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Autoresonant (nonstationary ) excitation of a collective nonlinear mode
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The autoresonar(nonlinear phase lockingnanipulation of the diocotron mode in a non-neutral
plasma is investigated. Autoresonance is a very general phenomenon in driven nonlinear oscillator
and wave systems. By sweeping or chirping the drive frequency, autoresonance allows the
amplitude of a nonlinear wave to be controlled without the use of feedback. The experimental
results, including a novel scaling relation, are in excellent agreement with a simple theoretical
model. These are the first controlled laboratory studies of autoresonance in a collective plasma
system. ©1999 American Institute of Physids§1070-664X99)02512-4

I. INTRODUCTION excursions, but when the mode stays phaselocked, it neces-
sarily follows the drive frequency to high amplitude. If it
oscillator changes with amplitude. If you excite such an os_lostes lock, as sfh_cl)wan(.)lr the 0.087 vﬁ) curr]ve It?\ F'dg'. 4’f
cillator by driving it at its linear resonant frequency, the os-autoresonance faiis. Faiure occurs only when the drive fre-
quency or system parameters are changed too quickly or

cillator's amplitude will grow only marginally before its X . . ) .
shifting frequency causes it to go out of phase with its drive,When the drive amplitude is too small. For a fixed chirp rate

after which the oscillator's amplitude will beat back down to A (the change in the drive frequency per seqottkiere s a

zero. By measuring the oscillator’s instantaneous frequencglrItlcal drive amplitudev, below which the maximum mode

and phase, you could use feedback to grow the oscillator’ mpl?tude Is relatively small and increases_ with the drive
amplitude arbitrarily. But how can you grow the oscillator to amplitude, and above which the mode amplitude follows the

high amplitude without feedback? A general property Ofdr?ve frequ_ency to high amp_litud_e and is independeqt of the
weakly driven, nonlinear oscillators is that, under certaindr've amphtude.. As shown in Fig. 5, -t.he thr_eshold IS very
conditions, theyautomaticallystay in resonance with their sharp. Lower chirp rates have lower critical drive amplitudes.

drives even if the parameters of the system vary in timeTheoretmaIly(see Sec. 1Y,

and/or space. This phenomenon is called autoresonance. For

example, consider an oscillator whose frequency increases Vg x.A4%"3, 1)
with oscillation amplitude. Assume that the oscillator is ini-

tially phase locked to its drive. In autoresonance, sweeping,q is in excellent agreement with the data, as shown in
the drive frequency upwards or downwards will cause a corgiy g

responding increase or decrease in the oscillation amplitude, THe autoresonance concept dates back to McMilard

so that the nonlinear frequency just matches the drive freyaysier® and was further developed by Bohm and FSlfty

quency. A , particle accelerators. The term “phase stability principle”

We have demonstratedutoresonance in a pure-electron 5 ysed to describe the phenomenon in these early studies.

plasma using the diocotron mod@é\ detailed description of The synchrotron, synchrocyclotrérand other, later accel-

the diocotron mode follows, but for now regard the diocotrong ation schemé@ all are based on autoresonance. Recently

mode as a very-higk oscillator whose frequency inCreases e effect has been studied theoretically in atomic and mo-

with amplitude. Typical examples of the autoresonant exciygear physic€¥° nonlinear dynamic&!? nonlinear

tation of this mode by a swept frequency drive are shown i, 4yes!3 and ﬂuio] dynamicg? '

Figs. 1 and 2. Autoresonance can occur for any change in the “JL]mps” and other hysteretic phenomena have long

oscillator parameters, not just for a swept frequency drivey,qan studied in nonlinear dynamisThe swept, or nonsta-

For example, if the linear frequency of the mode decreasegonary excitation of oscillators has also been studied. The

slowly, the mode wiill grow autoresonantly when driven with ;1o "case was solved exactfjand Mitropolskit” has stud-

a constant frequencifig. 3). ied the nonlinear case. None of these studies uncover the
~ For autoresonance to occur, the mode must phaselog eshold and scaling effects discussed here. Entrainment in

with the drive. Normally, phase locking occurs automati- et excited systems like van der Pol oscillat8isears some

cally. As shown in Fig. 4, the mode starts out unlocked to thgegemplance to the results discussed here, as do effects noted

drive, but quickly locks in. There may be substantial phasg, computer modeling of planetary systeffis.

