
Letter
https://doi.org/10.1038/s41586-019-1116-4

Predicting disruptive instabilities in controlled
fusion plasmas through deep learning
Julian Kates-Harbeck1,2,3*, Alexey Svyatkovskiy4,5 & William Tang3,4

Nuclear fusion power delivered by magnetic-confinement
tokamak reactors holds the promise of sustainable and clean
energy1. The avoidance of large-scale plasma instabilities called
disruptions within these reactors2,3 is one of the most pressing
challenges4,5, because disruptions can halt power production and
damage key components. Disruptions are particularly harmful
for large burning-plasma systems such as the multibillion-dollar
International Thermonuclear Experimental Reactor (ITER)
project6 currently under construction, which aims to be the first
reactor that produces more power from fusion than is injected to
heat the plasma. Here we present a method based on deep learning
for forecasting disruptions. Our method extends considerably the
capabilities of previous strategies such as first-principles-based5 and
classical machine-learning7–11 approaches. In particular, it delivers
reliable predictions for machines other than the one on which it
was trained—a crucial requirement for future large reactors that
cannot afford training disruptions. Our approach takes advantage
of high-dimensional training data to boost predictive performance
while also engaging supercomputing resources at the largest scale to
improve accuracy and speed. Trained on experimental data from the
largest tokamaks in the United States (DIII-D12) and the world (Joint
European Torus, JET13), our method can also be applied to specific
tasks such as prediction with long warning times: this opens up the
possibility of moving from passive disruption prediction to active
reactor control and optimization. These initial results illustrate the
potential for deep learning to accelerate progress in fusion-energy
science and, more generally, in the understanding and prediction of
complex physical systems.

Tokamaks use strong magnetic fields to confine high-temperature
plasmas, with the goal of creating the conditions for extracting power
from the resulting fusion reaction in the plasma14. However, the
thermal and magnetic energy in the tokamak can drive plasma insta-
bilities that lead to disruptions2—a central science and engineering
challenge facing practical power production from nuclear fusion.
Disruptions abruptly destroy the plasma’s magnetic confinement, thus
terminating the fusion reaction and rapidly depositing the plasma
energy into the confining vessel3,4 (see the section on ‘Disruptions’
in the Supplementary Information for details). The resulting thermal
and electromagnetic force loads can irreparably damage key device
components. However, if an impending disruption is predicted with
sufficient warning time3, a disruption mitigation system (DMS), using
techniques such as massive gas or shattered pellet injections15, can be
triggered. The DMS terminates the discharge but substantially reduces
the deleterious effects of the disruption. Present guidance for the min-
imum required warning time for successful disruption mitigation on
ITER is about 30 milliseconds, although it is in general set by the exact
response time of the DMS and may be reduced in the future through
progress in DMS technologies3. Throughout this paper, we describe
the predictive performance of all methods at this ‘deadline’ of 30 mil-
liseconds before disruption. However, even longer warning times
could allow for a ‘soft’ rampdown of the plasma current or alternative

active plasma control, avoiding disruption without terminating the
discharge3.

Although plasma instabilities and disruptions are in theory predictable
from first principles16, this has proven to be extremely challenging,
because an accurate physical model5 would need to take into account,
first, a vast range of spatiotemporal scales; second, multiphysics
considerations; and third, the complexity of disruption causes and
precursor events17. Just as for many other fundamental questions across
the physical sciences18,19, the inherent complexity of the problem can
make first-principles-based approaches impractical on their own.

On the other hand, recent statistical and classical machine-learning
approaches (we will refer here to machine-learning models that do not
apply deep-learning paradigms as ‘classical’ algorithms) based on real-
time measured data have shown promising results7–10; although they
still have shortcomings, they represent the state of the art3 for disrup-
tion prediction. Here we introduce the fusion recurrent neural network
(FRNN)—a new disruption-prediction method based on deep learning
that builds on these pioneering efforts and extends the capabilities of
data-driven approaches in several crucial ways.

Specifically, our method delivers predictions for devices unseen
during training; uses the information contained in high-dimensional
diagnostic data, such as profiles, in addition to scalar signals; avoids
the need for extensive feature engineering and selection20,21; and
enables rapid training times through high-performance computing.
The cross-device prediction in particular will be key for powerful
near-future burning plasma machines such as ITER, as they cannot
withstand more than a few3 disruptions. Accordingly, training data
from such devices can be expected to be scarce.

Deep neural networks22 in general consist of many layers of param-
eterized nonlinear mappings, whose parameters are trained (‘learned’)
using backpropagation. They have been successful at learning to extract
meaningful features from high-dimensional data such as speech, text
and video. In particular, recurrent neural networks (RNNs) powerfully
handle sequential data by maintaining information in an internal state
that is passed between successive time steps, in addition to taking into
account new input data at every time step. Meanwhile, convolutional
neural networks (CNNs) can learn salient, low-dimensional representa-
tions from high-dimensional data by successively applying convolu-
tional and downsampling operations. As the first application of deep
learning to disruption prediction, the specific architecture of FRNN
combines both recurrent and convolutional components to extract
spatiotemporal patterns from multimodal and high-dimensional
sensory inputs. The overall workflow and detailed architecture of our
approach are presented in Fig. 1.

Missing a real disruption or calling it too late (false negative) is
costly because its damaging effects go unmitigated, while triggering
a false alarm (false positive) wastes experimental time and resources.
Changing the alarm threshold value for the scalar ‘disruptivity’ output
of a prediction model (Fig. 1d) allows a trade-off between these two
economic operation factors. A low threshold means that the alarm is
triggered more easily, which will result in fewer missed disruptions but

1Department of Physics, Harvard University, Cambridge, MA, USA. 2Program for Evolutionary Dynamics, Harvard University, Cambridge, MA, USA. 3Princeton Plasma Physics Laboratory, Princeton,
NJ, USA. 4Princeton Institute for Computational Science and Engineering, Princeton University, Princeton, NJ, USA. 5Present address: Microsoft, One Microsoft Way, Redmond, WA, USA.
*e-mail: jkatesharbeck@g.harvard.edu

5 2 6 | N A T U RE | V O L 5 6 8 | 2 5 A P R I L 2 0 1 9

https://doi.org/10.1038/s41586-019-1116-4
mailto:jkatesharbeck@g.harvard.edu

Letter RESEARCH

more false alarms, and vice versa for a high threshold. This trade-off
is captured as a receiver–operator characteristic (ROC) curve23 (see
the Methods subsection ‘Target functions’ and Extended Data Fig. 1
for details). The area under this ROC curve (AUC)—our metric for
evaluating algorithms—lies between 0 and 1, and measures the ability
of a predictive method to catch real disruptions early enough, while at
the same time causing few false positives.

In order to assess our algorithm, we trained it to predict disruptive
and nondisruptive outcomes using past experimental data from the
JET and DIII-D tokamaks, currently comprising over 2 terabytes.
Training our model effectively required solutions to several unique
challenges, such as training with diverse and long sequences and find-
ing signal normalizations that scale appropriately between machines
(see the Methods subsections ‘Data considerations’ and ‘Algorithm and
training details’ for further information, and Extended Data Tables 1, 2
for a detailed summary of the signals and datasets used). We compare
FRNN to the previous state of the art represented by support vector
machines (SVMs)10 and small multilayer perceptrons (MLPs)8, as well
as to other promising models from the machine-learning literature such
as random forests24 and gradient-boosted trees25. Table 1 reports AUC

values for the best version of our model and the best classical model
using various datasets. In all of our tests, gradient-boosted trees per-
formed the best among classical models. Ultimately, only a closed-loop
implementation during live experimental operation that is subject to
the associated unforeseeable circumstances can provide definitive evi-
dence of the merits of a predictive method—and may also lead to addi-
tional insights through the process of implementation and debugging
in the live plasma control system. However, the large and representative
archival datasets used here cover a wide range of operational scenarios,
and thus provide substantial evidence as to the relative strengths of the
methods considered.

For the DIII-D dataset, we sample both the training and the testing
examples uniformly across all experimental runs (‘shots’). Thus, this
dataset requires the least ‘generalization’ (the ability of the algorithm to
learn patterns during training that transfer to new and possibly unseen
situations, in this case the testing set). In this setting, classical methods
and our proposed method are competitive, with the classical method
performing slightly better. However, FRNN improves further in perfor-
mance after the 30-millisecond deadline (providing improved predic-
tive performance if mitigation technology becomes faster in the future),

0

5

10

N
or

m
al

iz
ed

 s
ig

na
l (

a.
u.

)
N

or
m

al
iz

ed
 t

or
oi

d
al

 �
ux

WMHD
li

LM
Ip

0
5

10
15
20

Pin
Prad,core
Prad
ne

0.0

0.0

1.0

0.0

0.5

1.0
0

0

1

2

Te

ne2

4

1,000

Gas
injection Diagnostics

0 2,000 3,000 4,000 5,000
Time (ms)

–1

0

1

R
N

N
 o

ut
p

ut
 (a

.u
.)

