
Introduction to GPU programming
with OpenACC
Research Computing Bootcamp

November 1st, 2019

Stéphane Ethier
(ethier@pppl.gov)

Princeton Plasma Physics Laboratory
Slides: http://w3.pppl.gov/~ethier/ PICSCIE/ Intro_to_OpenACC_Nov_2019.pdf

http://w3.pppl.gov/~ethier/%20PICSCIE/%20MPI_OpenMP_tutorial_Dec_2018.pdf

How to program GPUs

• Several possibilities
– CUDA: NVIDIA-specific programming language built as an extension of standard C language.

Best approach to get the most out of your GPU. CUDA kernels not portable though. Also
available for FORTRAN but only through the PGI compiler.

– OpenACC compiler directives similar to OpenMP. Portable code. Easy to get started. Available
for a few compilers. Now can also run on CPU!

– OpenMP via the “target” directive. Not quite as full-featured as OpenACC but getting there
– Libraries, commercial software, domain-specific environments, . . .
– OpenCL: open standard, platform- and vendor independent

• Works on both GPU AND CPU.
• Very complex. Even harder than CUDA…
• Very small user base (low adoption)

Hardware considerations affecting GPU
programming

• Keep “kernel” data
resident on GPU
memory as much as
possible

• Avoid frequent copying
between CPU and GPU

• Use asynchronous, non-
blocking,
communication, multi-
level overlapping

V100 GPU
~ 7TF

CPU
~150GF

32 GB
GDDR5

256 GB
DDR3

~800 GB/sec~50 GB/sec

PCIe
16 GB/sec

Bottleneck!

Nvidia NVLINK on IBM Power 9 system
= 75 GB/sec (150 GB/s both ways)

The secret to GPU high throughput:
massive multi-threading + interleaving

http://s08.idav.ucdavis.edu/fatahalian-gpu-architecture.pdf

NOT SIMD but
rather

SIMT!
Single Instruction
Multiple Threads

255 registers per
thread!!

What to do first…
• MOST IMPORTANT:

– Find the most time-consuming sections of your code
HOW? Use Profiler tool!! (ARM MAP for example)

– Find and expose as much parallelism as you can in your code
– You need LOTS of parallel operations to keep the GPU busy!
– Try to remove as many dependencies as you can between successive

iterations in a loop.
– The ideal case is when each iteration is completely independent from

the others è VECTORIZATION

Compiling an OpenACC code with PGI
• pgcc –acc –Minfo=all –Mneginfo (same for pgcc and

pgCC), or –Minfo=accel
– –Minfo=all outputs messages from the compiler about

optimization, parallelization, etc.
– –Mneginfo Outputs messages about why a section was not

vectorized or parallelized
• Add target hardware: –ta=tesla:cc70 (for V100)

– Use “pgaccelinfo” on GPU node to find above CUDA version (7.0 here
for Tesla Volta V100, 3.5 for K40c)

Resources at Princeton

• Tiger computer
– https://www.princeton.edu/researchcomputing/computational-hardware/tiger/
– Nvidia Tesla “Pascal” P100 GPUs!
– Access to GPU partition via SLURM (#SBATCH –gres=gpu:4)
– https://www.princeton.edu/researchcomputing/education/online-tutorials/getting-started/

• Adroit
– 1 node with 4 x V100 Volta GPU (newer than Pascal) and 1 node with 2 K40c

• Use SLURM command scontrol show node to view the hardware on
the cluster

https://www.princeton.edu/researchcomputing/computational-hardware/tiger/
https://www.princeton.edu/researchcomputing/education/online-tutorials/getting-started/

OpenACC
• http://www.openacc.org
• Directive-based programming model to direct the compiler in generating GPU-specific

instructions
• Least changes to your code
• It is portable across different platforms and compilers
• Not all compilers support OpenACC though

– PGI, CRAY, CAPS, GCC-6, although PGI is the best
• With PGI, the same OpenACC code can run in parallel on both multi-core CPUs and

GPUs! (OpenMP trying to do the same…)
• Hides a lot of the complexity
• Works for Fortran, C, C++
• Not as much control over the GPU hardware though. To extract the last bit of

performance, CUDA probably a better choice

http://www.openacc-standard.org

What are directives?

• In C/C++, preprocessor statements
ARE directives. They “direct” the
preprocessing stage.