We begin the body of this paper with a discussion of the

dElectronic mail: joel@physics.berkeley.edu diocotron mode. The autoresonant process naturally divides

The oscillation frequency of a nonlinear, Duffing-like
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FIG. 1. Autoresonant response to a swept drifgeMode amplitudeD/R,, . FIG. 3. Response to a constant frequency drive. Autoresonance occurs be-

(b) Drive frequency(solid line), measured linear resonant frequelidgshed cause the system’s linear resonant frequency drops as the plasma expands.
line), and measured excitation frequenci@®)( The driving frequency is  (a) Mode amplitudeD/R,, . (b) Drive frequency(solid ling), measured linear
swept from 20 kHz(well below the linear resonant frequendy 45 kHz resonant frequencfdashed ling and measured excitation frequenci@)(

(well above the linear resonant frequepday 0.067 s and the drive ampli- The drive frequency is 27.4 kHz and the drive amplitude is 0.04ppThe

tude is 0.5 Vp-p. At first, the mode amplitude is small, and has frequency initial linear diocotron frequency is 28.4 kHz, but plasma expansion causes
components at both the drive frequency and the linear diocotron mode frethe linear diocotron frequency to dréBef. 24 by about 14% in 0.5 §The
quency. After the drive frequency passes the linear resonant frequency, tHeckground residual gas pressure was deliberately set high to increase the
amplitude grows autoresonantly, and only one frequency is present. Finallygxpansion ratg.Autoresonant growth occurs only after the linear mode
the amplitude grows large enough to send the plasma into the wall, and thgequency has dropped to the drive frequencyt,=0.11 s.

mode frequency drops precipitously.

. . . _ off center, it undergoes an additiong]x B drift from the
into phase-trapping, weakly nonlinear, and strongly nonlingjectric field of its image. As this drift always points azi-

ear regimes, and each will be discussed in turn. muthally, the plasma orbits around the trap center. This mo-
tion, at frequency, is called the diocotron mode and is very
Il. THE DIOCOTRON MODE stable, lasting for hundreds of thousands of rotations.

The diocotron is a very basic mode in pure-electron plasi ?hss_ur;mtgg] théllt tth_e ]f_)l?;m? _tco!umn S ch_arge per. unit
mas confined in a Malmberg-Penning tr&psThese traps ength isA, the electric field of its imagek;, is approxi-

consist of a series of collimated conducting cylinders im_mately “’;‘d'a'z and constgnt across the_ plasnts,
mersed in a strong, axial magnetic fiddd(see Fig. 7. The ~2\D/(R,—D") (cgs-Gaussian unitsHereR,, is the wall

plasma forms a cylindrical column inside a center cylinder.rad'us' andD is the offset of the plasma column from the

Longitudinal confinement is provided by appropriately bias-
ing the end cylinders. Radial confinement is provided by the 0.8 . . . .
axial magnetic field. Th&X B drifts which result from the @ 0.200Vp-p
plasma’s self-electric field cause the plasma to rotate around 06 [ 0.115Vp-p
itself (see Fig. 8 In global thermal equilibrium, the plasma -
rotates rigidly with frequencyfr; in the partially equili-

brated plasmas used in this work the plasma’s self-rotation
rate is only approximately constant. If the plasma is moved
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FIG. 2. Autoresonant response to a sawtooth swept di@yeMode ampli- .
tudeD/R,,. (b) Drive frequency(solid line), measured linear resonant fre- Time (ms)
quency (dashed ling and measured excitation frequencie®)( The
1.5 Vp—p drive is repeatedly swept up and down between 22 and 31 kHzFIG. 4. (a) Mode amplitudeD/R,, as a function of time for drive amplitudes
The mode amplitude grows when the drive frequency is swept upwards, an@f 0.087, 0.093, 0.115, and 0.200 ¥p. (b) Mode phase relative to the
damps when the drive frequency is swept downwards. Notice that only thélrive as a function of time. Phase locking occurs in 30 ms or less. To
drive frequency is present in the autoresonant region when the drive freimprove visibility, the curves are displaced by 0.03ahand 360 degrees in
quency is above the linear frequency, while the drive and the linear modéb). The phases far<75 ms are noisy because the mode amplitude is small.
frequencies are both present when the drive frequency is below the lineakll data are taken at a chirp rate oA=6.8x10*Hz/s, starting atf;,;

