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Abstract 

In plasma physics, linear instability calculations can be implemented either as initial value calculations or as eigenvalue 
calculations. Here, comparisons between comprehensive linear gyrokinetic calculations employing the ballooning formalism 
for high-n (toroidal mode number) toroidal instabilities are described. One code implements an initial value calculation on 
a grid using a Lorentz collision operator and the other implements an eigenvalue calculation with basis functions using a 
Krook collision operator. An electrostatic test case with artificial parameters for the toroidal drift mode destabilized by the 
combined effects of trapped particles and an ion temperature gradient has been carefully analyzed both in the collisionless 
limit and with varying collisionality. Good agreement is found. Results from applied studies using parameters from the 
Tokamak Fusion Test Reactor (TFI~)  experiment are also compared. 

1. Introduction 

Low frequency drift-type microinstabilities driven by ion temperature gradient and/or trapped-particle dy- 
namics have continued to be strongly supported candidates to account for the anomalous transport observed in 
all tokamak plasmas. In the linear regime for these high-n (toroidal mode number) toroidal instabilities, the 
equations to be solved reduce to one-dimensional equations (in coordinate space) along the equilibrium mag- 
netic field lines on a single, chosen magnetic surface, by means of the so-called ballooning representation [ 1,2]. 
These are the linearized gyrokinetic equation, including an appropriate term to account for collisions, along 
with the quasineutrality condition and, in the electromagnetic case, Amp~re's law or equivalent equations. These 
linear equations can be solved either by an initial value approach or by an eigenvalue approach for the mode 
eigenfrequency. In the present paper, comparisons are made between two completely independent computer 
codes emplo),ing these two different approaches, but solving essentially the same equations, embodying the 
same underlying physics. As will be seen, the numerical results agree quite well for this instability in a variety 
of cases. One code implements an initial value approach on a grid using a Lorentz collision operator, and 
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has been very briefly described in Ref. [3]. The other code implements an eigenvalue approach employing 
basis functions and using a modified Krook collision operator, and has been described in detail in Ref. [4]. 
For the present comparison, both of these calculations employ the same magnetic geometry, as described by 
the MHD equilibrium. This is the so-called "s-a" model MHD equilibrium [ 1 ] which corresponds to circular 
but nonconcentric (due to the Shafranov shift) magnetic surfaces in toroidal geometry. Accordingly, effects 
due to magnetically trapped, as well as untrapped, electrons and ions are included in both calculations. Also, 
full finite Larmor radius effects for the ions are included in both calculations. For the present comparison, 
the equilibrium distribution functions of all species are taken to be Maxwellian. In accordance with the bal- 
looning representation, both codes use ballooning coordinates [ 1,2]. Both codes can include fully gyrokinetic 
ion, electron, impurity, and beam species. Both codes fully include kinetic effects from trapped particles and 
toroidal magnetic drifts. However, the algorithms used in the two codes are totally different. In particular, the 
initial value code solves for the distribution functions using finite differences in time and poloidal angle with 
a fully implicit scheme that is unconditionally stable, while the eigenvalue code uses an analytic integral solu- 
tion for the distribution functions, and then numerically integrates over velocity space. The initial value code 
uses a Lorentz collision operator for pitch angle diffusion, while the eigenvalue code uses a modified Krook 
collision operator. The initial value code uses a grid in poloidal angle, while the eigenvalue code expands the 
eigenfunction in Hermite basis functions. 

In Section 2, the equations that constitute the starting point for both calculations are presented. Then, in 
Section 3, the initial value calculation is described in some detail, and in Section 4 the eigenvalue calculation 
is described much more briefly, since considerable detail about it has already been given in Ref. [4]. In 
Section 5, results for an artificial test case are compared in the electrostatic limit, and in particular the behavior 
of the Lorentz and Krook collision models are compared. In Section 6, results are compared for two realistic 
cases for the Tokamak Fusion Test Reactor (TFTR) both in the electrostatic limit and in the more general 
electromagnetic case. Finally, conclusions are presented in Section 7. 

2. Start ing equat ions  

The usual r, 0, ( ,  toroidal coordinate system is used, with r being the minor radius, 0 the poloidal angle, 
and ( the toroidal angle. The equilibrium magnetic field strength is B = Bo/h(O), where h(O) = 1 + E cos(0), 
• = r/R, and R is the major radius of the center of the selected magnetic surface. Employing the ballooning 
representation [ 1,2], the perturbed electrostatic potential is expressed in the form 

oo  

~(r ,  O, (, t) = exp[in( - inq(r)O] f f~ qb(O - 21rp, r, t) exp[inq(r)27rp] . 1 ) 
p = - - ~  

Note that • is periodic in the toroidal and poloidal angles, while ~ is defined in the infinite domain in 0 
and is not periodic. Similar forms apply for the perturbed distribution function fs, and for '4tl, the component 
of the perturbed vector potential parallel to the equilibrium magnetic field. For the present comparison, A±, 
the perpendicular component of the perturbed vector potential, is neglected. Here, the subscript s labels the 
individual plasma species. 

