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Why Parallel Computing?
Why not run n instances of my code? Isn’t that parallel computing?
YES… but
• You want to speed up your calculation because it takes a week to run!
• Your problem size is too large to fit in the memory of a single node
• Want to use those extra cores on your “multicore” processor
• Solution:

– Split the work between several processor cores so that they can work in parallel
– Exchange data between them when needed

• How?
– Message Passing Interface (MPI) on distributed memory systems (works also 

on shared memory nodes)
– OpenMP directives on shared memory node
– and some other methods not as popular (pthreads, Intel TBB, Fortran Co-Arrays)



Programming for HPC: MPI+X
Top 5 of the Nov 2020 List of the top supercomputers in the world (www.top500.org) 

4,608 nodes

4,320 nodes

158,976 nodes

https://www.top500.org/


Languages and libraries for parallel computing
• MPI for distributed-memory parallelism (runs everywhere except GPUs)
• Multithreading or “shared memory parallelism”

– Directive-base OpenMP (deceptively easy) www.openmp.org (!$OMP DO)
– POSIX pthread programming (explicit parallelism, somewhat harder than MPI since one needs 

to manage threads access to memory).
– GPGPU (General-Purpose Graphical Processing Unit) programming with CUDA (nvidia), 

OpenACC or even OpenMP
• PGAS global address space SPMD languages (using GASNet layer or other)

– Efficient single-sided communication on globally-addressable memory
– FORTRAN 2008 co-arrays
– UPC (http://upc.lbl.gov/): Similar to co-array Fortran but for C.

http://www.openmp.org/
http://upc.lbl.gov/


Tiger system at Princeton
TigerCPU TigerGPU

408 Intel Skylake nodes 80 Intel Broadwell nodes
320 Nvidia P100 GPUs

40 cores per node
Multi-core CPU!

28 cores per node
4 Nvidia Tesla P100/node

192 GB memory per node
(shared by all 40 cores)

720 GB/node CPU mem
16 GB/GPU

OmniPath interconnect 
network

Omnipath interconnect

MPI works on all parallel systems!



MPI works on all parallel systems

Even on Tiny-Titan! 9 Raspberry Pis connected together 

https://www.olcf.ornl.gov/2014/06/02/titans-tiny-counterpart-engages-educates/

https://www.olcf.ornl.gov/2014/06/02/titans-tiny-counterpart-engages-educates/


Reason to use MPI: Scalability and portability
Distributed memory parallel computers (inter-node parallelism) 

– Each (operating system) process has its own virtual memory and cannot access 
the memory of other processes

– A copy of the same executable runs on each MPI process (processor core)
– Any data to be shared must be explicitly transmitted from one to another

Most message passing programs use the single program multiple 
data (SPMD) model

– Each process executes the same set of instructions asynchronuously
– Parallelization is achieved by letting each processor core operate on a 

different piece of data
– Not to be confused with SIMD: Single Instruction Multiple Data a.k.a

vector computing



How to split the work between processors?
Domain Decomposition

• Most widely used method for grid-based calculations



How to split the work between processors?
Split matrix elements in PDE solves

• See PETSc project:  https://www.mcs.anl.gov/petsc/ 



How to split the work between processors?
“Coloring”

• Useful for particle simulations (Particle-in-Cell, MD)
Proc 0 Proc 1 Proc 2 Proc 3 Proc 4



What is MPI?
• MPI stands for Message Passing Interface.
• It is a message-passing specification, a standard, for the vendors to 

implement.
• In practice, MPI is a set of functions (C) and subroutines (Fortran) used for 

exchanging data between processes.
• An MPI library exists on ALL parallel computing platforms so it is highly 

portable.
• The scalability of MPI is not limited by the number of processors/cores on 

one computation node, as opposed to shared memory parallel models.
• Also available for Python (mpi4py.scipy.org), R (Rmpi), Lua, and Julia!    

(if you can call C functions, you can use MPI...)



MPI standard
• MPI standard is a specification of what MPI is and how it should behave. Vendors have 

some flexibility in the implementation (e.g. buffering, collectives, topology optimizations, 
etc.).