• Parallelization directives tell the
compiler to add some machine code
so that the next set of instructions will
be distributed to several processors
and run in parallel.

• In FORTRAN, directives are special
purpose comments

• In C/C++, “pragmas” are used to
include special purpose directives

C:
#pragma acc parallel loop
for (idx=1; idx <= n; idx++) {

a[idx] = b[idx] + c[idx];
}

Fortran:
!$acc parallel loop
do idx=1,n

a(idx) = b(idx) + c(idx)
enddo

Can also be “kernels”

Example of OpenACC directive in Fortran

subroutine smooth(a, b, w0, w1, w2, n, m)
real, dimension(:,:) :: a,b
real :: w0, w1, w2
integer :: n, m
integer :: i, j

!$acc parallel loop
do i = 2,n-1
do j = 2,m-1
a(i,j)= w0 * b(i,j) + &

w1 * (b(i-1,j) + b(i,j-1) + b(i+1,j) + b(i,j+1)) + &
w2 * (b(i-1,j-1) + b(i-1,j+1) + b(i+1,j-1) + b(i+1,j+1))

enddo
enddo

It can be as simple as the following:

Accelerator compute constructs (2 possibilities)
#pragma acc parallel [clause-list] newline

{ structured block, almost always a loop}

!$acc parallel [clause-list]
structured block, !$acc loop

!$acc end parallel

#pragma acc kernels [clause-list] newline
{ structured block}

!$acc kernels [clause-list]
structured block

!$acc end kernels

Parallel construct is more explicit
and gives the programmer more
responsibility on how the work
will be divided between gangs,
workers, and vector.

Kernels construct is more
implicit. It relies on the compiler
to divide the work by creating an
unspecified number of kernels to
run on the GPU. Good place to
start for beginners!

Exercise code: Jacobi iteration
• Iteratively converges to correct value (e.g. Temperature), by computing

new values at each point from the average of neighboring points.
– Common, useful algorithm
– Example: Solve Laplace equation in 2D: 𝛁𝟐𝒇(𝒙, 𝒚) = 𝟎

A(i,j) A(i+1,j)A(i-1,j)

A(i,j-1)

A(i,j+1)
𝐴,-. 𝑖, 𝑗 =

𝐴,(𝑖 − 1, 𝑗) + 𝐴, 𝑖 + 1, 𝑗 + 𝐴, 𝑖, 𝑗 − 1 + 𝐴, 𝑖, 𝑗 + 1
4

Exercise code: Jacobi iteration
while (error > tol && iter < iter_max)
{

error=0.0;

for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
A[j-1][i] + A[j+1][i]);

error = max(error, abs(Anew[j][i] - A[j][i]);
}

}

for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];
}

}

iter++;
}

Iterate until converged

Iterate across matrix
elements

Calculate new value
from neighbors

Compute max error for
convergence

Swap input/output
arrays

Exercise #1
• Log onto adroit: ssh -Y adroit.princeton.edu
• Load the PGI compiler module:

– module purge
– module load pgi

• Copy the following directory in your home directory:
– cp –r /home/ethier/Fall_Bootcamp_2019/OPENACC .

• Pick C or Fortran and “cd” into corresponding directory:
– cd OPENACC/C (or Fortran)

• Build and run the code:
– make exercise (have a look at the compiler messages)
– sbatch slurm_script

Exercise #1 continued
• Add acc parallel loop at the proper locations
• Run again…
• Did it work? How do the timings compare?

• Set the environment variable PGI_ACC_NOTIFY to 3 to get useful
information and run again
– export PGI_ACC_NOTIFY=3

• What do you see?
• Try using acc kernels instead of parallel loop. Is there a

difference?
• Let’s use the Nvidia profile nvprof and its graphical interface nvvp

Hmm... I thought that GPUs were fast
PROGRAM main
INTEGER :: a(N)
<stuff>
!$acc parallel loop
DO i = 1,N

a(i) = I

ENDDO
!$acc end parallel loop
!$acc parallel loop
DO i = 1,N

a(i) = 2*a(i)
ENDDO

!$acc end parallel loop
<stuff>
END PROGRAM main

• Two accelerator parallel region
• Compiler creates two kernels

– Loop iterations automatically divided across
gangs, workers, vectors

– Breaking parallel regions acts as a barrier
• First kernel initializes array

– Compiler will determine copyout(a)
• Second kernel updates array

– Compiler will determine copy(a) (in and out)
• Array a(:) unnecessarily moved from and to