With these definitions, the linearized gyrokinetic equation in the ballooning representation using the "s-a" 
model MHD equilibrium [1] is 

O V l ,  O^ e s ( O )  
~ s + - - ~ - ~ g s + i W a s ~ , s + C ( ~ s )  = ~ssFmsJo - ~ + i w  r, [q~(0) - vii a'--~-,'tll(0)] , (2) 

where ~. =_ f ,  + (e,/Ts)Fm, qS(O), Was = w.s(Lns/R)(E/Ts)(1 + v~/v2){cosO + [g0 - as in0]  sin0}, ko = 
T -nq / r ,  k± = ko{1 + [#O-asinO]2} 1/2, ~ =- ( r / q ) ( d q / d r ) ,  a - - q 2 R ( d B / d r ) ,  W.s =- w.,{[1 +mr (e/r,) - 
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3/2]},  Jo - Jo(k±v±/g2s), and the rest of the notation is standard. 
Then, the solutions of Eq. (2) are used in the quasineutrality condition, ~ s  es f d3v fs = 0, and in the 

component of  Amp~re's law parallel to the equilibrium magnetic field lines, ~.~ es f d3v Vrlfs = (c/47r)k2,41l 
(or, equivalently, in the gyrokinetic moment equation to be described in Section 4). In the initial value code, 
gyrocenter (or guiding center) coordinates are used, so that f d 3 v fs  becomes f d 3 v Jo~s + f d 3 v (es/Ts) ~b Fms 
and fd3v Vllf~ becomes fd3v  JoVll~s. In the eigenvalue code, particle coordinates are used, as described in 
Ref. [4]. Note that k[i _-- (-i/qR)O/O0 is evaluated in the particle coordinate system in the eigenvalue code 
but in the gyrocenter coordinate system in the initial value code. This implies that the so-called Bakshi-Linsker 
effect [5] is included in the initial value code but not in the eigenvalue code; however, this effect should be 
small in the present wavelength range kopi < 1 where the largest linear growth rates normally occur. 

The collision operator used in the initial value code is a Lorentz operator: 

O 2 0 
C(ge) = Z'e(E)~--~(I--s ~ ) ~-~ge (3) 

and C(~i) = 0, where ( -- vii/v, Z,e(E) =-- [~'ei/(l)/Oe)3][Zf q-Hee(t;/Oe) ], Ue = (2Te /me)  1/2, Z f  =- 

~-~i Z2ni/n~, Hee(X) -- exp(-x2)/(v/-~x) + [1 - 1/(2x2)] erf(x),  and 1)ei ~ 41rnee41na/[ (2Te)3/2mle/2]. 
This form of the Lorentz operator conserves particle number and energy, but not momentum. 

In the eigenvalue code, on the other hand, a modified "Krook" collision operator is used: 

C ( g e )  = -Vfe(E,A)he 
for trapped electrons, 

C ( g e )  = d A - - ~ - - - - - - -  2 
[ - A/h(O)]l/2 / 

dA [1 - A/h(O)]- l /  
0 

-1 

(4) 

(5) 

for untrapped electrons, and (for this comparison) C(~i) = 0 for ions, where hs =- ~s + (es/Ts)Fms(1 - 
Wr.s/tO)Jo~l[ exp[-i(k±v±/g2s) s inx] ,  X is the gyrophase, ~11 -- (iwqR/2c)[f~-oo dO'AIr(O')-f~ dO'All (0 ' )  ], 
A - IzBo/E, or = +1 labels the sign of vii, and 

ve(E)(r/R) 0.1118+ 1.31 (6) 
VTe(E,A) = l( 1 - r / R )  - a [  2 11.796+ 1 

In the "old" Krook operator 6 = 8old -- [[w[/(ueiZf)], and in the "new" Krook operator 8 = 8new - 
[[wl/(ueiZ f × 37.2R/r)]l/3. This modified Krook operator is constructed so as to conserve particle num- 
ber and energy, but not momentum. 

3. Initial value calculation 

In this section the algorithm for the initial value code is described. The algorithm is unique among algorithms 
for solving the gyrokinetic equation in that it is fully implicit, and has no time step restrictions on stability. 
Implicitness arises in two parts: the finite difference scheme for computing the distribution function and the field 
solution procedure. As a result, the code time step is not restricted by the Courant-Freidricks-Levy criterion 
for either single particle motion or collective wave motion, e.g. electron motion or Alfvrn waves. The time 
step is only restricted by accuracy requirements to be significantly shorter than the mode frequency of interest. 
This allows much longer time steps which save about two orders of magnitude of computer time when full 
electron dynamics are included. Also, the algorithm is unique in that it uses a diffusive pitch angle scattering 
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(Lorentz) collision operator, rather than a Krook operator. Because it is a diffusion operator like the actual 
collision operator, and because pitch angle diffusion is usually the dominant diffusion process for typical 
collision frequency regimes, the physics associated with sharp boundaries in velocity space is automatically 
treated correctly both qualitatively and quantitatively. Such sharply varying behavior in velocity space arises at 
the trapped/untrapped boundary and sometimes near Landau resonances. 