S
ig

nals

D
is

ru
p

ti
o

n
al

ar
m

Internal
state

1D profiles

0D signals

Full feature vector

LSTM

Size 3 convolution

Max pooling

Concatenate

Output

Size 1 convolution
N layers

M layers

Concatenate

Final feature vector

Fully connected

T = tT = t – 1 T = t + 1

LSTM LSTMInternal
state

Internal
state

Internal
state

Internal
state

1D features

Alarm threshold

RNN

a

b

c

d

e

f

NF �lters

Fig. 1 | System overview and disruption-prediction workflow. a–e, The
top image shows an interior view of the JET tokamak, with a nondisruptive
plasma on the left and a disruptive plasma on the right. Diagnostics (a)
provide streams of sensory data (b) which are fed to the RNN-based
deep learning algorithm (c) every 1 ms, producing a corresponding
‘disruptivity’ output at every time step (d). If the output crosses a preset
threshold value (dashed horizontal line), a disruption alarm is called
(red star). This alarm triggers mitigation action, such as gas injection
(e) into the tokamak, to reduce the deleterious effects of the impending
disruption. f, A detailed schematic of our deep-learning model. The input
data consist of scalar zero-dimensional (0D) signals and 1D profiles.
N layers of convolutional (containing NF filters each) and downsampling
(max-pooling) operations reduce the dimensionality of the profile data
and extract salient low-dimensional representations (features; here, 1D

features). These features are concatenated with the 0D signals and fed into
a multilayer long/short-term memory network (LSTM) with M layers,
which also receives its internal state from the last time step (T = t − 1)
as input. The resulting final feature vector ideally contains salient
information from the past temporal evolution (T ≤ t − 1) and the present
state of all signals (T = t). This vector is fed through a fully connected
layer to produce the output. Panel a has been modified from an image of
the interior of JET obtained from the EUROfusion media library at www.
euro-fusion.org/media-library. Ip,target, plasma current target; Ii, internal
inductance; LM, locked-mode amplitude; Ip, plasma current; Pin, input
power; Prad,core, core radiated power; β, normalized plasma pressure; ne,
electron density; WMHD, plasma energy; Prad, total radiated power; Te (ρ),
electron-temperature profile; ne (ρ), electron-density profile.

2 5 A P R I L 2 0 1 9 | V O L 5 6 8 | N A T U RE | 5 2 7

http://www.euro-fusion.org/media-library
http://www.euro-fusion.org/media-library

LetterRESEARCH

performs as well as the classical method in the ‘interesting’3 region of
the ROC curve with high true positives and low false positives, and pro-
vides better generalization for threshold choices (Extended Data Fig. 1).

For the JET dataset, training and testing data are drawn from slightly
different distributions. The testing set is drawn after an upgrade to the
device, in which the internal wall was changed from a carbon wall to
an ITER-like wall (ILW) made of beryllium13, resulting in different
physical boundary conditions as well as different shot and operations
characteristics10. Here the superior generalization abilities of FRNN
become clear.

Being able to learn generalizable disruption-relevant features from
one tokamak and apply them to another will be key to a disruption
predictor for ITER, where no extensive disruption campaigns can be
executed to generate training data. The second and third columns of
Table 1 show the results for cross-machine performance, where both
training and validation data come from one machine, and testing is
performed on the other. This is a difficult task, complicated by various
subtle factors (see the Supplementary Information section ‘Challenges

in cross-machine training’), which has presented challenges to earlier
work11. The results show that, in this setting, only our deep-learning
approach is able to transfer substantial generalizable knowledge from
one machine to the other. The results are particularly strong for the
ITER-relevant case of training on a machine with smaller physical
size and less stored energy (DIII-D) and generalizing to a ‘big’ unseen
machine (JET). As far as we are aware, this is the first demonstration of
substantial cross-machine generalization for machine-learning-based
disruption prediction.

Although it is not possible to obtain thousands of training shots
(including a sufficient number of disruptions) from a new machine
such as ITER, a small amount of simulated or real (perhaps low-power
or low-current) disruptive shots3 may be feasible. To simulate this sce-
nario, we sample a small set, δ, of shots from the testing set on the big
machine (JET), and give the algorithms access to these during training
(see the Methods subsection ‘Experimenting with a small number of
shots from the test machine’). Encouragingly, all models greatly benefit
from this ‘glimpse’ at the testing set (see the last column of Table 1).
Generalization is particularly strong for the deep-learning model.
Using only a very few JET shots, FRNN can reach a performance that
is competitive with that of models trained on the full JET dataset using
the same restricted set of signals available on both machines. These
results are highly relevant to disruption prediction on the ITER, as they
demonstrate the feasibility of training well-performing models without
the need for many disruptive training shots from the target machine.

Given that manual dimensionality reduction and feature engineering
(that is, the extraction of useful low-dimensional summaries or rep-
resentations from high-dimensional data26) would first be necessary,
classical methods have been unable to take advantage of higher-dimen-
sional signals such as profiles. Profiles are one-dimensional data that
capture the dependence of a relevant plasma parameter, such as the
electron temperature or density, on the radius as measured from the
plasma core to the edge. This radial dependence is generally the most
important degree of freedom, as variations along the poloidal or toroi-
dal degrees of freedom are subject to much greater particle mobility and

Table 1 | Prediction results
Single machine Cross-machine Cross-machine

with ‘glimpse’

Training set DIII-D JET (CW) JET (CW) DIII-D DIII-D + δ

Testing set DIII-D JET (ILW) DIII-D JET (ILW) JET (ILW) − δ

Best classical
model

0.937 0.893 0.636 0.616 0.851

FRNN 0D 0.890 0.952 0.761 0.817 0.879

FRNN 1D 0.922 – – 0.836 0.911

Performance of the best models on test datasets, measured as AUCs at 30 ms before a disrup-
tion. We compare FRNN with (1D) and without (0D) profile information and the best classical
approach. The best model for each data set is shown in bold. The last column shows results for
cross-machine testing with a small amount (a ‘glimpse’) of data, δ, from the testing machine
added to the training set (see text). A score of 1.0 represents perfect performance and 0.5 is
equivalent to random guessing. Because the relevant diagnostic for 1D profiles was not available
on most JET shots from the carbon wall dataset, 1D profiles are not included when training on JET
data. CW, carbon wall.

0

5

10
Ip,target
li
LM
Ip

0

5

10

15
Pin
Prad,core

ne

0

0.5

1.0

0

0.5

1.0

0 1,000 2,000 3,000 4,000 5,000 6,000
T (ms)

–1

0

1

FRNN 1D
Alarm
threshold

0

4

8

Te ()

0.0

1.5

3.0

ne ()

N
or

m
al

iz
ed

si
gn

al
(a

.u
.)

N
or

m
al

iz
ed

to
ro

id
al

�u
x

(
)

N
or

m
al

iz
ed

ou
tp

ut
 (a

.u
.)

0

5

10
WMHD
li
LM
Ip

0

5

10

15

20
Pin
Prad,core
Prad
ne

0

0.5

1.0

0

0.5

1.0

0 1,000 2,000 3,000 4,000 5,000
T (ms)

–1

0

1
FRNN 1D

Classical
Alarm
threshold

0

1

2

Te ()

0

2

4

ne ()

0

5

10
Ip,target
li
LM
Ip

0

5

10

15
Pin
Prad,core

ne

0

0.5

1.0

0

0.5

1.0

2,000 2,500 3,000 3,500
T (ms)

–1

0

1
FRNN 1D

FRNN 0D
Alarm
threshold

0.0

2.5

5.0

Te ()

0

2

4

ne ()

a b c

Fig. 2 | Example predictions on real shots from DIII-D and JET.
a, c, Shots from DIII-D; b, shot from JET. For each shot, the top two panels
show scalar signals; the next two show profile signals; and the bottom
panel shows the model output as a function of time. T = 0 is defined as the
first time point for which all signals are present in the database, which can
differ from the standard DIII-D and JET time base. Only a representative
subset of the signals used by the algorithm is plotted, and each signal is
shown in its normalized form (see the Methods subsection ‘Normalization’
for details and Extended Data Table 1 for descriptions of each signal).
The red stars and dashed vertical lines indicate alarms. Disruptive shots
(b, c) have a vertical red line at the 30 ms deadline before the disruption.

a, DIII-D shot 148,778: a false alarm is triggered about 5,200 ms into the
shot by a minor disruption. Careful inspection reveals two separate minor
disruptions in close succession, corresponding to the spikes in the output
and the resulting alarms. b, JET shot 83,413: the slow rise in radiated
power allows our deep-learning approach (FRNN1D; black) to correctly
predict the disruption hundreds of milliseconds in advance; this is missed
by the best classical model (yellow; see text). c, DIII-D shot 159,593, only
the deep-learning model with access to profile information (black) can
correctly predict the oncoming disruption; it is missed by the model that is
trained solely on scalar signals (yellow).

5 2 8 | N A T U RE | V O L 5 6 8 | 2 5 A P R I L 2 0 1 9

Letter RESEARCH

resulting faster averaging times owing to the structure of the confining
magnetic fields14. Profiles could provide rich new physics informa-
tion and insight, and many reaction metrics and control mechanisms
already relate to their temporal evolution27 (see the Supplementary
Information section ‘Extensions and future work’). Although profile
data show large differences between machines, and are at present of
limited quality and temporal availability (see the Methods subsection
‘Data challenges’), our algorithm is nonetheless able to benefit from
these data and to generalize between machines. Performance of the
best deep-learning models (including performance on cross-machine
prediction) increases universally when including profiles (see Table 1).
This demonstrates that there is a wealth of predictive, disruption-rele-
vant information contained in multimodal, high-dimensional data—a
critical fusion physics insight. These findings are further corroborated
by explicit analyses of signal importance (Extended Data Fig. 2). The
ability of our deep-learning model to take advantage of these new phys-
ics data without resorting to the use of hand-tuned features or invoking

human expertise is key. Higher-quality, more densely available, and
potentially even higher-dimensional signals—such as two-dimensional
electron cyclotron emission imaging (ECEi) data28 (see the Methods
subsection ‘Data challenges’ for more examples)—will add even more
predictive power to deep-learning models and might lead to new phys-
ics insights in the future (see the Supplementary Information section
‘Extensions and future work’).