• This tutorial focuses on the functionality introduced in the original MPI-1 standard
• MPI-2 standard introduced additional support for

– Parallel I/O (many processes writing to a single file). Requires a parallel filesystem to be 
efficient

– One-sided communication: MPI_Put, MPI_Get
– Dynamic Process Management

• MPI-3 standard starting to be implemented by compilers vendors
– Non-blocking collectives
– Improved one-sided communications
– Improved Fortran bindings for type check
– And more (see http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf)



How much do I need to know?
• MPI has about 400 functions/subroutines
• You can do everything with about 6 functions although your code will be 

complex and hard to read
• Collective functions, which involve communication between several MPI 

processes, are EXTREMELY useful since they simplify the coding, and 
vendors optimize them for best performance on their interconnect hardware

• One can access flexibility when required.
• No need to master all parts of MPI to use it successfully
• The way you split the work in your program is more important!! 



Compiling and linking an MPI code
• First things first:  load your favorite compiler module and MPI

– module load intel intel-mpi (or openmpi)
– module load pgi openmpi
– module load openmpi/gcc/2.1.0/64  (uses the OS gcc and gfortran)

• Need to tell the compiler where to find the MPI include files and how to 
link to the MPI libraries.

• Fortunately, most MPI implementations come with scripts that take care of 
these issues:
– mpicc mpi_code.c –o a.out
– mpiCC mpi_code_C++.C –o a.out
– mpif90 mpi_code.f90 –o a.out

• Use “mpicc -show” to display the actual compile line



Makefile
• Always a good idea to have a Makefile
• Here is a very simple one:

%cat Makefile
CC=mpicc
CFLAGS=-O

% : %.c
$(CC) $(CFLAGS) $< -o $@



How to run an MPI executable
• The implementation supplies scripts to launch the MPI parallel calculation, 

for example:
mpirun –np #proc a.out
mpiexec –n #proc a.out
srun -n #proc a.out (SLURM batch system, Princeton systems)

• A copy of the same program runs on each processor core within its own 
process (private address space).

• Each process works on a subset of the problem.
• Exchange data when needed

– Can be exchanged through the network interconnect
– Or through the shared memory on SMP machines (Bus?)

• Easy to do coarse grain parallelism = scalable

MPICH, OPENMPI



mpirun and mpiexec
• Both are used for starting an MPI job
• If you don’t have a batch system (SLURM, PBS, LSF), use mpirun

mpirun –np #proc –hostfile mfile a.out >& out < in &

%cat mfile
machine1.princeton.edu           machine1.princeton.edu
machine2.princeton.edu    OR     machine1.princeton.edu
machine3.princeton.edu           machine1.princeton.edu
machine4.princeton.edu           machine1.princeton.edu

1 MPI process per host                                4 MPI processes on same host

• SLURM batch system takes care of assigning the hosts



SLURM Batch System
• Submit a job script:  sbatch script
• Check status of jobs:  squeue –a   (for all jobs)
• Stop a job:  scancel job_id

#!/bin/bash
# parallel job using 16 processors. and runs for 4 hours (max)
#SBATCH -N 2 # node count
#SBATCH --ntasks-per-node=8
#SBATCH -t 4:00:00
# sends mail when process begins, and
# when it ends. Make sure you define your email
#SBATCH --mail-type=begin
#SBATCH --mail-type=end
#SBATCH --mail-user=yourNetID@princeton.edu
module load openmpi
srun ./a.out



Example code: calculating p using 
numerical integration (C version)

#include <stdio.h>
#include <math.h>
int main( int argc, char *argv[] )
{

int n, myid, numprocs, i;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x;
FILE *ifp;

ifp = fopen("ex4.in","r");
fscanf(ifp,"%d",&n);
fclose(ifp);
printf("number of intervals = %d\n",n);

h   = 1.0 / (double) n;
sum = 0.0;
for (i = 1; i <= n; i++) {

x = h * ((double)i - 0.5);
sum += (4.0 / (1.0 + x*x));

}
mypi = h * sum;

pi = mypi;
printf("pi is approximately %.16f, Error is %.16f\n",

pi, fabs(pi - PI25DT));
return 0;

}

!
!