3.1. Coordinates and equations 

It is found to be computationally convenient to remove the time derivative term proportional to Oqh/Ot. For 
this, we define a quantity f =_ g - e JoFmfb/T, which satisfies 

Of +i~odf + vii 0 e { [1  R Ot - ~  -~ f + C ( f ) = ~ Fm vii 

• r [ VliAii]_ioAlJoqb} ' + - o , J 0  4 , -  c 

O0 c Ot ] 

(7) 

where we have temporarily omitted the hats (^) and the species subscripts. 
The coordinates used are the energy E, the pitch angle variable A = 2tx/E =- v~/v2B(O), and the ballooning 

coordinate 0. For each a and E, there are two different signs of the velocity vii = 4-x/E( 1 - AB(0)),  so there 
is an additional coordinate o- = 4-1 for the sign of vii. 

The coordinates A and E are merely parameters in the gyrokinetic equation, but they must be integrated over 
in order to obtain the perturbed density and currents for quasineutrality and Amp~re's law. Velocity integrals in 
these coordinates have the form 

/dv=TrB~ (0) / d E v / - E d A / ~ / 1 - A B ( O )  . (8) 

To minimize the number of grid points and thus computational effort, but nonetheless maintain good accuracy 
in these integrals, the grid points are chosen using Gaussian integration rules as much as possible. 

Recall that there are both trapped and untrapped regions of velocity space. The untrapped region has 0 < 
a < l/Bmax, and the trapped region has 1/Bmax _< A < 1/Brmn, where Bmax and Brain are the maximum and 
minimum values of B(O) for 0 < 0 < 2~r. The distribution function often behaves differently in these two 
regions, so the coordinate grid is different. For the untrapped region, the A coordinates are modified to remove 
the singularity in the denominator in Eq. (8). In the untrapped region, new coordinates X are chosen, with 

X = V/I - Bmax,~ . (9) 

Gaussian integration rules are used in the untrapped region in the variable X to evaluate integrals such as 
Eq. (8). The Gaussian integration rules specify the values of X and thus the h grid points. These coordinates 
remove the singularity at the separatrix in Eq. (8). These coordinates are also more closely spaced near the 
separatrix between the trapped and untrapped boundary, which is desirable since this is a transition region 
where the distribution function often varies rapidly. 

In the trapped region, the a grid is chosen so that the points where vii = 0 correspond to grid points in A. 
Specifically, given the 0 grid points 0 i for -¢r  < 0 < 7r, the A grid points Ai are chosen so that 

1 - AiB(Oi) = 0 .  (10) 

This choice insures that the mirror points where vii = 0 always lie exactly on a gridpoint. There are important 
boundary conditions at these points, as discussed below. Those conditions are easiest to apply numerically if 
the mirror points are at a gridpoint. In addition, this choice also automatically increases the density of grid 
points near the separatrix between the trapped and untrapped region. 
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The 0 grids are chosen to be equally spaced, with typically 24 to 36 grids per 27r interval in 0. 
Gaussian integration rules are used in the E variable. The interval from 0 to oo is broken into two parts. 

From 0 to Ecut, Gaussian integration rules of order N1 are used with Gaussian weight factor 1. For Ecut to c~, 
integration rules of  order N2 with weight factor e - e  are used. After some experimentation, choices which are 
usually highly accurate with few grid points have Ec,t ~ 2 - 3, 3 _< N1 < 8, and 2 _< N2 _< 3. 

3.2. Boundary conditions 

The boundary conditions are standard for the gyrokinetic equation in ballooning coordinates. The distribution 
function must vanish as 0 ~ 4-oo. The gyrokinetic equation is first order in 0, so boundary conditions can only 
be enforced at one point in 0. The physical way to do this in the code is to set f = 0 at the rightmost 0 grid 
for vii < 0 and set f = 0 at the leftmost 0 grid for vii > 0. This is chosen because if f = 0 for all 0 values 
outside of the last grid points, then the distribution with vii < 0 which convects into the simulation region from 
the right would have f = 0 at the rightmost grid, and similarly for the distribution with vii > 0 and the leftmost 
grid point. These boundary conditions are also found in practice to result in physically well behaved solutions. 

Separate trapped particle regions exist every 27r in 0. For fixed h and E, these regions have a limited extent 
in 0, and end at the mirror points where vii = 0. The boundary conditions at the mirror points are the usual 
ones, namely that the distribution function for vii < 0 must equal the distribution function for Vlr > 0 at the 0 
value of the mirror point. 

For equilibrium geometry with up-down symmetry (such as the one used in this paper), symmetric eigen- 
functions exist. Even parity modes have f(O, o- = +1)  = f ( - O ,  tr = - 1 )  and ~b(0) = ~b(-0) ,  and odd parity 
modes have f (0, o- = + 1 ) = - f ( - 0 ,  o- = - 1 ) and ~b (0) = - ~b ( - 0 ) .  For such cases, the computational effort 
can be cut in half since only 0 > 0 need be simulated. 