Figure 2 shows time series of various example shots and the resulting
algorithmic predictions. In Fig. 2a, an example false alarm is triggered
on a DIII-D shot at about 5,200 milliseconds into the shot. However,
this false positive remains a plausible prediction, as the observed symp-
toms are consistent with a ‘minor disruption’ (see the Supplementary
Information section ‘Disruptions’)—an event characterized by a ther-
mal quench (that is, a rapid loss of thermal energy to the plasma-facing
components) without a current quench (a loss in plasma current)3.
Accompanied by only minor disturbances in the plasma current, this is
evident in, first, the drop in β (the ratio of thermal to magnetic pressure

10–2 10–1 100 101

Time to disruption (s)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
d

et
ec

te
d

d
is

ru
p

tio
ns

Tuned for
30 ms

Tuned for
1,000 ms

0.03 0.07 0.2 0.5 1.0
Time to disruption (s)

0.5

0.6

0.7

0.8

0.9

Te
st

 A
U

C
S

 a
ch

ie
ve

d

a

Validation AUC achieved

102

103

104

S
p

ee
d

-u
p

 o
ve

r
se

ria
l

Ideal
Measured

0.3 0.4 0.5 0.6 0.7 0.8

1
GPU

10
2 G

PUs (p
ar

all
el

tra
ini

ng
)

10
2 G

PUs (p
ar

all
el

tu
nin

g)

10
4 G

PUs
10–1

100

101

102

103

104

R
un

tim
e

(h
ou

rs
)

c

100 101 102 103 104

Number of GPUs

104

103

102

101

100

10–1

Ti
m

e
p

er
ep

oc
h

(s
)

Data

Scaling model

Ideal scaling

2 4 6 8 10 12 14 16
Scaled execution time (hours)

100

10–1

10–2

Tr
ai

ni
ng

lo
ss

NGPU = 4
NGPU = 16
NGPU = 64
NGPU = 128
NGPU = 256

0.4

0.5

0.6

0.7

0.8

0.9

V
al

id
at

io
n

A
U

C
s

ac
hi

ev
ed

b

Fig. 3 | High-performance computing results. a, Accumulated fraction
of detected disruptions (main image) and AUC values achieved (inset) on
DIII-D as a function of time to disruption for two models, optimized for
performance at deadlines of 30 ms and 1,000 ms before the disruption,
respectively. b, Time required to complete one pass over the dataset
(one ‘epoch’) during training versus the number of GPUs engaged.
Experimental data are compared with a semi-empirical theoretical scaling
model (see Supplementary Information section, section ‘Derivation
of scaling model’) and ideal scaling. The relative errors (measured as
empirical standard deviations) of the experimental data are ± 2.5%
and are much smaller than the size of the circular symbols. The inset
shows actual training progress, measured via mean training loss (that
is, the difference between the target and the realized output of the
model; decreasing curves) and validation AUCs (increasing curves) for
various numbers of GPUs (NGPU) as a function of scaled execution time

(execution time × NGPU). The best validation AUC value is denoted by
a star. The 256-GPU run shows some initial indications that the pattern
of convergence is changing, while still giving final testing AUC as good
as the other runs. c, Results for hyperparameter tuning with 104 GPUs
with parallel random search across 100 models, trained on 100 GPUs
each. In the main image, the time to solution for finding a model of a
given validation AUC in this scenario of engaging 104 GPUs is compared
to the case of using only a single GPU for the same search. The solid line
shows the actual ratio between the times to solution, while the dashed
line indicates the ideal ratio (speed-up) of 104. The inset shows the time
required for finding the best model when using a total of 1, 102 or 104
GPUs. For 102 GPUs, we distinguish between training the 100 models
serially but using 102 GPUs for each model (parallel training), and running
100 models in parallel, trained on 1 GPU each (parallel tuning), which
both achieve an acceleration (speed-up) of nearly 100 times.

2 5 A P R I L 2 0 1 9 | V O L 5 6 8 | N A T U RE | 5 2 9

LetterRESEARCH

in the plasma); second, the peaking and rapid change in the tempera-
ture (and density) profiles; and third, the spiking locked-mode.

The fact that false alarms are often understandable like this, and intu-
itively ‘make sense’, gives confidence and physical interpretability to the
model. By serving as a reliable measure of ‘disruptivity’ as exemplified
in this shot, FRNN could serve as an analysis tool to filter databases and
help identify causes, precursors and other events relevant to disruption
physics2,29, thus supporting discovery science in this area. As is visible
from the random spikes in Fig. 2b, we find qualitatively that false alarms
from the classical methods are often erratic and not as easily attributed
to physically meaningful events.

Figure 2b shows an example of a disruptive shot that is missed by
the best performing classical algorithm (gradient-boosted trees) but
is correctly caught by our method. Although no sudden events occur
near the disruption at the end of this shot, FRNN does pick up on the
slow (roughly 1,000 millisecond) rise of the core-radiated power, while
gradient-boosted trees do not. This is probably because of its lack of
access to temporal information (see the Methods subsection ‘Training
for classical models’).

Figure 2c compares FRNN that is trained (and tested) only on scalar
signals (yellow) with a model that is trained on all signals, including
profiles (black), from a disruptive DIII-D shot. As can be seen from
the drop in β, the morphological change in the profiles and the locked-
mode spikes (as well as the later spikes in radiated power), starting at
around 3,350 milliseconds, some events are clearly taking place in the
plasma that resulted in a disruption. However, only the model that
is trained using profiles is able to correctly interpret the early warn-
ing signs. Access to one-dimensional profile information qualitatively
changes the prediction and allows early detection of the disruption,
which is missed by the model without access to profiles.

Optimizing a modern machine-learning model is an iterative pro-
cess. Selection of well-performing hyperparameters—that is, param-
eters of the model that are not optimized during training and need to
be set manually, such as the learning rate—requires searching a high-
dimensional space (see Extended Data Table 3 for a comprehensive list
of hyperparameters and values that performed well). Evaluating any
point in this space entails running full model training and inference. To
make this approach practical, it is essential to reduce the time required
to train a single model, and to increase the number of models that can
be trained in parallel in a given amount of time. Growing model sizes,
datasets, and amounts of one- or even higher-dimensional data will
only make these demands more challenging.

We address these issues with three levels of parallelism, which
together enable the engagement of high-performance computing
(HPC) at the largest scale in order to reduce the time to solution. First,
graphical processing unit (GPU) computing accelerates training over
single-machine, multicore central processing unit (CPU) execution
by roughly 10 to 20 times. Using the message passing interface (MPI)
standard, we next implement a distributed, synchronous, data-parallel
training approach30 to engage large numbers of GPUs at once. Finally,
we parallelize the random hyperparameter search by training many
such distributed multi-GPU models in parallel.

An important application of hyperparameter tuning is the ability to
tune models for a specific task, such as providing much earlier disrup-
tion warnings, thus possibly enabling active plasma control without
the need for shutdown3. In Fig. 3a we show the results of using hyper-
parameter tuning to select models for optimal prediction performance
at 30 and 1,000 milliseconds, respectively, before the disruption. The
tuned models display qualitatively distinct behaviour, which gener-
alizes to the testing set: the model tuned for 30 milliseconds shows
better performance closer to the disruptions, while the model tuned at
1,000 milliseconds shows superior performance at times further away.

Figure 3b shows the excellent strong scaling of FRNN’s data-parallel
training up to at least 6,000 GPUs using the Oak Ridge Leadership
Computing Facility (OLCF) supercomputer Titan. We have repli-
cated this scaling on the Pascal-P100-powered TSUBAME 3.0 and
Volta-powered OLCF Summit supercomputers, as well as with mixed

floating-point compute precisions31. In the inset of Fig. 3b, we study
training progress as a function of execution time multiplied by the
number of GPUs. The fact that the curves approximately collapse indi-
cates that actually training a model to convergence also scales nearly
ideally with the number of GPUs used.

Figure 3c shows the results of hyperparameter tuning runs on 100
parallel random models, each trained with 100 GPUs, engaging a total
of 104 GPUs. We compare this performance to scenarios in which
only 1 or 100 GPUs are engaged to perform the same search. The
black curve compares the time required for the search when using 104
GPUs to that when using a single GPU, as a function of the AUCs of
the models found. Parallel search becomes increasingly effective for
higher AUC values, because those values occur more rarely. The inset
shows near-perfect acceleration (speed-up) in finding the best model
when using 102 or 104 GPUs, demonstrating effective engagement of
supercomputing systems comprising O(104) GPUs—the scale of the
largest supercomputers available today32—and a resulting overall time-
to-solution of only half an hour.

Ultimately, the goal will be not just to mitigate disruptions but to
avoid them entirely if possible. Models that learn a salient representa-
tion of the state of the reactor—such as the method presented here—
could lie at the core of a deep reinforcement learning33 approach.
Using training reactors or simulated data with synthetic diagnostics34,
these models could be trained to directly control the reactor while
minimizing disruptivity and also optimizing arbitrary objectives such
as fusion power output. This also highlights the potential for synergy
between machine learning and more traditional modelling and
simulation efforts.

Using the example of predicting disruptions in fusion reactors, our
paper highlights the potential of deep learning to complement theory,
simulations and experiments in the analysis, prediction and control
of highly complex physical systems. With the rapidly growing availa-
bility of multimodal and high-dimensional data across several disci-
plines, our findings—as well as some of the associated challenges and
insights—have clear implications for the applicability of deep learning
to fusion science.

