. Friedland, Phys. Rev. A41, 5233~1990!.

10W. K. Liu, B. Wu, and J. M. Yuan, Phys. Rev. Lett.75, 1292~1995!.
11B. Meerson and S. Yariv, Phys. Rev. A44, 3570~1991!.
12G. Cohen and B. Meerson, Phys. Rev. E47, 967 ~1993!.
13L. Friedland, Phys. Rev. E58, 3865~1998!, and references therein.
14L. Friedland, Phys. Rev. E59, 4106~1990!.
15E. V. Appelton, Philos. Mag.47, 609 ~1924!.
16F. M. Lewis, Trans. ASME54, 253 ~1932!.
17Y. A. Mitropolski, Nonstationary Processes in Nonlinear Oscillatory Sy

tems~Izd-vo AN, Kiev, USSR, 1955!, in Russian.
18T. Klinger, F. Greiner, A. Rohde, A. Piel, and M. E. Koepke, Phys. R

E 52, 4316~1995!.
19Jack Wisdom, private communication, 1998.
20J. H. Malmberg, C. F. Driscoll, B. Beck, D. L. Eggleston, J. Fajans,

Fine, X. P. Huang, and A. W. Hyatt, inNonneutral Plasma Physics, edited
by C. Roberson and C. Driscoll~American Institute of Physics, New York
1988!, Vol. AIP 175, p. 28.

21S. A. Prasad and J. H. Malmberg, Phys. Fluids29, 2196~1986!.
22K. S. Fine, Phys. Fluids B4, 3981~1992!.
23The experiments reported here were taken at slightly different trap par

eters than the experiments reported earlier in Ref. 1. These differen
together with long term drifts in the trap, account for the slight differenc
in the reported frequencies and critical drives.

24K. S. Fine and C. F. Driscoll, Phys. Plasmas5, 601 ~1998!.
25In the experiment the receiving and driving sectors do not extend the

length of the plasma, and are separated axially to reduce coupling.
26R. Chu, J. S. Wurtele, J. Notte, A. J. Peurrung, and J. Fajans, Phys. F

B 5, 2378~1993!.
27Such potentials can cause the diocotron frequency to go up or do

change the sign of nonlinear frequency dependence, and have other
ous effects. A study of these effects, in the context of bifurcations
elliptical plasmas, will be published.

lly
ant

is
e
to
g