3.3. Finite difference scheme 

The implicit scheme to allow large time steps is a vital ingredient of the utility of this numerical scheme. 
Implicitness arises in two parts in this algorithm: the finite difference scheme for computing the distribution 
function and the field solution algorithm. In this section the implicit finite difference scheme for computing 
the distribution function is explained. For full electron dynamics, this allows a time step about two orders of 
magnitude larger than would otherwise be possible. 

The collisionless gyrokinetic equation is finite differenced first. The diffusive collision operator is applied in 
a second step (as in a splitting scheme). 

The collisionless gyrokinetic equation is a first order partial differential equation with convection in the 0 
direction. Though many finite difference schemes exist for such equations, the scheme [6] employed here is 
(1) implicit and unconditionally stable, (2) computationally almost as fast as an explicit scheme, (3) second 
order accurate in space, and (4) either first or second order accurate in time, depending on the amount of 
implicitness desired. 

The second order accuracy in space arises from being space centered. The scheme allows variable time 
centering, with a parameter 8 which varies from 0 (fully explicit) to 1 (fully implicit), and 6 = 1/2 corresponds 
to a time centered, second order accurate scheme. (Typically 6 = 0.6 is chosen.) The following terms in the 
gyrokinetic equation are finite differenced as shown: 

°)d cn + l ] ]  5- [(i-8) + + ,i+, :j , 

i - + '  - .  ] 

L "+' - " + '  + J ' 

(11) 

(12) 
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: : °+ '  - s, "+ ' )  s t )  a f  ---+ 8tJi+l  + (1 - 8) (13) 
c90 A0 A0 

Here, n labels the time step and i labels the 0 grid point. 
The finite differencing of the 05 and All terms uses exactly the same scheme as Eqs. (11) - (13)  for the 

distribution function f with the same value of 8. Then Eqs. (11) - (13)  and the analogous equations for ~b and 
A N are substituted into Eq. (7).  This leads to a finite difference equation for Eq. (7) which is of the form 

Di fn + D2~n+l + D3 fn+l r~ rn+l n ~n+l i -~-lJ4Ji+ 1 =FlqSn+F2qSi+l + F 3 q  5n+l +F4wi+l +FsA~, 

An+l (14) +F6 Aq,~, + F7 a~ +l + r8 ,alli+ ~ , 

where the coefficients are functions of A, E, and Oi. 
For given ~b and All this difference scheme is stable for all time steps if 8 _> 1/2. For constant vii, it is 

straightforward to analyze the stability for a perturbation f ~ e ikO. The numerical stability growth factor after 
one time step is less than or equal to one for all k and all time steps if 8 > 1/2. From experience, Eq. (14) is 
also found to always be stable for 8 > 1/2 when vii is a function of 0. 

It is straightforward to advance Eq. (14) by one time step given ~b and AlL. If f~+l is known, Eq. (14) 
can be used to compute f~+l 1. Recall that the boundary conditions for the untrapped region are that f = 0 at 
the rightmost 0 grid for vii < 0 and f = 0 at the leftmost 0 grid for vii > 0. To solve Eq. (14), start at the 
boundary where f = 0. The adjacent value of f in the simulation region is computed by solving Eq. (14) at 
the boundary, and then consecutively applying Eq. (14) for adjacent values of i till f~+l is known for all i 
values. 

For the trapped particle regions the procedure is similar, except that the boundary conditions do not specify 
a particular value of f~+l at any i, but only that the values at the mirror points must be the same for o- = ±1. 
Therefore, both an inhomogeneous and a homogeneous solution to Eq. (14) are computed for each separate 
trapped region, and the appropriate linear combination in each region is used for f .  Specifically, Eq. (14) is 
solved twice, once with f~+l = 0 at one mirror point (the one with largest 0), and once with f~+l = 1 at 
that mirror point and also q5 = All = 0 assumed. Both solutions are computed as above for cr = -1  until the 

other mirror point is reached. Then, for both solutions, f~+l at that mirror point for o- = 1 is set equal to the 
value at cr -- -1 .  Thus both solutions automatically solve the boundary conditions at this point, so any linear 
combination will also. Consecutive application of Eq. (14) to both homogeneous and inhomogeneous solutions 
until the first mirror point is reached gives f~+l for all i for o- = +1. Then the appropriate linear combination 
of solutions is used so that f~+l is equal at the first mirror point for o- = +1. 

For symmetric modes satisfying f(O, or) = f ( - O , - o r )  the procedure is almost the same, except that only 
half the 0 values are used. When consecutively applying Eq. (14) for 0 > 0 and o- = -1 ,  eventually 0 = 0 
is reached. At that point f (O,o')  = f (O , -or )  is used. Consecutive application of Eq. (14) then proceeds for 
c r = + l , 0  > 0. 