Online content
Any methods, additional references, Nature Research reporting summaries, source
data, statements of data availability and associated accession codes are available at
https://doi.org/10.1038/s41586-019-1116-4.

Received: 16 May 2018; Accepted: 30 January 2019;
Published online 17 April 2019.

	1.	 Mote, C. Jr, Dowling, A. & Zhou, J. The power of an idea: the international
impacts of the grand challenges for engineering. Engineering 2, 4–7 (2016).

	2.	 Schuller, F. Disruptions in tokamaks. Plasma Phys. Contr. Fusion 37, A135
(1995).

	3.	 De Vries, P. et al. Requirements for triggering the ITER disruption mitigation
system. Fus. Sci. Technol. 69, 471–484 (2016).

	4.	 Lehnen, M. et al. Disruptions in ITER and strategies for their control and
mitigation. J. Nucl. Mater. 463, 39–48 (2015).

	5.	 Tang, W. et al. Scientific grand challenges: fusion energy science and the role of
computing at the extreme scale (US Department of Energy’s Office of Fusion
Energy Sciences, Workshop March 18–20, Washington DC, 2009).

	6.	 Aymar, R., Barabaschi, P. & Shimomura, Y. The ITER design. Plasma Phys. Contr.
Fusion 44, 519 (2002).

	7.	 Wroblewski, D., Jahns, G. & Leuer, J. Tokamak disruption alarm based on a
neural network model of the high-beta limit. Nucl. Fusion 37, 725 (1997).

	8.	 Cannas, B., Fanni, A., Marongiu, E. & Sonato, P. Disruption forecasting at JET
using neural networks. Nucl. Fusion 44, 68 (2004).

	9.	 Murari, A. et al. Prototype of an adaptive disruption predictor for JET based on
fuzzy logic and regression trees. Nucl. Fusion 48, 035010 (2008).

	10.	 Vega, J. et al. Results of the JET real-time disruption predictor in the ITER-like
wall campaigns. Fusion Eng. Des. 88, 1228–1231 (2013).

	11.	 Windsor, C. et al. A cross-tokamak neural network disruption predictor for the
JET and ASDEX upgrade tokamaks. Nucl. Fusion 45, 337 (2005).

	12.	 Luxon, J. L. A design retrospective of the DIII-D tokamak. Nucl. Fusion 42, 614
(2002).

	13.	 Matthews, G. et al. JET ITER-like wall—overview and experimental programme.
Phys. Scr. 2011, 014001 (2011).

	14.	 Freidberg, J. P. Plasma Physics and Fusion Energy (Cambridge Univ. Press,
2008).

5 3 0 | N A T U RE | V O L 5 6 8 | 2 5 A P R I L 2 0 1 9

https://doi.org/10.1038/s41586-019-1116-4

Letter RESEARCH

	15.	 Taylor, P. et al. Disruption mitigation studies in DIII-D. Phys. Plasmas 6,
1872–1879 (1999).

	16.	 Tang, W. M. & Chan, V. Advances and challenges in computational plasma
science. Plasma Phys. Contr. Fusion 47, R1 (2005).

	17.	 De Vries, P. et al. Survey of disruption causes at JET. Nucl. Fusion 51, 053018
(2011).

	18.	 Carleo, G. & Troyer, M. Solving the quantum many-body problem with artificial
neural networks. Science 355, 602–606 (2017).

	19.	 Carrasquilla, J. & Melko, R. G. Machine learning phases of matter. Nat. Phys. 13,
431–434 (2017).

	20.	 Rattá, G. et al. Feature extraction for improved disruption prediction analysis at
JET. Rev. Sci. Instr. 79, 10F328 (2008).

	21.	 Rattá, G. et al. Improved feature selection based on genetic algorithms for real
time disruption prediction on JET. Fusion Eng. Design 87, 1670–1678 (2012).

	22.	 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
	23.	 Bradley, A. P. The use of the area under the ROC curve in the evaluation of

machine learning algorithms. Pattern Recognit. 30, 1145–1159 (1997).
	24.	 Liaw, A. et al. Classification and regression by randomForest. R News 2, 18–22

(2002).
	25.	 Chen, T. & Guestrin, C. XGoost: a scalable tree boosting system. In Proc. 22nd

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
785–794 (ACM, 2016).

	26.	 Chollet, F. Deep Learning With Python (Manning Publications, 2018).
	27.	 Barton, J. E., Wehner, W. P., Schuster, E., Felici, F. & Sauter, O. Simultaneous

closed-loop control of the current profile and the electron temperature profile in
the TCV tokamak. In American Control Conference (ACC) 3316–3321 (IEEE,
2015).

	28.	 Tobias, B. et al. Commissioning of electron cyclotron emission imaging
instrument on the DIII-D tokamak and first data. Rev. Sci. Instr. 81, 10D928
(2010).

	29.	 De Vries, P., Johnson, M., Segui, I. & Contributors, J. E. Statistical analysis of
disruptions in JET. Nucl. Fusion 49, 055011 (2009).

	30.	 Goyal, P. et al. Accurate, large minibatch SGD: training ImageNet in 1 hour.
Preprint at https://arxiv.org/abs/1706.02677 (2017).

	31.	 Svyatkovskiy, A., Kates-Harbeck, J. & Tang, W. Training distributed deep
recurrent neural networks with mixed precision on GPU clusters. In Proc.
Machine Learning on HPC Environments 10 (ACM, 2017).

	32.	 Top500 supercomputers. Available at https://www.top500.org/lists/2017/11/
(2018/01/11).

	33.	 Mnih, V. et al. Human-level control through deep reinforcement learning. Nature
518, 529–523 (2015).

	34.	 Coelho, R. et al. Synthetic diagnostics in the European Union integrated
tokamak modelling simulation platform. Fus. Sci. Technol. 63, 1–8 (2013).

	35.	 Litaudon, X. et al. Overview of the JET results in support to ITER. Nucl. Fusion 57,
102001 (2017).

Acknowledgements We are grateful to E. Feibush from the US Department of
Energy (DOE) Princeton Plasma Physics Laboratory (PPPL) and the Princeton
Institute for Computational Science and Engineering (PICSciE) for assisting with
visualization and data collection; to W. Wichser, C. Hillegas, J. Wells, S. Matsuoka,
R. Yokota and T. Gibbs for supporting our supercomputing efforts; to T. Donne
for facilitating collaborations with JET; to E. Joffrin, R. Buttery and T. Strait for
leading the internal reviews of this work at JET and DIII-D; to A. Murari, J. Vega
and the associated JET data analysis team for discussions of their classical

machine-learning methods; and to M. Maslov for support with the JET data. We
also thank R. Nazikian, N. Logan, M. Parsons and M. Churchill of PPPL; K. Felker
of Princeton University; R. Granetz and C. Rea of the Massachusetts Institute of
Technology (MIT); and P. DeVries of ITER for support and for discussions. We
thank the JET contributors35 and management as well as General Atomics (GA)
and its DIII-D tokamak project for access to their fusion databases. J.K.-H. was
supported by the DOE Computational Science Graduate Fellowship Program
of the Office of Science and National Nuclear Security Administration in the
DOE under contract DE-FG02-97ER25308. A.S. is supported by PICSciE, and
W.T. by PPPL and PICSciE. This work was carried out within the framework
of the EUROfusion Consortium, with funding from the Euratom research and
training programme 2014–2018 under grant 633053. The views and opinions
expressed herein do not necessarily reflect those of the European Commission.
This material is based upon work supported by the US DOE, Office of Science,
Office of Fusion Energy Sciences, using the DIII-D National Fusion Facility,
a DOE Office of Science user facility, under award DE-FC02-04ER54698.
Disclaimer: this report was prepared as an account of work sponsored by an
agency of the US Government. Neither the US Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied,
or assumes any legal liability or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the US Government or any
agency thereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the US Government or any agency thereof.

Reviewer information Nature thanks Ned R. Sauthoff and the other anonymous
reviewer(s) for their contribution to the peer review of this work.

Author contributions J.K.-H. conceived the idea, wrote the code including the
HPC and MPI features, curated the datasets, ran and analysed computational
experiments, generated the theoretical scaling analysis, produced the figures,
and wrote the manuscript. A.S. extended and co-authored the code base and
ran computational experiments, including initial deployment of the code
on supercomputers. W.T. supervised and supported the implementation of
the project at all stages, and initiated collaborations with JET and leading
supercomputing facilities. All authors contributed to editing the manuscript.

Competing interests The authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41586-
019-1116-4.
Supplementary information is available for this paper at https://doi.org/
10.1038/s41586-019-1116-4.
Reprints and permissions information is available at http://www.nature.com/
reprints.
Correspondence and requests for materials should be addressed to J.K.-H.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2019

2 5 A P R I L 2 0 1 9 | V O L 5 6 8 | N A T U RE | 5 3 1

https://arxiv.org/abs/1706.02677
https://www.top500.org/lists/2017/11/
https://doi.org/10.1038/s41586-019-1116-4
https://doi.org/10.1038/s41586-019-1116-4
https://doi.org/10.1038/s41586-019-1116-4
https://doi.org/10.1038/s41586-019-1116-4
http://www.nature.com/reprints
http://www.nature.com/reprints

LetterRESEARCH

Methods
Data considerations. Data and preprocessing. The data for individual experimental
runs (or ‘shots’) are stored as separate time traces for every signal, with sampling
periods of between approximately 1 × 10−5 and 1 × 10−1 seconds. For each shot,
we read in all relevant signals, and cut the signals to the range of times during
which all signals contain data. We then resample the signals to a common sampling
rate of 1 ms using causal information (that is, for any given time we always use the
last known value before the time in question).