" 𝑑𝑥
1 + 𝑥#

=
𝜋
4



Example code: calculating p using 
numerical integration (Fortran version)

program fpi
double precision  PI25DT
parameter        (PI25DT = 3.141592653589793238462643d0)
double precision  mypi, pi, h, sum, x, f, a
integer n, myid, numprocs, i, j, ierr

open(12,file='nslices.in',status='old')
read(12,*) n
close(12)
write(*,*)'  number of intervals=',n

c
h = 1.0d0/n
sum  = 0.0d0
do i = 1, n

x = h * (dble(i) - 0.5d0)
sum = sum + 4.d0/(1.d0 + x*x)

enddo
mypi = h * sum

c
pi = mypi
write(*,*)' pi=',pi,'  Error=',abs(pi - PI25DT)

end



Hands-on exercise #1
1. Log into adroit:     ssh -X username@adroit.princeton.edu
2. module load intel intel-mpi
3. Copy files from my directory:

cp –r /home/ethier/Bootcamp_2021_MPI . (don’t forget the period)
4. “cd” into Bootcamp_2021/C or Fortran
5. Examine the “Makefile” and “slurm_script”
6. Examine the first example ”cpi_1.c” or “fpi_1.c”
7. Build the example:   make cpi_1    (make fpi_1)
8. Run the example:   ./cpi_exe or ./fpi_exe
9. Run it again via the slurm script:    sbatch slurm_script
10. Look in the file output.log. What’s the difference?

mailto:username@adroit.princeton.edu


MPI Communicators
• A communicator is an identifier associated with a group of processes

– Each process has a unique rank within a specific communicator (the rank starts 
from 0 and has a maximum value of (nprocesses-1) ).

– Internal mapping of processes to processing units
– Always required when initiating a communication by calling an MPI function 

or routine.
• Default communicator MPI_COMM_WORLD, which contains all 

available processes.
• Several communicators can coexist

– A process can belong to different communicators at the same time, but has a 
unique rank in each communicator



A sample MPI program in Fortran
Program mpi_code
! Load MPI definitions
use mpi (or include mpif.h)

! Initialize MPI
call MPI_Init(ierr)

! Get the number of processes
call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr)

! Get my process number (rank)
call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr)

Do work and make message passing calls…

! Finalize
call MPI_Finalize(ierr)

end program mpi_code



Header file
Program mpi_code
! Load MPI definitions
use mpi

! Initialize MPI
call MPI_Init(ierr)

! Get the number of processes
call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr)

! Get my process number (rank)
call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr)

Do work and make message passing calls…

! Finalize
call MPI_Finalize(ierr)

end program mpi_code

• Defines MPI-related parameters and functions
• Must be included in all routines calling MPI functions
• Can also use include file:

include mpif.h



Initialization
Program mpi_code
! Load MPI definitions
use mpi

! Initialize MPI
call MPI_Init(ierr)

! Get the number of processes
call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr)

! Get my process number (rank)
call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr)

Do work and make message passing calls…

! Finalize
call MPI_Finalize(ierr)

end program mpi_code

• Must be called at the beginning of the code 
before any other calls to MPI functions

• Sets up the communication channels between 
the processes and gives each one a rank.



How many processes do we have?
Program mpi_code
! Load MPI definitions
use mpi

! Initialize MPI
call MPI_Init(ierr)

! Get the number of processes
call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr)

! Get my process number (rank)
call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr)

Do work and make message passing calls…

! Finalize
call MPI_Finalize(ierr)

end program mpi_code

• Returns the number of processes available under 
MPI_COMM_WORLD communicator

• This is the number used on the mpiexec (or mpirun) 
command:

mpiexec –n nproc a.out



What is my rank?
Program mpi_code
! Load MPI definitions
use mpi

! Initialize MPI
call MPI_Init(ierr)

! Get the number of processes
call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr)

! Get my process number (rank)
call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr)

Do work and make message passing calls…

! Finalize
call MPI_Finalize(ierr)

end program mpi_code

• Get my rank among all of the nproc processes under 
MPI_COMM_WORLD

• This is a unique number that can be used to distinguish 
this process from the others 



Termination
Program mpi_code
! Load MPI definitions
use mpi (or include mpif.h)

! Initialize MPI
call MPI_Init(ierr)