3.4. Collision operator 

The collision operator is a pitch angle scattering operator of the form 

c9 0 
C ( f )  = re(E)  -~ (1 - ~2) ~.~f .  (15) 

Time advancing the gyrokinetic equation one full time step is a two-step process. First, the collisionless 
gyrokinetic equation is advanced one time step according to Eq. (14). The result of this then has the collision 
operator applied to it as follows 

f ,+l _ At C ( f n+') = f n + l l i s i o n l e s  s . (16) 
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After this equation is solved, the distribution has been fully advanced one step. For this two step procedure 
to be accurate, the time step must be small compared to the collision frequency. This requirement is usually 
easy to satisfy for plasma parameters over most of the plasma volume for modern fusion experiments. However, 
even for large time steps Eq. (16) is still stable. 

The collision operator is finite differenced in a standard way, namely 

0 Fe - Fe-i  
O---~ (1 _se2) O~ ' see -see-1 re = (1 - se2+,/2 ) fe+, - fe ' see+l see ' (17) 

where see = x/1 - & B ( O )  and see+l/2 = (see + see+l)/2. 
The tridiagonal matrix inversion associated with Eq. (17) is implemented in a way which vectorizes over 

the 0 grid, which greatly speeds execution. (The h grid cannot be vectorized over because of the recursive 
nature of the solution procedure for tridiagonal matrices.) Since there are a different number of A grid points at 
each 0 grid (due to the existence of the trapped particle regions), vectorization is facilitated by adding dummy 
matrix elements to the tridiagonal matrix so that all 0 grid points have the same number of ~ grid points. 

3.5. Field solution and time-stepping procedures 

The calculation of the fields ¢ and All is also fully implicit, which also makes this code unique. A plasma 
has many waves which are collective modes of oscillation due to the electromagnetic fields. If the fields were 
computed explicitly, the time step would be limited by the Courant-Freidricks-Levy criterion due to these waves, 
even though the code was fully implicit for the electron and ion motions in a given field. In the present case, 
the most limiting wave is a shear Alfvrn wave along 0. For the implicit field solution scheme here, accuracy is 
the only limit on time step, not stability. In practice, this allows time steps about an order of magnitude larger 
than for an explicit field solution scheme. 

To implement the implicit scheme, it is first necessary to numerically compute response functions for the 
system before actual simulation begins. These response functions are conceptually the density and current 
response of the plasma to a perturbation of the fields which is a delta function in O. The response is computed 
for a delta function at each O grid point. Since the coefficients of the gyrokinetic equation are time independent, 
the same response functions apply for the entire simulation time. 

Specifically, the response functions are computed as follows. First the ¢ response is computed. The gyrokinetic 
equation is advanced one time step using Eqs. (14) and (16) and the procedure in the subsection above, for a 
sequence of trial functions. In these trial functions, all fields are taken to be zero for each grid point except one 
where ¢~+1 = 1. The distribution function fn is taken to be zero, and the distribution at fn+l is computed. Then 
the velocity integrals which are needed in quasineutrality and Amp~re's law are computed, i.e. the density and 
current. Then a similar calculation is then done with trial functions where the only nonzero field has A n+l = 1 [b 
at one grid point. These calculations are done individually for trial functions at every grid point. 

Since any fields with &~+~ and A~ +l can be written as a linear combination of the trial functions above, and 

since the gyrokinetic equation is linear, the density and current response to ¢,+1 and A~ +1 can be written as 

a linear combination of the response functions above. Thus, the current and density response due to &,+l and 
A~ +~ can be written as matrices 

ni = E M~j d~ n.+l "~ MZij A n+l M s th n+l -.-;j Tj (18) 
' " ' l l J  • 

J ) 

These matrices are used in the following time-stepping procedure which advances f from time step n to 
time step n + 1. Since Eq. (14) is linear, the solution can be written as the sum of a homogeneous and an 
inhomogeneous part 



f =fl + f 2 ,  

M. Kotschenreuther et al. / Computer Physics Communications 88 (1995) 128-140 135 

(19) 

where 

• , ¢.,+1 ,e*n+l = Fl 4~ + F2 tbn+l + F.s Ai n + F6 A~+ I D1 fl,)l + D2f~,~l + D 3 j b ~ l  + D4sl i~t  
,c*n+l al:"+l _ At C(f~ +1 ) = . ] l i l  l , (20) 

and f{' = f ' ,  and 

• n T.n+ 1 ~*n+ 1 4)n+ 1 ,,An+ I an+ 1 DIJ~7+D2f2i+l+D3J2i +DaJi+l =F3 i +F4v--i+l +FTA~+I+Fs,.i+I , 
,fl~+l _ At C(f~  +1) = f ~ . + l  , (21)  

where f~' = 0. 
The inhomogeneous solution f l  is computed as in the section on the time-stepping scheme, since the right- 

hand side of Eq. (20) is known after the nth step. However, the right-hand side of Eq. (21) is not known, 
since ~b "vl and A~ +l have yet to be computed. To find &n+l and A~ +1, we use Eq. (21) to write 