Each time step contains a vector of n signals (see Extended Data Table 1). For
multidimensional signals, their values are simply concatenated onto the global
input vector. A single shot then contains n × T scalar values, where T is the length
of the shot. The full dataset includes several thousand shots from both the JET and
the DIII-D tokamaks. Only shots that have data for all signals are included. See
Extended Data Table 2 for a summary of the full dataset. Overall, the size of our
dataset from DIII-D and JET amounts to about 2 TB—comparable with some of
the largest published machine-learning datasets36.
Data challenges. A fusion plasma is a complex dynamical system with an unknown
internal state which evolves according to physical principles and emits a time series
of observable data14. Capturing the history and present physical state of the plasma
should allow predictions about its future behaviour, including the possibility of
disruption. Noisy and incomplete data make this a challenging statistical task.

Observable data are captured as scalars and 1D profiles by various passive diag-
nostics, such as magnetic measurements, electrical probes, visible and ultraviolet
spectroscopy, bolometry, electron cyclotron emission (ECE) and X-ray measure-
ments, as well as active diagnostics such as Thomson scattering, light detection
and ranging (LIDAR), interferometry, or diagnostic neutral beams37. Future work
may also consider higher-dimensional sources of data such as such as 2D ECEi
imaging28, 2D magnetic equilibria38, or fast camera data39.

Raw experimental data are difficult to work with directly using machine-
learning methods. For instance, the relevant physical timescales and experimental
sampling frequencies of the different signals span several orders of magnitude.
While many dynamic variables in the plasma change within milliseconds or faster,
each shot can last anywhere from roughly 1 to 40 seconds. We choose a time step
of 1 ms to resolve the fastest relevant dynamics without including excessive data.
This sampling results in training examples with sequence lengths of order O(104).

For each shot, if there is a disruption, this only occurs at the end. Moreover,
depending on the machine, disruptions can be quite rare (less than 10% of shots).
This means that the actual learning signal for disruption events is quite sparse. We
used up-weighting40 of positive examples (see the hyperparameter λ in Extended
Data Table 3) to stabilize training and found that it was often able to increase
performance.

Signals are often noisy or exist only partially. We use only shots that have at least
some data for every desired signal. However, in contrast with past work, we do not
exclude any shots that are based on ‘bad’ or statistically unusual data. Some signals
in the experimental databases are computed using noncausal information (for
example, temporal averaging with a time-centred window, usually with a width of
about 20 ms). We shift such signals in time to ensure that the algorithm does not
have access to any future information at any given time. This approach means that
for some signals the algorithm is seeing slightly ‘old’ data, giving a conservative
estimate for prediction performance.

Some signals are not stored consistently in the database. For instance, the input
power signal on DIII-D changed its units from MW to kW around shot 156,000.
This was not corrected for during our analysis. Because the algorithm divides all
shots by the same numerical scale, shots before this change incorrectly appear to
the machine-learning algorithms to have a very low value of input power. Thus,
the signal importance of the input power on DIII-D is probably underestimated
in Extended Data Fig. 2.

Profile data available at present are of limited quality and temporal resolution.
Profiles are available at best every 20 ms for DIII-D and every 50 ms for JET, and
are often poorly reconstructed or missing entirely. They are also shifted in time
to accommodate for noncausal filtering in the EFIT equilibrium reconstruction.
Additionally, the data are qualitatively different between machines, consisting of
noisy raw data on JET and smooth fitted functions on DIII-D.

The shots in more recent JET ILW campaigns (after shot 84,000 or thereabouts)
are run at higher power and plasma current, have higher disruption rates, and are
often affected by active DMSs10,41. Many shots are terminated by the DMS long
before the onset of a disruption. In such cases, it is impossible to know whether
any disruption would have actually occurred. Training on affected shots is chal-
lenging, as the ground truth disruption signal is hidden by the ‘competing risk’
of the mitigation action, which also obscures physics signals very close to the
disruption. Moreover, there may be a systematic bias in terms of which shots
are affected by the DMS. This makes a fair assessment against data without such
terminations impossible. Although such data are thus not directly comparable
with the other datasets considered here, we have nonetheless tested our method

on the later JET campaigns, in order to determine its ability to handle these more
‘high-performance’ plasmas. We restricted the disruptive shots to unmitigated and
unintentional disruptions. The resulting ‘late’ JET ILW dataset (as opposed to the
‘early’ ILW campaigns considered in the main text) and the associated performance
values are described in Extended Data Tables 4, 5. We find that this large dataset
seems to be more difficult to classify overall, leading to slightly lower AUC values
throughout compared with when testing is performed on the earlier ILW data.
However, consistent with the results presented in the main text, the deep-learning
approach again shows strong predictive capabilities and generalizes better from
the JET CW and DIII-D training data to the ILW testing data than do classical
approaches. The large size of the dataset also allowed us to both train and test
models on random subsets of the late ILW data (with a split of 50% training, 25%
validation and 25% testing data; the same split was used for the DIII-D data in the
main text). The results demonstrate again that in this setting, where training and
testing sets come from the same distribution—consistent with the DIII-D results
in the main text—all methods show strong predictive capabilities and the classical
methods perform essentially as well as the deep-learning approach.

The computer-science community has established a strong example of providing
unified, open datasets (for example, ImageNet, IMDB, Penn Treebank, and so
on)35,42,43 against which new machine-learning methods can be tested. This allows
a direct and fair comparison between various methods and leads to measurable
incremental progress. In practice, the separation and complexity of the various
international experimental facilities make the construction of such unified data-
bases more challenging for the fusion community. Thus, most data currently exist
in separately managed databases. We have taken the approach of implementing
not only our own method but also a generalized interface that allows a user to
plug and play any machine-learning algorithm that adheres to a ‘train’ and ‘pre-
dict’ application programming interface (API). This allows direct comparison and
benchmarking between variants of our RNN approach and other machine-learning
methods, including the state of the art as used in past publications, such as SVMs
and MLPs, as well as recently popular classical methods such as random forests or
gradient-boosted trees24,25. We believe that the continual development of a wide
variety of methods and a direct comparison on exactly the same data is key for
accurately measuring progress and for allowing detailed and transparent compar-
isons of the relative strengths and weaknesses of all methods. To simplify database
access once permission has been obtained, we have included in the code base44
object-oriented code based on human readable signal names, which fetches raw
data from the appropriate original databases and performs error checking; this is
key for generating training datasets reliably and at scale.

We have found empirically that absolute predictive performance can be quite
sensitive to ad hoc choices about the dataset, such as the precise group of shots that
are used (and which ones are excluded because of bad or abnormal data, intentional
disruptions, or other criteria) and which signals are used. In our approach, we use
all shots from a given time period. We exclude a shot only if, for any of our desired
signals, it does not contain data at all. This means that our dataset includes shots
with known bad data, intentional disruptions, testing shots, and so on. Although
this can hurt performance, it is the approach that is most conservative, the least ad
hoc, and the most representative of live, closed-loop operation. Overall, improved
handling of these data issues may raise absolute performance beyond the levels
reported here. Thus, although absolute performance numbers are important and
will be key for the application of disruption prediction to ITER, we also invite the
reader to pay particular attention to the relative performance of different methods,
as these highlight their relative strengths and weaknesses.
Algorithm and training details. Training the neural network effectively requires
overcoming several unique challenges, such as the need for generalizable signal
normalization, poorly defined target functions not directly related to the ulti-
mate learning objective (high area under the ROC curve), and a need for stateful
training26 on very long (O(104)) sequences of varying length. In this section we
describe our approach to overcoming these challenges in our training procedure.
We also provide a comprehensive list of tunable hyperparameters for our model in
Extended Data Table 3. All deep-learning models were implemented using Keras45
and Tensorflow46.
Normalization. Neural networks typically expect their inputs to lie in similar
numerical ranges across all dimensions. Moreover, they expect a signal of equal
amplitude to have equal meaning across examples. This poses a substantial chal-
lenge in the use of raw physical signals as inputs to any neural network architecture.
Because the raw signals have values in the range 10−6 to 1019, the signals must be
normalized such that they all lie around 100. Moreover, many signals (such as the
plasma current, the stored energy, or even the timescale itself) will have differing
characteristic scales on different tokamak machines. The normalization should
ideally have the property that signals that have the same ‘physical meaning’ from
different machines are mapped to the same numerical value after normalization.
As suggested previously11, physically motivated dimensionless combinations of the
raw measurements are a sensible option for generating such input data.

Letter RESEARCH

However, we find empirically (the particular normalization scheme used is
in essence a tunable hyperparameter of the model, just like any other) that the
best-performing method is to simply normalize each signal by its ‘global numerical
scale’ across the entire dataset. This automatically brings signals to a reasonable
numerical range and scales appropriately to different tokamak devices. Thus, the
‘normalized form’ of each signal (which is how signals are plotted in Fig. 2 and how
the actual algorithm receives them) is simply the original signal value divided by
this global numerical scale, which is computed as follows. For each shot, we com-
pute the standard deviation of a single signal across that shot (multidimensional
signals are counted as one signal, because gradient information is important in such
signals and would be distorted if each channel were normalized individually). Then
we define the ‘global numerical scale’ of that signal as the median across all shots
of those per-shot standard deviations. Given that a small fraction of shots contains
strong outlier data points that lie orders of magnitude outside of their typical range
(which could distort the computation of the standard deviation), the median pro-
vides a resilient way of obtaining aggregate scale information from all shots. No
shots are removed or filtered out from the datasets for having outlying or unusual
data. To further ensure that outliers do not deteriorate performance, we also clip
each signal to lie within (−100σ, +100σ), where σ is its corresponding numerical
scale, although we find that this does not measurably affect performance.