! Get the number of processes
call MPI_Comm_size(MPI_COMM_WORLD,nproc,ierr)

! Get my process number (rank)
call MPI_Comm_rank(MPI_COMM_WORLD,myrank,ierr)

Do work and make message passing calls…

! Finalize
call MPI_Finalize(ierr)

end program mpi_code

• Must be called at the end of the properly 
close all communication channels

• No more MPI calls after finalize



A sample MPI program in C
#include "mpi.h"
int main( int argc, char *argv[] )
{
int nproc, myrank;
/* Initialize MPI */
MPI_Init(&argc,&argv);

/* Get the number of processes */
MPI_Comm_size(MPI_COMM_WORLD,&nproc);

/* Get my process number (rank) */
MPI_Comm_rank(MPI_COMM_WORLD,&myrank);

Do work and make message passing calls…

/* Finalize */
MPI_Finalize();

return 0;
}



Hands-on exercise #2
1. Add the necessary MPI calls to the first exercise code
2. Build your new code:   make cpi_1    (make fpi_1)

1. The answer is in cpi_2.c and fpi_2.f if you run out of time…
3. Run it via the slurm script:    sbatch slurm_script
4. Look in output.log. Is there a difference?



Hands-on exercise #3
1. Now you need to use the MPI task id “myid” and the number of MPI tasks 

“numprocs” to split the work between the tasks. Change the for or do loop 
accordingly…

2. Build your new code:   make cpi_1    (make fpi_1)
– The answer is in cpi_3.c and fpi_3.f if you run out of time…

3. Run it via the slurm script:    sbatch slurm_script
4. Look in output.log. What do you observe?

THE TASKS NEED TO COMMUNICATE!



Basic MPI calls to exchange data
• Point-to-Point communications

– Only 2 processes exchange data
– It is the basic operation of all MPI calls

• Collective communications
– A single call handles the communication between all the processes in a 

communicator
– There are 3 types of collective communications

• Data movement (e.g. MPI_Bcast)
• Reduction (e.g. MPI_Reduce)
• Synchronization: MPI_Barrier 



Point-to-point communication
Point to point: 2 processes at a time        FORTRAN add-ons in RED

MPI_Send(buf,count,datatype,dest,tag,comm,ierr)

MPI_Recv(buf,count,datatype,source,tag,comm,status,ierr)

MPI_Sendrecv(sendbuf,sendcount,sendtype,dest,sendtag,
recvbuf,recvcount,recvtype,source,recvtag,comm,status,ierr)

where the datatypes are: 
FORTRAN: MPI_INTEGER, MPI_REAL, MPI_DOUBLE_PRECISION,
MPI_COMPLEX,MPI_CHARACTER, MPI_LOGICAL, etc…

C : MPI_INT, MPI_LONG, MPI_SHORT, MPI_FLOAT, MPI_DOUBLE, etc…

Predefined Communicator: MPI_COMM_WORLD

“buf” is a
pointer!!



MPI_PROC_NULL 
• Can be used as “source” or “destination” in MPI_Send or MPI_Recv (and 

MPI_Sendrecv)
• Identical behavior as:

if (source .ne. MPI_PROC_NULL) then
call MPI_SEND(..., source, ...) 

endif 



Collective communication:
Broadcast

• One process (called “root”) sends data to all the other processes in the same 
communicator

• Must be called by ALL processes with the same arguments

MPI_Bcast(buffer,count,datatype,root,comm,ierr)

P0 A B C D

P1

P2

P3

P0 A B C D

P1 A B C D

P2 A B C D

P3 A B C D

Broadcast



Collective communication:
Gather

• One root process collects data from all the other processes in the same communicator
• Must be called by all the processes in the communicator with the same arguments
• “sendcount” is the number of basic datatypes sent, not received (example above would 

be sendcount = 1)
• Make sure that you have enough space in your receiving buffer!