~-~no,~esfdvJofs=n,+n2, ~-~no,~e,~fdvJovllfs=jl+j2, (22) 
a s 

where th and//2 are the density contributions from "fl and f2, respectively, and similarly for jl and J2. Having 
solved Eq. (20), nl and ji are easily computed. The response function matrices Eq. (20) can be used to 
substitute for n2 and J2, to obtain from quasineutrality and Amp~re's law 

,,b{,+ l 
Z t l o i (  l - F o ) e i ~ i  = n l i  + ~-~ (M~j(bn+l A.42 an+"~ .-j + , , . i J , . l l  j , 
.i Y 

M4 An+~'~ " [l + ( e-.sine) a ? '  + : .  (23) 
4rr 

J 

These matrix equations are solved for the new fields ~b "+l and A~ +l. Each dimension of the matrices is 
twice the number of O grid points, and they are typically in the 200 x 200 range. In practice it is found that 
they are not problematic to invert in single precision on a CRAY. This is probably due to the fact that the 
largest elements in the matrix are concentrated near the diagonal, since the physical response of the system 
is greatest near the perturbing trial function. The inversion typically takes considerably less computation time 
than advancing the distribution function with Eq. (14). 

n+l n+l Having computed q5 and All , Eq. (21) may now be solved, and thus f,+l obtained from Eq. (19). With 
this, the equation has been fully advanced to the n + 1 time step, and the same procedure is used to continue 
advancing the simulation in time. 

4. Eigenvalue calculation 

The eigenvalue calculation has been described in some detail in Refs. [4] and [7], so only a general outline 
of the procedure will be given here. Taking all perturbed quantities to have an exp( - iwt )  time dependence 
and using the Krook collision operator given in Eqs. (4) and (5),  and changing from the dependent variable 

.411(0) to ~11(0) -= (iwqR/2c)[~__oodO' ,$,11(0')- f~dO' All(0')],  Eq. (2) becomes a first-order ordinary 
differential equation in 0. With the Krook collision operator, velocity-space variables enter only parametrically. 
This equation can be solved analytically, by separate procedures for trapped and untrapped particles as described 
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in detail in Ref. [7], to obtain exact solutions for f j  in terms of q~ and ~11" These solutions are then used in 

the quasineutrality condition ~-]s es f d3v fs  = 0. However, instead of using the component of Amp~re's law 
parallel to the equilibrium magnetic field lines, the gyrokinetic moment equation, which comes from applying 
the operator ~]~ es f d3v to the modified form of the gyrokinetic equation, is used. For the present comparison, 

• 4± and the perpendicular component of Amp~re's law, which are included in Refs. [4] and [7], are omitted. 
The resulting system of two linear, homogeneous, non-Hermitian integrodifferential equations is solved by a 
Ritz method, where the unknown potentials are decomposed in terms of chosen basis functions 

L-I 
~b( O) = Z qbthl( O) 

l=O 
(24) 

and correspondingly for ~11(0), where ht(O) - Ht(A1/20)exp(-AO2/2)M]/2,  Ht is the Hermite poly- 

nomial of order l, Mt =- (~/A)1/Z2tl!, and A > 0 is an adjustable real parameter. Then, the operator 
[Te/(lel2n~)] f_~dO he(O) is applied to each of the two equations, for 0 < l' < L -  1. These operations 
have the effect of  converting the two integrodifferential equations into a single large matrix equation, 

= (M;; , '  2 • 
M (to) ~/~!1 [ 1 s M~21 M~22 ) ~/~111 =" (25) 

Here, M(ta)  is a 2 × 2 block matrix, with each block being an L × L matrix, where L is the number of basis 
functions that are kept, Zs - eJleJ is the charge number, and the complete and exact form of M],"]'m(ta) is given 
in Ref. [4]. (In the electrostatic limit, the ~llt are omitted and only the M])t 1 block of M is used.) The matrix 
M(ta) has 2L eigenvalues Ai (i = 1 . . . . .  2L) and 2L corresponding eigenvectors. Eq. (25) can be satisfied 
only if det(M) = 0, and this can happen only if at least one of the A/s is zero, since det(M) = 1-Ii2=/] Ai. Each of 
the ai 's is a function of ta. Thus, the eigenvalue condition on to is }ti(ta) = 0 for a single "~i corresponding to a 
chosen eigenvector (and eigenfunction). The eigenvalue of to can be found by standard root-finding methods, 
such as Newton's method (method of false position). The number of basis functions, L, must be chosen 
sufficiently large that the eigenvalue to is independent of L to some acceptable accuracy, and is typically taken 
as L = 3 2 .  

5. Artificial test  case and col l is ion models  

In this section, results of the two calculations are compared for an artificial test case in the electrostatic limit• 
The "s-a"  model MHD equilibrium is used with q = 1.5, ~ = (r/q)  (dq/dr)  = 1.0, and a -- -q2R(d f l /d r )  = 
0, where fl _-- (8rr/B02) Y]s nsT~. The local plasma parameters, in standard notation, are Ln/R = a iR  = 1/3, 
~7i = Be = 3.0, T/= Te = 3.0 keV, r /a  = 1/2, r /R  -- 1/6, Zeff = 1.0 (no impurities), mi = 2 a.m.u. (deuterium), 
R = 240 cm, a = 80 cm, r = 40 cm, and Ln = 80 cm. First, in the collisionless limit, results for the real frequency 
tar and the growth rate y in units of the electron diamagnetic drift frequency ta*e are shown in Fig. 1 for a range 
of kopi values, where ko - - n q / r  and Pi =- (2Ti/mi)U2/(eBo/mic). It is seen that the initial value results and 
the eigenvalue results for tar and y agree well over the whole range 0.03 < koPi <_ 0.7, with IAtal/Ital < 6%. 