To make profiles scalable between machines, they are at every time step stored
not as a function of real spatial position, but rather as a function of normalized
toroidal magnetic flux (ρ). In Extended Data Table 1 we give a comprehensive list
of signals, including their respective units and global numerical scales.
Target functions. The ultimate goal of this learning project is to predict the onset of
disruptions. The exact definition of what target function the neural network should
learn to approximate is important for the architecture of the model and ultimately
for its performance. While ultimately a shot is either disruptive or not (that is, the
decision is binary: 0 or 1), the RNN needs to return an output value at every time
step. For a nondisruptive shot, the output should clearly always be 0 or ‘nondis-
ruptive’. However, in a disruptive shot, the best choice for the ‘target output’ is less
obvious. Shortly before the disruption the output should be 1 or ‘disruptive’, but
this is not necessarily true several seconds before the disruption. It is also unclear
which choice for such a target function would ultimately result in the highest
possible AUC—the ultimate performance metric that we are trying to optimize.

Our solution defines a parameter Twarning such that the target function is 1 if
the time to disruption is TD − t < Twarning and 0 otherwise (TD − t is the time to
disruption, where TD is the time at which the disruption occurs and t is the current
time). The intuition is that the neural network should not be able to know about
a disruption more than Twarning away. Setting Twarning too high might lead to many
false positives, while setting it too low might cause the algorithm to fail to learn
‘early warning signs’ of disruptions. On JET, for instance, we find empirically that
values of Twarning of around 10 s work best. We also tried predicting TD − t or
log10(TD − t) directly using a regression loss function. The log version performs
well for the DIII-D tokamak, but not on JET.

We also implemented a ‘max hinge’ loss in the hope of more closely approximat-
ing the ultimate learning objective: a high ROC area. This loss merely considers the
maximum output value across all time steps and penalizes it if it does not cross the
threshold in a disruptive sample, or if it does cross the threshold in a nondisruptive
sample. The penalty is an L1 hinge loss with threshold minus 1 for nondisruptive
time steps and threshold plus 1 for time steps within Twarning of a disruption. The
intuition is that, in the final evaluation of a shot, only the maximum value of the
network matters: either it triggers an alarm or not. Thus, this loss should give a
more direct incentive for the network to optimize the area under the ROC curve.
In practice, we find that ‘max hinge’ performs about as well as a standard hinge
loss with the same parameters (for the standard hinge loss, the same loss is applied
individually for every time step, not just at the time step of maximum output).

A user of a deployed version of this predictive system must define an alarm
threshold, such that when the RNN output signal reaches a certain value, an alarm
is triggered and thus disruption mitigation actions are engaged. This alarm thresh-
old allows the user to trade off between maximizing true positives and minimiz-
ing false positives. A true positive is a true disruption that is correctly caught by
the algorithm (that is, an alarm is triggered). A false positive is an alarm that
is triggered even though there was not going to be a disruption. We define the
true-positive rate as the fraction of real disruptive shots for which the algorithm
triggers an alarm before the 30 ms deadline. The false-positive rate is the fraction
of nondisruptive shots for which the algorithm triggers an alarm at any point in
time. As the alarm threshold is raised (harder to cause alarms), there will be fewer
false positives, but also fewer true positives. As the threshold is lowered (easier to
cause alarms), there will be more false positives, but also more true positives. By
varying the threshold, an ROC curve that plots the true-positve rate versus the
false-positive rate (see Extended Eata Fig. 1) is traced out, describing the predictive
performance of the algorithm holistically. To capture this overall trade-off, we use
the AUC to measure the performance of a given method.

Training on long sequences. The typical duration of shots and the sampling rate
imply a length of about 1 × 104 samples per shot. We approximate the computation
of the gradient of the loss with respect to the model parameters by truncated back-
propagation through time47. We feed ‘chunks’ of TRNN = 128 time steps at a time
to the RNN. The gradients are then computed over this subsection, the internal
states are saved, and then the next chunk is fed to the RNN while using the last
internal states from the previous chunk as the initial internal states of the current
chunk. This allows the RNN to learn long-term dependencies while truncating the
gradient backpropagation through time to TRNN time steps.
Mini-batching. Mini-batching48 is an important technique for improving GPU
performance49 and accelerating training convergence of deep-learning models.
The gradients of the loss with respect to the parameters are computed for several
examples in parallel and then averaged. For this to work efficiently, the architec-
ture for the forward and backward pass of each gradient computation needs to be
equal for all the examples computed in parallel. This is not possible if different
training examples have different lengths. Thus, training on sequences of diverse
lengths is a large and open problem for many sequence-based learning tasks47,
particularly for sequences of vastly differing lengths. The traditional approach of
bucketing47,50 would not work in our case because the sequence length is strongly
correlated with whether shots are disruptive or nondisruptive, and thus individual
batches would be biased.

We implement a custom solution based on resetting the internal state of indi-
vidual examples within a mini-batch (Extended Data Fig. 3). Because there is a
persistent internal state between successive chunks in time, it is not possible to
use more than one chunk from a given shot in a given mini-batch (chunks that are
successive in the shot must also be presented to the RNN in successive mini-batches
during training such that the internal state can persist correctly).

To train batchwise with a batch size of M, we need M independent (that is,
stemming from different shots) time slices of equal length to feed to the GPU. We
do this by maintaining a buffer of M separate shots. At every training step, the first
TRNN time slices of the buffer are fed as the next batch. The buffer is then shifted by
TRNN time steps. Before adding shots to the buffer, they are cut at the beginning to
be a multiple of TRNN steps. Every time a shot is finished in the buffer (for example,
the light green shot in Extended Data Fig. 3), a new shot is loaded (dark green) and
the RNN internal states of the corresponding batch index are reset for training. It
is this ability to reset the internal state of select batch indices that allows batchwise
training on shots of varying lengths. The internal states of the other batch indices
are maintained and only reset when a new shot is begun in their respective index
of the buffer. Thus, the internal state persists during learning for the entire length
of any given shot. This allows the RNN to learn temporal patterns much longer
than the unrolling length TRNN and potentially as long as the entire shot. The ran-
dom offsets of the shots against each other and random shuffling of the training
set provide a mixture of disruptive and nondisruptive samples for the network at
every batch to stabilize training. The fetching of shots and filling of the buffer are
performed in a separate computational thread to pipeline neural network training
work with data-loading work.
Hyperparameters. Overall, the data normalization, training procedure and model
architecture produce a large number of hyperparameters that must be tuned in
order to maximize predictive performance. These hyperparameters include numer-
ical values such as the learning rate and the number of LSTM layers, but also more
abstract categorical variables such as the precise model architecture or the nor-
malization algorithm used for different signals. We summarize these parameters
in Extended Data Table 3.

Throughout this work and for each dataset, the ‘best’ model is found by hyper-
parameter tuning. This is done by random search in the respective hyperparameter
space of each method—that is, by training a number of models with random hyper-
parameters on the training set and choosing the one with the highest performance
on the validation set. Note that the validation set is from the same distribution as
the training set, since we assume that a real application would not have access to
any data from the testing set at training time. Thus, hyperparameter tuning might
not find the truly best model, because the optimization metric is performance on
the validation set and not the test set itself. In all of our tests, gradient-boosted
trees25 performed the best among classical models, leading to the results in Fig. 2,
Extended Data Fig. 1 and Table 1. All deep-learning models are trained with
early stopping using the validation AUC as the metric, with a patience of three
epochs51. The best-performing models for Table 1 are obtained in this way by using
20 random trials for each method.
Experimenting with a small number of shots from the test machine. To simulate
the scenario of being able to run a few disruptive shots on the test machine for
cross-machine prediction, we remove a set δ of shots from the testing set on
the ‘big’ machine (JET) by sampling random shots until a fixed number of five
disruptive shots has been sampled. In our experiment, δ contains 5 disruptive
shots and 16 nondisruptive shots. The training and validation data from the
‘small’ machine (DIII-D) are augmented with this set δ to have both more accurate

LetterRESEARCH

training and a better measure of validation performance, and the best cross-
machine model is retrained without extra tuning. Moreover, we apply no particu-
lar importance-weighting or loss adjustment for these extra shots. It is possible
that the positive effect of the additional shots could be even further enhanced
by such methods. The numbers reported in Table 1 were generated using this
procedure.

We also tested the same scenario by sampling shots chronologically instead
of randomly from the testing set for the same hyperparameters. The idea behind
this approach is that this may more closely resemble the true distribution of shots
that one would have access to during a new campaign on a new machine. We
found that this approach did not change the results greatly beyond the generally
expected stochastic fluctuations in AUC values of order ± 0.01 (which are due to
random training and parameter initializations). The overall ordering of methods
and qualitative range of performance remained the same.