MPI_Gather(sendbuf,sendcount,sendtype,recvbuf,recvcount,
recvtype,root,comm,ierr)

P0 A

P1 B

P2 C

P3 D

P0 A B C D

P1

P2

P3

Gather



Collective communication:
Gather to All

• All processes within a communicator collect data from each other and end up with the 
same information

• Must be called by all the processes in the communicator with the same arguments
• Again, sendcount is the number of elements sent

MPI_Allgather(sendbuf,sendcount,sendtype,recvbuf,recvcount,
recvtype,comm,ierr)

P0 A

P1 B

P2 C

P3 D

P0 A B C D

P1 A B C D

P2 A B C D

P3 A B C D

Allgather



Collective communication:
Reduction

• One root process collects data from all the other processes in the same communicator 
and performs an operation on the received data

• Called by all the processes with the same arguments
• Operations are: MPI_SUM, MPI_MIN, MPI_MAX, MPI_PROD, logical AND, OR,

XOR, and a few more
• User can define own operation with MPI_Op_create()

MPI_Reduce(sendbuf,recvbuf,count,datatype,op,root,comm,ierr)

P0 A

P1 B

P2 C

P3 D

Reduce (+)

P0 A+B+C+D

P1

P2

P3



Collective communication:
Reduction to All

• All processes within a communicator collect data from all the other processes and 
performs an operation on the received data

• Called by all the processes with the same arguments
• Operations are the same as for MPI_Reduce

MPI_Allreduce(sendbuf,recvbuf,count,datatype,op,comm,ierr)

P0 A

P1 B

P2 C

P3 D

Allreduce (+)
P0 A+B+C+D

P1 A+B+C+D

P2 A+B+C+D

P3 A+B+C+D



More MPI collective calls
One “root” process send a different piece of the data to each one of the other
Processes (inverse of gather)
MPI_Scatter(sendbuf,sendcnt,sendtype,recvbuf,recvcnt,

recvtype,root,comm,ierr)

Each process performs a scatter operation, sending a distinct message to all
the processes in the group in order by index. 
MPI_Alltoall(sendbuf,sendcount,sendtype,recvbuf,recvcnt,

recvtype,comm,ierr)

Synchronization: When necessary, all the processes within a communicator can
be forced to wait for each other although this operation can be expensive 
MPI_Barrier(comm,ierr)



How to time your MPI code
• Several possibilities but MPI provides an easy to use function called 

“MPI_Wtime()”. It returns the number of seconds since an arbitrary point of 
time in the past.

FORTRAN: double precision MPI_WTIME()
C: double MPI_Wtime()

starttime=MPI_WTIME()
… program body …

endtime=MPI_WTIME()
elapsetime=endtime-starttime



Hands-on exercise #4
1. Add the necessary MPI call(s) to get the portions of pi and add them 

together to get the final (correct) value 
2. The answer is in cpi_4a.c and fpi_4a.f  OR cpi_4b.c and fpi_4b.f
3. Run it via the slurm script:    sbatch slurm_script
4. Look in output.log. Do you get the right answer? Can you think of another 

MPI call to do this?



Hands-on exercise #5
Let’s say that the input file nslices.dat is very large and that you are using 
thousands of MPI tasks for your compute intensive code. You probably would 
not want all the tasks to access this file at the same time since accessing the 
filesystem is the slowest communication (I/O) operation there is. Do the 
following:
1. Add code so that only the root process (myid=0) reads the file
2. Add the proper MPI function call so that the root process communicates 

the content of the file to all the other tasks
3. The answer is in cpi_5.c and fpi_5.f 



#include "mpi.h"
#include <stdio.h>
#include <math.h>
int main( int argc, char *argv[] )
{

int n, myid, numprocs, i, j, tag, my_n;
double PI25DT = 3.141592653589793238462643;
double mypi,pi,h,sum,x,pi_frac,tt0,tt1,ttf;
FILE *ifp;
MPI_Status Stat;
MPI_Request request;

n = 1;
tag = 1;
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);

tt0 = MPI_Wtime();
if (myid == 0) {

ifp = fopen("ex4.in","r");
fscanf(ifp,"%d",&n);
fclose(ifp);

}
/* Global communication. Process 0 "broadcasts" n to all other processes */

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

Root reads 
input and 

broadcast to all



Each process calculates its section of the integral 
and adds up results with MPI_Reduce

… 
h = 1.0 / (double) n;
sum = 0.0;
for (i = myid*n/numprocs+1; i <= (myid+1)*n/numprocs; i++) {

x = h * ((double)i - 0.5);
sum += (4.0 / (1.0 + x*x));