frequency. =20.0 kHz.
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p= o The experiments reported here were donBatl485 G
41 . . . .
ettt * 1 in a trap with wall radiuk,,= 1.905 cm. The plasma density
Olesseet*t™ was approximately 10’ cm™ 3, temperaturd =1 eV, and
0.00 0.04 008 0.12 0.16 020 2.00 plasma radius 0.6cm. The measured linear diocotron
3 .
Drive Amplitude (Vp-p) frequency® was approximately 26.5 kHz. The plasma was

confined within negatively biased cylinders separated by
FIG. 5. Autoresonant response near thresh@dMode amplitudeD/R,, as ~ 10.25 cm. Finite length and radius effects, discussed in Ref.
gefggi;ion Orfxl timfh fto trhdlrrive e pli:“‘iﬁs 0029%1%% ooélozov 0r:195'_ and 24, increase the linear frequency from that given by @g.
e-ssentiém/pi.der?tiial(ﬁ) szienfﬁrcr)l ?neotfe a?npiitudeaas a. func%gnlvoefsdlﬁve by approxmately_ 40% _an_d also modify the dependence on
amplitude. Near the drive threshold voltage 0.193p the response is D- We have obtained similar autoresonance effects for plas-
bimodal; some shots stay low, while other shots go to high amplitt@e. mas of various lengths, densities, and radii, confined by mag-
The fraction (_)f shots near threshold that go to high amplitude. All data arenatic fields of various strengths.
taken at a chirp rate gfl=2X 10° Hzis. We drive the mode by applying a signal to a second,
driving sectoNp .2° This driving signal creates electric fields
which induce additional drifts. As we generally use weak
driving signals, these drifts are much smaller than the rota-
tion and diocotron drifts. Nevertheless, because of phase
locking, these drifts are sufficient for efficient control of the
: (20  diocotron mode.

Formally, the mode obeys the following equatiths

where fo=wo/2r=c\/7BRZ is the linear resonant fre- _ c oV
guency. Note that the mode frequency increases with mode D= -— ,
amplitude?>?? Experimentally, we can determine both the BD 30
mode frequency and amplitude by measuring the image 3
charge at a particular angle on the trap wall as a function of
time. More precisely, we measure the time dependence of the
surface charge on an azimuthal sector like the one labéjed
in Fig. 8. The received signal is calibrated to the displace-
mentD by imaging the plasma on the phosphor screen at the
end of the trap.

center, i.e., the mode amplitude. The diocotron mode fre
quencyf follows by equating 2-fD to cE;x B/B?, giving

1
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FIG. 8. Endview of the trap showing the confining wallRy, the pickup
FIG. 6. Critical amplitudeV, vs. chirp rateA. Measured results®), and V, and driveVy sectors, the plasma at angleand distanc® from the trap
theoretical prediction from Ed1) (solid line). The proportionality constant  center, the self-electric field, the self-rotation driff;, the plasma image,
in Eq. (1) is fit to the data. the image electric fiel&; , and the diocotron drift at frequendy
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where the drive potential is E 001 E
< Driven modes ]
* D | % 0.001 Homogenious
V(D,6,t)=Rg >, A —) exi(l6—¢)]Vo |, 4 g T pmed 3
=0 "\Ry =
andV, and ¢= [ w(t) dt are the amplitude and phase of the 0.0001 L. T A
drive. TheA, are the appropriate geometric factors for ebch i '. i -
component. If we assume that the drive frequency is swept Time (ms)

lmearly’ the drive frequency IS FIG. 9. Linear regime growth. The drive for the lower data, 0.050 myp

o(t)= wo(t) + at, (5) is 25 times Igwer than the drive for the upper c!ata. Averaging techniques
used to obtain the lower data preclude measuring the homogeneous mode

wherea =2 A is the chirp rate. To account for variations in for this drive. All data were taken with a chirp rate @f=1.7x 10° Hz/s.
the system parameters, we allawy(t) to be a slow function ~ The initial frequency was;y,=15.0 kHz.
of time. Usually wq(t) is constant, but variations img(t)
can be caused by plasma expangias in Fig. 3, azimuth-
ally dependent static potentials applied to the trap wAlts,
other system manipulations.