GPU between kernels
– "data sloshing"

Much improved version…
PROGRAM main
INTEGER :: a(N)
<stuff>

!$acc data copyout(a)
!$acc parallel loop

DO i = 1,N

a(i) = I
ENDDO

!$acc end parallel loop
!$acc parallel loop

DO i = 1,N
a(i) = 2*a(i)

ENDDO
!$acc end parallel loop

!$acc end data
<stuff>
END PROGRAM main

• Now added a data region
• Specified arrays only moved at boundaries of data

region
• Unspecified arrays moved by each kernel
• No compiler-determined movements for data regions
• Data region can contain host code and accelerator

regions
• Host and device arrays are independent of each other
• No automatic synchronization of copies within data

region
– User-directed synchronization via update

directive

Data clauses
copyin (list) Allocates memory on GPU and copies data from host to GPU

when entering region.
copyout (list) Allocates memory on GPU and copies data to the host when exiting

region.
copy (list) Allocates memory on GPU and copies data from host to GPU when

entering region and copies data to the host when exiting region.
(Structured Only)

create (list) Allocates memory on GPU but does not copy.
delete(list) Deallocate memory on the GPU without copying. (Unstructured

Only)
present (list) Data is already present on GPU from another containing data

region.

Pay special attention to data structures if working
with older versions of PGI compiler

• PGI <18.7 DOES NOT support “deep copy” of data structures.
• Both in C/C++ and Fortran, it is not sufficient to copy the pointer to the

structure to GPU
• Copy the pointer first
• Then copy each element (vectors, arrays, etc.) explicitly (deep copy)
#pragma acc data copyin(A) \
copyin(A.row_offsets[:num_rows+1],A.cols[:nnz],A.coefs[:nnz])

Exercise #2
• Go back to the Jacobi example and add some data clauses to improve data

movement
• Which ones do you need?
• Recompile, run, and profile again

Example of OpenACC vs CUDA

• Simple example: REDUCTION (4 lines of Fortran)

a=0.0

do i = 1,n
a = a + b(i)

end do

Reduction in “simple” CUDA

Ref: SC13 OpenACC tutorial, Luiz DeRose, Alistair Hart, Heidi Poxon, & James Beyer

Slower th
an

OpenACC

Version!!

Reduction code in optimized CUDA

Ref: SC13 OpenACC tutorial, Luiz DeRose, Alistair Hart, Heidi Poxon, & James Beyer

OpenACC version of the Reduction code
(10 lines à the compiler does the rest)

!$acc data present(a,b,n) start data region. a,b,n already in GPU memory
a = 0.0 “a” is set to zero on the host (CPU) but not on the “device” (GPU)

!$acc update device(a) host changed the value of “a” so update GPU “a”
!$acc parallel start code region (kernel) that will run on GPU
!$acc loop reduction(+:a) split loop between threads, reduction on “a”

do i = 1,n
a = a + b(i)

end do
!$acc end parallel end of kernel region
!$acc end data end of data region

Complete OpenACC specification

http://www.openacc.org/specification

And Programming guide:

http://www.openacc.org/sites/default/files/OpenACC_Programming_Guide_0.pdf

http://www.openacc.org/specification
http://www.openacc.org/sites/default/files/OpenACC_Programming_Guide_0.pdf

Extremely useful online resources
• OpenACC resources

– www.openacc.org/resources (tutorials, videos, guides, …)
• Nvidia courses and tutorials

– https://developer.nvidia.com/accelerated-computing-training
– https://developer.nvidia.com/openacc-courses

• Watch the courses
• Look for link to “OpenACC Toolkit Download” at the bottom
• Sign up for “Qwiklabs”: https://developer.nvidia.com/qwiklabs-signup

• PGI compiler http://www.pgroup.com/
– Check documentation for compiler, PGPROF, and OpenACC acceleration

at http://www.pgroup.com/resources/accel.htm

http://www.openacc.org/resources
https://developer.nvidia.com/accelerated-computing-training
https://developer.nvidia.com/openacc-courses
https://developer.nvidia.com/qwiklabs-signup
http://www.pgroup.com/
http://www.pgroup.com/resources/accel.htm