}
mypi = h * sum;

pi = 0.;  /* It is not necessary to set pi = 0 */

/* Global reduction. All processes send their value of mypi to process 0
and process 0 adds them up (MPI_SUM) */
MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

ttf = MPI_Wtime();
printf("myid=%d pi is approximately %.16f, Error is %.16f  time = %10f\n",

myid, pi, fabs(pi - PI25DT), (ttf-tt0));

MPI_Finalize();
return 0;

}



Blocking communications
• The call waits until the data transfer 

is done
– The sending process waits until all 

data are transferred to the system 
buffer (differences for eager vs
rendezvous protocols...)

– The receiving process waits until all 
data are transferred from the system 
buffer to the receive buffer

• All collective communications are 
blocking



Non-blocking

• Returns immediately after the 
data transferred is initiated

• Allows to overlap computation 
with communication

• Need to be careful though
– When send and receive buffers 

are updated before the transfer 
is over, the result will be 
wrong



Non-blocking send and receive
Point to point:

MPI_Isend(buf,count,datatype,dest,tag,comm,request,ierr)

MPI_Irecv(buf,count,datatype,source,tag,comm,request,ierr)

The functions MPI_Wait and MPI_Test are used to complete a nonblocking communication

MPI_Wait(request,status,ierr)

MPI_Test(request,flag,status,ierr)

MPI_Wait returns when the operation identified by “request” is complete. This is a non-local 
operation.

MPI_Test returns “flag = true” if the operation identified by “request” is complete. Otherwise it 
returns “flag = false”. This is a local operation.

MPI-3 standard introduces “non-blocking collective calls”



Forced synchronization

C:        int MPI_Barrier( MPI_Comm comm )

Fortran:  call MPI_Barrier( comm, ierr ) 

Blocks until all processes in the communicator have reached this routine

• There is an implicit barrier for all blocking collective calls
• MPI_Barrier is sometimes necessary to synchronize processes
• Needed when timing sections of your code
• Frequent synchronizations will slow down your code significantly. Use barriers

sparingly



Debugging tips
Use “unbuffered” writes to do “printf-debugging” and always write out the 
process id:

C:       fprintf(stderr,”%d: …”,myid,…);
Fortran: write(0,*)myid,’: …’

If the code detects an error and needs to terminate, use MPI_ABORT. The 
errorcode is returned to the calling environment so it can be any number.

C:       MPI_Abort(MPI_Comm comm, int errorcode);
Fortran: call MPI_ABORT(comm, errorcode, ierr)

To detect a “NaN” (not a number):
C:       if (isnan(var))
Fortran: if (var /= var)

Use a parallel debugger such as DDT or Totalview (if available)



Domain decomposition example
Jacobi solver

while (not converged) {
for (i,j)

xnew[i][j]= (x[i+1][j] + x[i-1][j] 
+ x[i][j+1] + x[i][j-1])/4;

for (i,j)

x[i][j] = xnew[i][j];

}



Setting up “ghost” cells



Hands-on exercise #6
Have a look at the file jacobi_MPI.c
1. Compile it with make jacobi_MPI (executable still named cpi_exe)
2. Run it via the slurm script:    sbatch slurm_script
3. Look at output.log. Why does it work?

• Can you replace MPI_Send and MPI_Recv with MPI_Sendrecv?
– Hint: you will need MPI_PROC_NULL

• Replace blocking send/recv with non-blocking

• When going 3D, easier to use MPI_Cart_Create



References
• Just google “mpi tutorial”, or “mpi documentation”, or “mpi standard”…
• https://computing.llnl.gov/tutorials/mpi/
• http://www-unix.mcs.anl.gov/mpi/tutorial/gropp/talk.html (old but still relevant)
• http://www.mpi-forum.org (location of the MPI standard)

• MPI on Linux clusters:
– MPICH (https://www.mpich.org/)
– Open MPI (http://www.open-mpi.org/)

• Books:
– Using MPI “Portable Parallel Programming with the Message-Passing Interface” by 