Finally, we also performed tests with numbers of disruptive shots that were
different than five. While some stochastic fluctuations are as always expected, we
find that performance generally increases monotonically for zero to seven shots,
and saturates after about seven disruptive shots. Increasing the number of disrup-
tive shots also improves the fraction of models (given randomly chosen hyperpa-
rameters) that converge to strong cross-machine performance during training.
Given that the shots used are removed from the testing set on which the method
is ultimately evaluated, it is not possible with this approach to make a fair compar-
ison of performance for large numbers of removed shots, as the testing set would
become very different.
Training for classical models. Training on large datasets is problematic for classical
methods, because training algorithms often do not scale well to HPC envi-
ronments. SVMs, for example, have a training cost quadratic in the number of
examples52, which makes very large datasets unfeasible. Additionally, parallel
algorithms for training single models across many worker nodes are lacking. We
use a similar approach to that of ref. 10 for producing features to train the classical
machine-learning models here. At every time step, features are extracted for each
signal from a time window comprising the last 32 ms. Given that classical methods
cannot learn to automatically extract patterns of various temporal scales from
arbitrary sequence lengths, this window size represents a manually tuned trade-
off between detecting long and short temporal patterns that might be relevant for
disruption prediction. For each time window of each signal, we compute the mean,
maximum and standard deviations, as well as the four parameters of a third-order
polynomial fit. Thus, for n signals, we have a 7n-dimensional feature vector at
every time step. We then train the models by considering each time step a separate
‘training example’. We train on a random subset of 106 such examples to avoid
prohibitively long training times. The target value is the same as in the ‘hinge’ target
for the deep-learning model (that is, −1 or 1). We implemented random forests,
SVMs with linear and nonlinear kernels, multilayer perceptrons with a single
hidden layer, and gradient-boosted trees. All classical machine-learning models
are implemented in Scikit-Learn53, and we use XGBoost25 to provide functionality
for the gradient-boosted trees.
Distributed training. In our code, we use python multiprocessing to parallelize
preprocessing, shot loading, downloading and basically all components of the
preparation and training pipeline. The vast majority of the computational load,
however, occurs during the model training phase. While effective massive-scale
parallelization of neural network training is an important open research ques-
tion30,54, the idea of data-parallel training is already being used for the largest and
most advanced deep-learning models to date55.

Most state-of-the-art industrial algorithms46,56 use a parameter server approach
with centralized communication paradigms. By contrast, our MPI implementa-
tion allows us to take advantage of highly optimized divide-and-conquer com-
munication routines with logarithmic scaling in the number of processes. As
communication is often the bottleneck in distributed training systems, efficient
implementation of this component of the training algorithm is key. We empirically
observe a very high ratio of computation to communication time (greater than 90%
to 10%) during distributed training, even on hundreds of GPUs.

The distributed training sequence can be described as follows: (1) N models
are run with their own copy of the current parameters (W); (2) each computes a
gradient step on a different subset (mini-batch) of the data using backpropagation;
(3) the gradients are reduced (averaged) using a global reduction, such that every
model has a copy of the averaged gradient; (4) each model updates the parameters
W using the averaged gradient information; and (5) efficient communication is
achieved using a custom MPI implementation.

This effectively amounts to training with a large batch size that is the original
batch size, Nexamples/batch, multiplied by the number of workers: Nexamples/batch →
Nworker × Nexamples/batch. To actually achieve a speed-up for training, we then multiply
the learning rate by Nworker. This means that the algorithm is taking fewer learning
steps, but each step is larger in magnitude and has smaller variance (because it is
based on more data, owing to the larger batch size).

Our parallelized MPI implementation is also used for massively parallel batch-
wise inference, which speeds up the computation of validation metrics between
training epochs. To run batchwise inference, all shots are padded in the end with
zeros to be of the same length. Because information enters the RNN only causally,
these paddings do not influence the computation in the earlier sections of the shot
and can then simply be cut off to obtain the final shot output.
Scaling studies. The experiments illustrated in Fig. 3b were performed on the
Titan supercomputer57, and we have replicated these scaling results on both the
TSUBAME 3.0 and OLCF Summit supercomputers58,59. The hyperparameter tun-
ing experiment described in Fig. 3c, engaging 104 GPUs by training 100 models
in parallel, each using 100 GPUs, was also conducted on the Titan supercomputer
and on the JET dataset. The 1 and 100 GPU scenarios are fictitious, because the
time required to actually run these scenarios would have been prohibitively large.
The ratio of time required to train a single model using 1 instead of 100 GPUs was
estimated using scaling data as in Fig. 3a. Specifically, the estimate is obtained by
comparing timings between 4 and 100 GPUs and extrapolating from there down
to 1, because 4 is the smallest machine architecture that is equal in configuration to
100 GPUs (since each node has 4 GPUs). The scenario of training the 100 models
serially (one at a time) was modelled by considering a large number (5 × 103)
of randomized serial arrangements of the 100 already recorded runs, extracting
results (such as the time required to find a model of a certain validation AUC) from
each of those fictitious reorderings, and averaging the results over all arrangements.

Figure 3c shows some initial indications that convergence patterns are changing
when using 256 GPUs or more. Although it is known that deep neural networks
become harder to train to full accuracy with many worker GPUs30—which corre-
sponds to very large batch sizes—we expect that with larger models (in terms of
trainable parameters), larger datasets and higher-dimensional signals, even greater
parallelism than that reported in Fig. 3c and the main text will become practical for
single-model training. Moreover, promising recent techniques such as learning-rate
warm-up, scaling or cycling30,60 will probably also extend the practical range of
parallelism, thus further engaging our code’s capability of scaling to thousands
of GPUs.
Signal-importance studies. In order to prioritize investments in higher-quality
data acquisition, and to gain new scientific/physics insights, it is important to
quantify the importance of the various signals to the predictability of disruptions.
To this end, we train a model with just a single signal at a time and measure the
final prediction performance (Extended Data Fig. 2a). This is then a proxy for
the disruption-relevant information contained in the respective signal. We also
train a model with all signals but a single signal left out (see Extended Data Fig. 2b
for results). By comparing the performance to a model trained on all signals
(green), the relative drop in performance is a measure of how important that
signal was for the full model. Naturally, a model trained on many signals might
incorporate high-order interactions between signals, whose effects are not well
measured by either of these two approaches. Moreover, the results are stochastic
and vary according to model instantiations (due to random training initialization)
and hyperparameters. Thus, these estimates should be seen only as a first-order
measure of signal importance. Given that these studies require training and testing
several models in parallel, as for hyperparameter tuning, they again can be sped
up greatly using HPC.

Data availability
The data for this study have restricted access, with permission required from the
management of EUROfusion and General Atomics. DIII-D data shown in figures
in this paper can be obtained in digital format by following the links at https://
fusion.gat.com/global/D3D_DMP.

Code availability
The code used in this work is open source and available from ref. 44.

	36.	 Deng, J. et al. Imagenet: a large-scale hierarchical image database. In IEEE Conf.

on Computer Vision and Pattern Recognition 248–255 (IEEE, 2009).
	37.	 Zavaryaev, V. et al. in Plasma Diagnostics (eds Kikuchi, M., Lackner, K. &

Tran, M. Q.) Ch. 4, 360–534 (International Atomic Energy Agency, 2012).
	38.	 Ferron, J. et al. Real time equilibrium reconstruction for tokamak discharge

control. Nucl. Fusion 38, 1055 (1998).
	39.	 Alonso, J. et al. Fast visible camera installation and operation in JET. In

AIP Conference Proceedings Vol. 988, 185–188 (AIP, 2008).
	40.	 Zadrozny, B., Langford, J. & Abe, N. Cost-sensitive learning by cost-

proportionate example weighting. In Third IEEE International Conference on Data
Mining 435–442 (IEEE, 2003).

	41.	 Moreno, R. et al. Disruption prediction on JET during the ILW experimental
campaigns. Fus. Sci. Technol. 69, 485–494 (2016).

	42.	 Maas, A. L. et al. Learning word vectors for sentiment analysis. In Proc. 49th
Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies Vol. 1 142–150 (Association for Computational
Linguistics, 2011).

https://fusion.gat.com/global/D3D_DMP
https://fusion.gat.com/global/D3D_DMP

Letter RESEARCH

	43.	 Marcus, M. P., Marcinkiewicz, M. A. & Santorini, B. Building a large annotated
corpus of English: the Penn Treebank. Comput. Linguist. 19, 313–330 (1993).

	44.	 Kates-Harbeck, J. & Svyatkovskiy, A. FRNN Codebase. https://github.com/
PPPLDeepLearning/plasma-python (2017).

	45.	 Chollet, F. et al. Keras. https://github.com/fchollet/keras (2015).
	46.	 Abadi, M. et al. Tensorflow: large-scale machine learning on heterogeneous

distributed systems. Preprint at https://arxiv.org/abs/1603.04467 (2016).
	47.	 Graves, A. Generating sequences with recurrent neural networks. Preprint

at https://arxiv.org/abs/1308.0850 (2013).
	48.	 Dean, J. et al. Large scale distributed deep networks. In Proc. 25th Internation

Conference on Neural Information Processing Systems, vol. 1 1223–1231 (2012).
	49.	 Chetlur, S. et al. cuDNN: efficient primitives for deep learning. Preprint

at https://arxiv.org/abs/1410.0759 (2014).
	50.	 Khomenko, V., Shyshkov, O., Radyvonenko, O. & Bokhan, K. Accelerating

recurrent neural network training using sequence bucketing and multi-GPU
data parallelization. In IEEE First International Conference on Data Stream Mining
& Processing (DSMP) 100–103 (IEEE, 2016).

	51.	 Ruder, S. An overview of gradient descent optimization algorithms. Preprint
at https://arxiv.org/abs/1609.04747 (2016).

	52.	 Chang, C.-C. & Lin, C.-J. LIBSVM: a library for support vector machines. ACM
Trans. Intell. Syst. Technol. 2, 27 (2011).

	53.	 Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res.
12, 2825–2830 (2011).

	54.	 Das, D. et al. Distributed deep learning using synchronous stochastic gradient
descent. Preprint at https://arxiv.org/abs/1602.06709 (2016).