Equation (3) is best transformed to action-angle vari-
ables. We retain only the resonart=(1) term in Eq.(4),
define the action=(D/R,)?, and rewrite Eq(3) as

Assuming that the net amplitude &ttg is zero, the two
modes have equal amplitude, are proportional to the drive,
and inversely proportional to the deviatidhw(ts) = w(ts)
—wo(ts) = atg from the linear frequency. Thereafter, just
like in a steady state SHO, the amplitude of the driven mode
continues to be approximately inversely proportional to
| =2elY%sind, Aw(t). Thus the mode grows proportional tat.1Remark-

(6) ably, the homogeneous mode is not further excited by the
sweeping frequency. This behavior is demonstrated in Fig. 9.
Other experimentgnot shown have verified all the propor-

Lo _ . tionalities (with «, €, tg, etc).
here the phaseslip &= 60— =cA,V,/BR% is th s
where the phaseslip =6 ¢, ande=cA;Vo/BR, is the The driven mode locks to the drive, while the homoge-

normalized drive amplitude. The fact@rgeneralizes Eq.3) de f Th ¢ mot £ the ol |
to account for a broad class of finite length and radius cor/1€0US MOde Iree runs. The net motion of the plasma column
rections to the linear frequené§.For our experiments3 is is the sum of the driven and homogeneous modes. Initially,

measured to be approximately 0.60. These equations aléﬁe net motion will not be phaselocked to the drive because
o the amplitudes of the two modes are comparable. But since

follow from the isolated-resonance action-angle Hamiltonian . ) ;
. the driven mode amplitude grows while the homogeneous
for the diocotron mod@ . : : : :
mode amplitude is constant, the driven mode will soon domi-
wo(t)

nate, and the net motion will quickly phaselock. The phase
B

locking process is easily visible in Fig(). The occurrence
. . . of automatic phase locking is not self-evident, as the system,
Note that Eqs(6) differ from those in the classical theory of P 9 y
nonlinear resonance by the slow variationegf and o with

in a Hamiltonian picture, has to cross the separatrix between
time.

L wo(t) —12
o= -4l w(t)+el ™+ “cosd,

H(l,0;t)=— In(1—B1)+2elYcog 60— ). (7)

streaming and trapped orbits.

IIl. LINEAR, PHASE-TRAPPING REGIME IV. WEAKLY NONLINEAR REGIME

Since the drive amplitude is assumed to be small, the Ngartzo,_ the_mode grows out of Fhe I|ne§1r regime and
mode is in the linear regime when the drive is first applied.smps increasing like ./ Retaining the first nonlinear correc-

Then Eq.(6) describes a driven simple harmonic oscillatortion to the frequency in Eq6) yields

(SHO): I=2elY%sind, 9
oy 12 :
| =2l YZsind, © D =wy(1+B1)—w+el ~Y2cosd, (10
D =wy(t)— w(t)+el ~Ycosd. where we have suppressed the time dependencieg and

. Assuming that these frequencies are slowly varying, we

first applied, to roughlyt=0 when the drive frequency write_l =lo+A; the action oscillates Wi.th quickly—varying
equals the linear resonant frequency. EquatiéBls were amplitude A (t) around t_he slowly evolving average zictlon
solved exactly in terms of Fresnel sine and cosine functiongo(t)- By further assuming tha is small, and® =+ &,

by Lewis® However, the behavior of the solution can be Ed- (10) simplifies to

understood quite simply. Like any SHO, the sudden applica-, 6 B E B
tion of the drive excites a driven mode at the drive frequencyp= ( Bwgy+ _3/2COS(I)) A—at+ Bwglg— —cosP.  (11)
and an undriven, homogeneous mode at the linear frequency. 21 '

The linear regime extends from timg<0 when the drive is

0 0
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FIG. 10. Critical(dashed lingand typical above-thresholdolid line) nor-
malized pseudopotentialé,e,qf2¢l 5= —cosd+y P as a function of the

phaseslipb, wherey=(a— Bwql 0)/2¢13%S. The critical pseudopotential is
defined by Eq(19); i.e., y=1.0. The particular above threshold pseudopo-
tential drawn here is defined by=0.25.

Next, we assume thab is small, and set coB~1 in this
equation. We defingy(t) by setting the last three terms on
the right-hand side to zero:

—=0
Io(t)l/Z
This is equivalent to defininty(ty) to be equal to the steady-
state excitation amplitude for a drive of amplitudeand
constant drive frequencyy+ aty. Using Eq.(12), Eq. (11)
reduces to

d=3A, (13
where the slowly varying paramet8&ris
S=Bwot —5- (14
213
Differentiating Eq.(12) and solving fori0 yields
a— Bwol a— Bwol
B Bwgly  a—Bwgy 0 (15