The electron collision frequency is varied in Fig. 2 by varying the electron (and ion) density, since the 
electron collision frequency Pe is approximately proportional to ne = rti, while the ion collision frequency is 
still set to zero. Also, kopi is fixed at 0.5. The results from the initial value and eigenvalue calculations for 
the departure of tar and y from their collisionless limits are shown as a function of ne in Fig. 2. The "old" 
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Fig. 1. Linear growth rates y and real frequencies OJr in units of the electron diamagnetic drift frequency W*e v e r s u s  koPi, from the initial 
value calculation and the eigenvalue calculation. Results are given for the artificial test case parameters, in the collisionless, electrostatic 
limit. 

S 

,7,, > 

± 

o, t 

-0.2 I (a) 

-0.3 ~ 
1 

I . . . . . . . .  I . . . . . . .  
/ eigenvalue 

, / / ( o l d  Krook ooetator) 

- c~ ~ _ _  i~tloralenV~Uoep erator) 

I . . . . . . . .  I . . . . . . .  
I 0 I O0 1 0 0 0  ne (1013 cm-3 ) 

2 

9, > 
3 
3 L 

0.1 

0.05 

0 

-0.05 

-0.1 

. . . . . . .  ! . . . . . . . .  I 
initial value 
(Lorentz operator) 

" ~ eigenvalu---e . . . . .  
rogde KV~kUoper ator, ~ ~v 

2 ,01 
I 

10 

! 
. . . . . . . . . .  I . . . . . . .  + 

1 O0 1000 
ne (1013 cm "3 ) 

Fig. 2. Departure of y and (.Or from their respective collisionless limits, in units of W.e, versus electron density, which is approximately 
proportional to electron collision frequency Ue, from the electrostatic initial value and eigenvalue calculations. Here. the artificial test case 
parameters are used, with koPi = 0.5 fixed and ion collisions omitted. 

form of  the Krook coll is ion operator given by Eqs. (4)  and (5 ) ,  with 6 = 6old = [l~ol/(veiZf)], is seen to 
give agreement for the growth rate with the Lorentz operator results from the initial value calculation in the 
small ne and large ne asymptotic limits, as it was constructed to do in Ref. [8 ] ,  but diverges rather badly in 
the transition region. However, changing only the coefficient and exponent in 6, from 6 = 6o10 -= [ loll/(IJeiZf) ] 
to 6 = 6new - - -  [ lw l / (b 'e iZf  × 3 7 . 2 R / r ) ]  1/3, brings the eigenvalue code Krook operator growth rate into good 
agreement with the initial value code Lorentz operator growth rate throughout the transition region as well. The 
agreement for the real frequency Wr is improved at the same time for the lower density range, which is the 
more experimentally relevant range. However, obtaining accurate values for the growth rate was considered to 
be more important than for the real frequency, so that the coefficient and exponent in S were chosen strictly to 
optimize the agreement of  the growth rates. As will be seen in Section 6, the agreement for realistic experimental 
parameters of  both the growth rate and the real frequency will be acceptable with 6 = 6,ew. 

6. TFTR experimental  cases 

In this section, two different TFTR L-mode experimental cases [9] are considered. The first corresponds to 
TETR shot 52504 at r = 37 .9cm.  The "s-a" model MHD equilibrium is used with q = 1.122, g = 0.9707,  and 
a = 0.07612.  The global parameters are: B0 = 4.759 T, I t, = 1.9774 MA, a = 79.88 cm, R = 245 .0cm,  and Zeff = 
2.344 (from a carbon impurity species with s = C) .  A hot deuterium beam species with s = b is included in the 
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Fig. 3. Results for 7 and (.Or in units of  ¢O,e versus kapi, from the electrostatic initial value and eigenvalue calculations, for the TFTR 
L-mode shot 52504 parameters at r = 37.9 cm. Here, a carbon impurity species and a deuterium beam species and electron collisions are 
included in the calculation, but ion collisions are omitted. 