	55.	 Wu, R., Yan, S., Shan, Y., Dang, Q. & Sun, G. Deep image: scaling up image
recognition. Preprint at https://arxiv.org/abs/1501.02876 (2015).

	56.	 Chen, T. et al. MXNet: A flexible and efficient machine learning library for
heterogeneous distributed systems. Preprint at https://arxiv.org/
abs/1512.01274 (2015).

	57.	 Titan: advancing the era of accelerated computing. Oak Ridge National
Laboratory https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
(accessed 2 April 2018).

	58.	 Morgan, T. P. Japan keeps accelerating with Tsubame 3.0 AI supercomputer.
The Next Platform https://www.nextplatform.com/2017/02/17/japan-keeps-
accelerating-tsubame-3-0-ai-supercomputer/ (accessed 2 April 2018).

	59.	 Summit: Oak Ridge National Laboratory’s 200 PetaFlop Supercomputer.
Oak Ridge National Laboratory (https://www.olcf.ornl.gov/olcf-resources/
compute-systems/summit/ (accessed 2 April 2018).

	60.	 Smith, L. N. Cyclical learning rates for training neural networks. In 2017 IEEE
Winter Conf. on Applications of Computer Vision 464–472 (IEEE, 2017).

	61.	 Kingma, D. & Ba, J. Adam: a method for stochastic optimization. Preprint
at https://arxiv.org/abs/1412.6980 (2014).

	62.	 Gentile, C. & Warmuth, M. K. Linear hinge loss and average margin. In Proc.
1998 Conf. on Advances in Neural Information Processing Systems 225–231
(MIT Press, 1999).

https://github.com/fchollet/keras
https://arxiv.org/abs/1603.04467
https://arxiv.org/abs/1308.0850
https://arxiv.org/abs/1410.0759
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1602.06709
https://arxiv.org/abs/1501.02876
https://arxiv.org/abs/1512.01274
https://arxiv.org/abs/1512.01274
https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
https://www.nextplatform.com/2017/02/17/japan-keeps-accelerating-tsubame-3-0-ai-supercomputer/
https://www.nextplatform.com/2017/02/17/japan-keeps-accelerating-tsubame-3-0-ai-supercomputer/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://arxiv.org/abs/1412.6980

LetterRESEARCH

Extended Data Fig. 1 | ROC curves from the test set for our model and
the best classical model, for DIII-D and JET. a, DIII-D; b, JET. The true
positive rate is the fraction of disruptive shots that are labelled disruptive
in advance of the 30 ms deadline. The false positive rate is the fraction
of nondisruptive shots that are labelled disruptive at any time. The areas
under the curves correspond to the values in Table 1. The insets show the
fraction of detected disruptions as a function of the time to disruption
for an ‘optimal’ threshold value. On the corresponding ROC curve of
the same colour, this optimal threshold defines a point that is indicated
by a circle (see main text for details). The inset also shows the 30 ms
detection deadline as vertical red line. In a, the AUC is slightly higher
for the classical method (see Table 1), but FRNN performs equally well
in the interesting upper left region of high true positives and low false
positives. Moreover, only our approach provides additional detections
between 30 ms and 10 ms to the disruption, reacting to the spikes in
radiated power that often occur on this timescale before the disruption
(see Prad,core in Fig. 2c). Thus FRNN could provide improved predictive
performance if mitigation technology becomes faster in the future. In
addition, a threshold value in practice needs to be selected for calling

alarms. The best threshold value is estimated by optimizing it on the
training set, in the hope that it will still perform well on the unseen testing
set. We define the ‘best’ threshold as the value that maximizes the quantity
TP − FP, where TP is the true positive rate and FP is the false positive
rate. This is equivalent to finding the point on the ROC curve furthest in
the ‘northwest’ direction. For FRNN, the threshold generalizes excellently
(black and purple circles). For the classical approach, although the
overall ROC curve is encouraging, the threshold estimate is poor (orange
square) and far from its ideal position (orange circle). For each method,
the fraction of detected disruptions is shown in the inset as a function of
time until disruption by using the threshold values corresponding to the
circle positions, which for the classical method we determine manually
with knowledge of the testing set (to give a conservative and maximally
favourable estimate of its performance). Median alarm times are about
500–700 ms on DIII-D and around 1,000 ms on JET. Encouragingly, a
majority of disruptions is detected with large warning times of hundreds
of milliseconds—sufficient for disruption mitigation (requiring around
30 ms) and key to possible future preventative plasma control without the
need for shutdown.

Letter RESEARCH

Extended Data Fig. 2 | Signal-importance studies. Signals are ordered
from top to bottom in decreasing order of importance. Signals are defined
in Extended Data Table 1. Models were trained on the DIII-D dataset.
a, Test set AUC values achieved by models trained on a single signal
at a time. The AUC value is representative of how much information
is contained in that single signal. For comparison, we also show the
performance for a model trained on all signals (green bar). b, Test AUC
values for a model trained on all signals except the labelled one. In this
case, the drop in performance compared with the performance of the
model trained on all signals (green bar) is a measure of how important
the given signal is for the final model. The exact results for both figures
are in general stochastic and vary over hyperparameters and for each new
training session, so only general trends should be inferred. It appears
consistently that the locked-mode, plasma current, radiated power and q95
signals contain a large amount of disruption-relevant information, similar

to the results of past studies of signal importance on JET21. Both panels—
in particular panel a, which measures the information content of a single
signal at a time—also confirm that there is a large amount of information
in the profile signals. With higher-quality reconstructions, more frequent
sampling and better (causal) temporal filtering (to obviate the need to shift
the signal in time and thus lose time-sensitive information), they are likely
to become even more relevant. This indicates that higher-dimensional data
probably contain much useful information that should be considered in
the future. Panel b also highlights another benefit of deep learning, which
is that almost all additional signals increase performance, or at least do
not have a substantial negative impact. Signals can thus generally be used
without having to worry about confusing the algorithm and reducing
performance, and therefore without having to spend much time on signal
selection. For other methods, signal selection (for example, removing
correlated, noisy or noninformative signals) is key21.

LetterRESEARCH

Extended Data Fig. 3 | Snapshot of the training buffer. The figure
illustrates how data are fed to the RNN for batchwise training with a batch
size of M. Each horizontal bar represents data from a shot, and different
colours indicate different shots. A colour change in a given row means that
a new shot starts. At every time step, the leftmost chunk is cut from the

buffer and supplied to the training algorithm, and all shots are shifted to
the left. When a shot is finished (as the lighter green bar is about to be),
a new shot is loaded into the buffer, and the internal state of the RNN at
that batch index is reset. See the Methods subsection ‘Mini-batching’ for
details.

Letter RESEARCH

Extended Data Table 1 | Signals considered and availability on the machines

Electron-density and electron-temperature profiles (denoted by an asterisk) are available only on the more recent JET campaigns (ILW). Each signal is normalized by its numerical scale before feeding
to the machine-learning algorithms. The numerical scale is computed as the median of the standard deviations of the signal for all shots (see the Method subsection ‘Normalization’).

LetterRESEARCH

Extended Data Table 2 | Datasets used here

Shots were obtained from the respective machines. All shots that contain data for all signals were used. No shots were discarded for bad or abnormal data, or for being known testing shots or
intentional disruptions.

Letter RESEARCH

Extended Data Table 3 | Hyperparameters to be optimized, explanations and well-performing values

The Adam optimizer is described in ref. 61. The ‘hinge’ target is −1 before Twarning, then +1 for disruptive shots. It requires a hinge loss62. The normalization scheme referenced in the ‘Normalizer’ row
divides each signal by its global numerical scale across the dataset (see the Methods subsection ‘Normalization’). Although all quoted parameters perform well on both tokamaks, the specific values
shown here are found by optimizing for validation performance on JET.

LetterRESEARCH

Extended Data Table 4 | Data from the later JET ILW campaigns

Only nondisruptive shots and unintentional disruptive shots without active mitigation were used. Thus, the shots used contain only a small subset of the total number of disruptive shots (1,952) from
these campaigns. Of those considered, all shots that contain data for all signals were used. No shots were discarded for bad or abnormal data.

Letter RESEARCH

Extended Data Table 5 | Prediction results on the late ILW data

Test set performance of the best models, measured as AUCs at 30 ms before disruption. We compare FRNN with (1D) and without (0D) profile information and the best classical approach. The best
model for each dataset is shown in bold. As in Table 1, the last column shows results for cross-machine testing with a small amount (‘glimpse’) of data, δ, from the testing machine added to the training
set (see text for details). A score of 1.0 indicates perfect performance and 0.5 is equivalent to random guessing. Because the relevant diagnostic for 1D profiles was not available on most JET shots from
the CW dataset, 1D profiles are not included when training on JET CW data.

	Predicting disruptive instabilities in controlled fusion plasmas through deep learning

	Online content

	Acknowledgements
	Reviewer information
	Fig. 1 System overview and disruption-prediction workflow.
	Fig. 2 Example predictions on real shots from DIII-D and JET.
	Fig. 3 High-performance computing results.
	Extended Data Fig. 1 ROC curves from the test set for our model and the best classical model, for DIII-D and JET.
	Extended Data Fig. 2 Signal-importance studies.
	Extended Data Fig. 3 Snapshot of the training buffer.
	Table 1 Prediction results.
	Extended Data Table 1 Signals considered and availability on the machines.
	Extended Data Table 2 Datasets used here.
	﻿Extended Data Table 3 Hyperparameters to be optimized, explanations and well-performing values.
	Extended Data Table 4 Data from the later JET ILW campaigns.
	Extended Data Table 5 Prediction results on the late ILW data.