® Bwgt+el2¥? S

This expression can be used to evaluitel —1,. To lowest
order,

. - a—Bwl
A=—26I$’%in¢—$. (16)
Together Eqgs(13) and(16) form a Hamiltonian system with
H(®,A)=SA%2+Vpseuab D), 17
where
~ 1/2 ~ a’_ﬁ(.l)olo,..
Vipseudd @) = — 2€l 5 “cosd + Td). (18

The potential Vseudo 00ks like a tilted series of potential
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FIG. 11. Action versus pseudoparticle oscillation frequency. The dots are
measured experimentally, and the line plfige \/IOI 7S, where the position

of the minimum and the frequency at the minimum are fit to the data. The
drive amplitude was 0.15 Vfpp. The discrepancy between the experiment
and theory at large action is due to the supralinear terms in the nonlinear
frequency[Eq. (2)], which are not included in the weakly nonlinear theory.

the pseudopotential vary slowly, ai@) the pseudopotential
wells continue to exist. Translated back to the original sys-
tem, the diocotron mode amplitude will stay locked to drive
frequency[through Eq.(12)] so long as the pseudoparticle is
trapped.

We tested the above model by measuring the small-
amplitude oscillation frequency of the pseudopatrticle in the
well, wos=27f o5 \/2e|01725 [derived by ignoring thea
— Bwol, term in Eq.(18).] The pseudoparticle oscillations
manifest themselves as the amplitude and phase oscillations
in Fig. 4. Experimentally f,s. Scales appropriately witle
(data not shown More interesting is the dependencefgf;
on the actiorly; f,schas a minimum at an intermediate value
of the action(see Fig. 11 The pseudopotential wells are at
their shallowest at this minimum, and, taking into account
the linear ternj (a— Bwl o) /S] in the pseudopotential, are
in danger of disappearing altogether. Inded&’,pseud({dfl')

must be negative at some phadefor the wells to exist.
Thus, from Eq.(18)

a— Bay|
25|3/2>ﬂ. (19)
S
Rewriting,
2€l3?S= wi, > a— Bwglg. (20)

The minimum inw. occurs wherd(1325)/d 1, equals zero,
at the critical actior o= (€/ Bwe) 2. Usingl i to evalu-
ate the minimum value df}’’S yields the minimum oscilla-
tion frequencyw2. mi=3(Bwo)?*>. Thus, condition20)
is always satisfied only when the drive amplitude exceeds
a— Bwol o) 3/4

3 =€,.

(21)

1
>m(

wells (see Fig. 10 Consequently, the system reduces to aAbove this critical value the pseudopotential has wells, while

pseudoparticle of slowly varying mas$ ! moving in a
slowly varying pseudopotentiMseygo

below the wells disappear. Note thégnoring the Bwql,
term) this condition is identical to the threshold scaling law

The initial phase trapping regime traps the pseudoparkq. (1).

ticle into the pseudopotential. Once trapped, the pseudopar-

ticle will tend to stay trapped so long éB) its massS™* and

For most system parameteig,,;; is quite small. Fore
near the critical valudEq. (21)], 1o is approximately
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FIG. 13. Experimentally determined critical drive amplitude as a function of

FIG. 12. Experimentally determined critical drive amplitude as a function Ofthe amplitudeD/R,, of the diocotron mode just before the sweep begins.

(finie = fo)/To, Whemfi"“ IS the ‘_’”Ve frquency at th? beginning of the 1, parameter space is divided into the three regions indicated on the figure.

sweep. The drive amplitude is normalized to unity at larggfin In the “sometimes autoresonant” region, an individual experimental shot

—fo)/fo, andA=1.5x10° Hzls. will be autoresonant or not depending on the random phase relationship
between the preexisting mode and the drive. The critical drive amplitude is
normalized to one at zero initial mode amplitude. For this data 1.5

372 Bwg) " Y a— Baol o) M2 which is indeed small for any %10 Hzls, andfyy=15.0 kHz.

reasonable chirp rate. Most of this discussion assumes a

chirping drive frequency w(t)<0] and a constant linear

mode frequencywo(t)=0], yielding a# 0. When the drive ~ Vose a4
) - . Vo=—— a4

frequency is constar[tw(t)ZO] and the linear mode fre- a,g/szc in

quency droopz{wo(t)<0], by Eq_. (8, a is stil nonzero, whereV . is the drive voltage used to obtain the oscillation

namelya= —wp(t). Becausd i is small, thea term will frequency curve. Using the data in Fig. 1N

dominate theBwol o term in Eq.(21) and the threshold con- =0.15Vp-p and wos md27=136Hz, yields V,=2.38

dition will remain essentially unchanged. X 1075.4%4 about 15% higher than the experimental value