Fig. 4. Results as in Fig. 3, but for TFTR L-mode shot 49982 at r = 38 cm. 

calculations along with the background deuterium ion species with s = i. The local parameters at r = 37.9 cm 
are: ne = 5.57 × 1013cm -3, n b =  0.469 × 1013cm -3, nc = 0.250 × 1013cm -3, Te = 3.22 keV, T/=  Tc = 2.77 

keV, Tb = 50 keV, Lne = Lnc = 83.6cm, Lre = 44.3 cm, Lri = L~c -- 37.3 cm, Ls - qR/s  = 283.2 cm, r/e = 1.89, 
rl e -- ( d l n T j d r ) / ( d l n n e / d r )  = 2.24, r/b = 0, r /R  = 0.155, and Lnb = 64.5cm. The instability calculations 
are again performed in the electrostatic limit. The results from the initial value calculation and the eigenvalue 
calculation for wr and y are shown as a function of  koPi in Fig. 3. Again, there is reasonable agreement, with 

la~ol/Io~l ~< 12%. 
The second TFTR L-mode experimental case corresponds to T F r R  shot 49982 at r = 38 cm. The "s-a"  model 

MHD equilibrium is used with q = 2.2515, g = 1.1025, o~ = 0.1653, and/3  = 0.33442%. The global parameters 
are: B0 -- 4.76T, a = 80.0cm, R -- 245.0cm, and /30 -- 0.96356% at the magnetic axis. Again, a carbon 
impurity species and a hot deuterium beam species are included in the calculations along with the background 
deuterium ion species and the electrons. The local parameters at r = 38cm are: ne = 3.9084 × 1013cm-3, 
nb = 0.29774 × 1013cm -3, nc = 0.081147 × 1013cm-3, Te = 1.6294 keV, T,- = Tc = 1.5141 keV, Tb = 24.411 
keV, Lne/r = 4.3582, Be = 4.6830, B e = 5.5441, r/b = 0.23878, r /R  = 0.15510, Lnc/Lne = 1.0, and Lnb/L,e = 
0.16007. For this case, the instability calculations are performed both in the electrostatic limit ( ~  only) and in 
an electromagnetic calculation ( ~  and fi'll or ~11 ), with both including electron collisions but not ion collisions. 
In the electrostatic limit, results from the initial value calculation and the eigenvalue calculation for Wr and 9' are 
shown versus koPi in Fig. 4. Again, there is good agreement between the two calculations, with IAwl/]wl < 5%. 
The corresponding electromagnetic results are shown in Fig. 5 for fixed koPi = 0.4, and again, there is good 
agreement between the two calculations, with lao~l/Io, I < 6%. 

7 .  C o n c l u s i o n s  

Two completely independent computer codes which solve the same equations, namely the linearized gy- 
rokinetic equation, along with the quasi-neutrality condition and Amp&e's  law, using the high-n ballooning 
representation for the "s-ce" model MHD equilibrium [ 1 ], have been compared. These two codes use completely 
different solution methods for these equations, and also use different collision operators. The initial value code 
uses a Lorentz collision operator, while the eigenvalue code uses a modified Krook collision operator which 
is designed to approximate the results of  a Lorentz operator in the banana regime and the lower end of  the 
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Fig. 5. Results as in Fig. 4 for ~ and Wr versus the local total/3, which here is proportional to the MHD equilibrium parameter e,  from 
the electromagnetic initial value and eigenvalue calculations, at fixed kopi = 0.4. 

plateau regime [8]. After implementing several corrections in the initial value code, and after improving the 
Krook collision operator in the eigenvalue code, good agreement is found between the eigenfrequencies cal- 
culated by the two codes. For an artificial test case and for several cases using TETR experimental data, the 
eigenfrequencies are always within 10 to 12% of one another (as measured by IA~,l/Io, I), and are usually 
within 5 to 6%. This level of agreement gives some confidence that both codes are now working correctly. It 
is within the typical error of the experimental input data for density, temperature, and safety factor q gradients. 
In particular, these comparisons verify that the implicit scheme in the initial value code is accurate, even for 
trapped particle effects. The instability compared here is the toroidal drift mode, destabilized by the combined 
effects of trapped particles and ion temperature gradients, calculated both in the electrostatic limit (with 
only) and in the electromagnetic case (here keeping ~ and "411 or ~ll only). 

In future work, the comparison will be extended to other instabilities which can be calculated by the 
electromagnetic versions of both the initial value code and the eigenvalue code, namely the high-n kinetic 
MHD ballooning mode, and possibly the high-n toroidal Alfv6n eigenmode (TAE mode). Both calculations are 
susceptible of extension in various directions. The initial value calculation, in particular, can be generalized for 
nonlinear simulations, which is not possible for the eigenvalue calculation; this generalization is in progress. The 
eigenvalue code has already been extended in a number of different directions, though those extensions were not 
used in this comparison, in order to keep the physics in the two calculations the same. There are versions of the 
eigenvalue code which include ,4_L, the perpendicular component of the perturbed vector potential, the higher- 
order cylindrical magnetic drifts, an ion collision operator of the same form as the electron collision operator, 
the ability to use more general, numerically computed MHD equilibria, the ability to use more general, non- 
Maxwellian equilibrium distribution functions, in particular for the hot beam ion or hot alpha particle species, 
and the ability to calculate for each species the quasi-linear particle and energy fluxes associated with a linear 
eigenmode, as has been described already in Refs. [4], [7], and [10]. Some of these extensions can also be 
made to the initial value code in future versions. 
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