William Gropp, Ewing Lusk, and Anthony Skjellum
– Using MPI-2  “Advanced Features of the Message-Passing Interface”

https://computing.llnl.gov/tutorials/mpi/
http://www-unix.mcs.anl.gov/mpi/tutorial/gropp/talk.html
http://www.mpi-forum.org/
https://www.mpich.org/
http://www.open-mpi.org/


Works with Python too!
• http://mpi4py.scipy.org/docs/usrman/tutorial.html
• mpirun -np 4 python script.py

Script.py

from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

if rank == 0:
data = {'a': 7, 'b': 3.14}
comm.send(data, dest=1, tag=11)

elif rank == 1:
data = comm.recv(source=0, tag=11)

• Uses “pickle” module to get 
access to C-type contiguous 
memory buffer

• Evolving rapidly
• On adroit.princeton.edu:

– module load openmpi/gcc
– module load conda3
– pip install --user mpi4py

http://mpi4py.scipy.org/docs/usrman/tutorial.html


from mpi4py import MPI
import numpy
import time

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

N = numpy.arange(1, dtype=numpy.intc)
if rank == 0:

N[0] = 1000*1000*100
comm.Bcast([N, 1, MPI.INT], root=0)

start = time.time()

h = 1.0 / N[0]; s = 0.0
for i in range(rank, N[0], size):

x = h * (i + 0.5)
s += 4.0 / (1.0 + x**2)

PI = numpy.array(s * h, dtype='d')
PI_sum = numpy.array(0.0, dtype='d')
#comm.Reduce([PI, MPI.DOUBLE], PI_sum, op=MPI.SUM, root=0)
comm.Allreduce([PI, MPI.DOUBLE], PI_sum, op=MPI.SUM)

end = time.time()
print("rank:%d  Pi with %d steps is %15.14f in %f secs" %(rank, N[0], PI_sum, end-start))

our PI calculation
example



Mixing MPI and OpenMP
together in the same application



Why use both MPI and OpenMP in the same code?
• To save memory by not having to replicate data common to all processes, not using 

ghost cells, sharing arrays, etc.

• To optimize interconnect bandwidth usage by having only one MPI process per NUMA 
node.

• Although MPI generally scales very well it has its limit, and OpenMP gives another 
avenue of parallelism.

• Some compilers have now implemented OpenMP-like directives to run sections of a 
code on general-purpose GPU (GPGPU). Fine-grain parallelism with OpenMP 
directives is easy to port to GPUs.



Implementing mixed-model
• Easiest and safest way:

– Coarse grain MPI with fine grain loop-level OpenMP
– All MPI calls are done outside the parallel regions
– This is always supported

• Allowing the master thread to make MPI calls inside a parallel region
– Supported by most if not all MPI implementations

• Allowing ALL threads to make MPI calls inside the parallel regions
– Requires MPI to be fully thread safe
– Not the case for all implementations
– Can be tricky…



Find out the level of support of your MPI library

int MPI_Init_thread(int * argc, char ** argv[],int thread_level_require,
int * thead_level_provided);

int MPI_Query_thread(int * thread_level_provided);
int MPI_Is_main_thread(int * flag);

MPI-2 “Init” functions for multi-threaded MPI processes:

• “Required” values can be:
• MPI_THREAD_SINGLE:   Only one thread will execute
• MPI_THREAD_FUNNELED: Only master thread will make MPI-calls
• MPI_THREAD_SERIALIZED:  Multiple threads may make MPI-calls, but 

only one at a time
• MPI_THREAD_MULTIPLE: Multiple threads may call MPI,without

restrictions
• “Provided” returned value can be less than “required” value 



Compiling and linking mixed code
• Just add the “openmp” compiler option to the compile AND link lines (if 

separate from each other):
– mpicc –qopenmp mpi_omp_code.c –o a.out (for Intel compiler)
– mpif90 –qopenmp mpi_omp_code.f90 –o a.out

• Dfg
• To run a MPI+OpenMP job, make sure that your SLURM script asks for 

the total number of threads that you will use in your simulation, which 
should be (total number of MPI tasks)*(number of threads per task)
#SBATCH --cpus-per-task=${OMP_NUM_THREADS}
#SBATCH --ntasks-per-node=(#cores per node/${OMP_NUM_THREADS})



Thank you for attending…

Happy parallel programming!