In summary, autoresonance will occur when the drive(from Fig. 6 of V,=(2.05+.05)x 10" °.4%4 Note that nu-

amplitude exceeds the critical value given in EB1). As  merical simulations typically find thresholds within 10% of

shown in Fig. 4, the trapping oscillations start sm@lfter  the value predicted by Eq21).

the initial trapping period reach a maximum at a mode am-

plitude corresponding tby., and then, assuming that de-

trapping does not occur, diminish. When the drive amplitudey, STRONGLY NONLINEAR REGIME

is well above critical value, the pseudoparticle is deeply ) ) .

trapped and the trapping oscillations are small. But when the N the Stro’l%l)z’ nonlinear regime, the action approaches

drive amplitude approaches the critical value, the trappin%”eg and theel ~“*cos® term in Eq.(6) can be neglected.

oscillations grow to almost 180°. When the oscillations ex-Pe€fining the slowly varying average action via

ceed 180° the pseudoparticle escapes by rolling out of the wo(t)

now-vanished pseudopotential wells, and autoresonance m—w(tFO (23)

fails. Sincel o is small, the autoresonant behavior is deter- 0

mined at low mode amplitude. When autoresonance fails, i&nd usingl =1+ A allows us to transform Ed6) to

(22

fails at low amplitude; when it succeeds, it grows well be- : Yo =
yond | i, thereby explaining the sharp threshold observed A~—2elg'sin®, (4
in Fig. 5. . Bwo(t)

The critical threshold conditiofEq. (21)] is exact only ~ A= B1y)2 A, (25
when the system reaches the critical actigg,, with little
initial oscillation amplitude. If the frequency sweep is startedOr
too close to the linear frequenayy (Fig. 12), or if the mode |12
is already excited before the sweep begifgy. 13, the d=-2eBwy———— sind. (26)
threshold condition changes. Sometimes the initial oscilla- (1-Blg)?

tion lowers the critical drive amplitude, and sometimes ity ;s small oscillations around the slowly varying average
increases the critical drive amplitude, but in all cases theolctionlo have frequencyo. = 2eBwol Y4 (1— Blg)2. If the
osc 0 .

change is surprisingly small. . et ~ ~
Finite length and self-shielding effects make it difficult amplitudes of these OSC'”atlonsg a~nd<1> are ol and o,
to calculate the geometric factdy, required to relate the then, from EQ.(24), wesdl =2¢€l5"6d. For the system to

threshold drive voltag®, and €, in Eq. (21). Nevertheless, stay locked, we requiré® <, while 51/1,<1 for the va-
the calibration can be found indirectly by expressiwigin  lidity of our expansion procedure. On the other hand, the
terms of the measured minimum pseudopotential oscillatioproduct 8® 51 =J remains constant under adiabatic condi-
frequencywysc min- ONe finds tions, so we must have simultaneously
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12 — . ‘ . The effects of intermediat® values include an upward shift
2 10 of the critical action, and a reduced amplitude jump at the
2% threshold. As the system is no longer Hamiltonian, our the-
gz 08 oretical analysis is no longer strictly valid and more sophis-
?{}1; 0.6 ticated techniques must be employed. However, wQes
'T:,.g 04 sufficiently low, the chirp rate sufficiently small, and the
g% drive sufficiently large, Mitropolskii's analysi§ becomes
Z g 02 relevant.
0.0 L . ‘ . ‘ ‘ ‘ Our theoretical analysis assumes that the oscillator’s
02 01 006 01 02 03 04 nonlinear frequency shift scales as the amplitude squared,
o but since the critical amplitude is low, higher-order correc-

FIG. 14. Two autoresonant drive amplitude envelopes that experimentall}'ons_ are unlr_nportant. Thus, the Zresults eXte_nd beyond the
yield autoresonance. The drive frequencies are scaled to the linear resondauffing equatior f(D) =f,(1+ 8D<)] to the driven pendu-
frequencyf,. The standard minimurfiEq. (21)] autoresonant drive enve- |um equation, the diocotron modé (D)= fol(l—IBDz)],

lope is independent of frequency, and, with the normalization used in thisand many other driven nonlinear systems.
graph, would have value one. Autoresonance will still occur if, as the drive

frequency is swept upwards, the drive amplitude is decreased according to

either of the two envelopes shown. Other envelopes will also work so lonACKNOWLEDGMENTS
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