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Predicting disruptive instabilities in controlled 
fusion plasmas through deep learning
Julian Kates-Harbeck1,2,3*, Alexey Svyatkovskiy4,5 & William tang3,4

Nuclear fusion power delivered by magnetic-confinement 
tokamak reactors holds the promise of sustainable and clean 
energy1. The avoidance of large-scale plasma instabilities called 
disruptions within these reactors2,3 is one of the most pressing 
challenges4,5, because disruptions can halt power production and 
damage key components. Disruptions are particularly harmful 
for large burning-plasma systems such as the multibillion-dollar 
International Thermonuclear Experimental Reactor (ITER) 
project6 currently under construction, which aims to be the first 
reactor that produces more power from fusion than is injected to 
heat the plasma. Here we present a method based on deep learning 
for forecasting disruptions. Our method extends considerably the 
capabilities of previous strategies such as first-principles-based5 and 
classical machine-learning7–11 approaches. In particular, it delivers 
reliable predictions for machines other than the one on which it 
was trained—a crucial requirement for future large reactors that 
cannot afford training disruptions. Our approach takes advantage 
of high-dimensional training data to boost predictive performance 
while also engaging supercomputing resources at the largest scale to 
improve accuracy and speed. Trained on experimental data from the 
largest tokamaks in the United States (DIII-D12) and the world (Joint 
European Torus, JET13), our method can also be applied to specific 
tasks such as prediction with long warning times: this opens up the 
possibility of moving from passive disruption prediction to active 
reactor control and optimization. These initial results illustrate the 
potential for deep learning to accelerate progress in fusion-energy 
science and, more generally, in the understanding and prediction of 
complex physical systems.

Tokamaks use strong magnetic fields to confine high-temperature  
plasmas, with the goal of creating the conditions for extracting power 
from the resulting fusion reaction in the plasma14. However, the 
thermal and magnetic energy in the tokamak can drive plasma insta-
bilities that lead to disruptions2—a central science and engineering 
challenge facing practical power production from nuclear fusion. 
Disruptions abruptly destroy the plasma’s magnetic confinement, thus 
terminating the fusion reaction and rapidly depositing the plasma 
energy into the confining vessel3,4 (see the section on ‘Disruptions’ 
in the Supplementary Information for details). The resulting thermal 
and electromagnetic force loads can irreparably damage key device 
components. However, if an impending disruption is predicted with 
sufficient warning time3, a disruption mitigation system (DMS), using 
techniques such as massive gas or shattered pellet injections15, can be 
triggered. The DMS terminates the discharge but substantially reduces 
the deleterious effects of the disruption. Present guidance for the min-
imum required warning time for successful disruption mitigation on 
ITER is about 30 milliseconds, although it is in general set by the exact 
response time of the DMS and may be reduced in the future through 
progress in DMS technologies3. Throughout this paper, we describe 
the predictive performance of all methods at this ‘deadline’ of 30 mil-
liseconds before disruption. However, even longer warning times 
could allow for a ‘soft’ rampdown of the plasma current or alternative 

active plasma control, avoiding disruption without terminating the 
discharge3.

Although plasma instabilities and disruptions are in theory predictable  
from first principles16, this has proven to be extremely challenging, 
because an accurate physical model5 would need to take into account, 
first, a vast range of spatiotemporal scales; second, multiphysics  
considerations; and third, the complexity of disruption causes and  
precursor events17. Just as for many other fundamental questions across 
the physical sciences18,19, the inherent complexity of the problem can 
make first-principles-based approaches impractical on their own.

On the other hand, recent statistical and classical machine-learning 
approaches (we will refer here to machine-learning models that do not 
apply deep-learning paradigms as ‘classical’ algorithms) based on real-
time measured data have shown promising results7–10; although they 
still have shortcomings, they represent the state of the art3 for disrup-
tion prediction. Here we introduce the fusion recurrent neural network 
(FRNN)—a new disruption-prediction method based on deep learning 
that builds on these pioneering efforts and extends the capabilities of 
data-driven approaches in several crucial ways.

Specifically, our method delivers predictions for devices unseen 
during training; uses the information contained in high-dimensional 
diagnostic data, such as profiles, in addition to scalar signals; avoids 
the need for extensive feature engineering and selection20,21; and  
enables rapid training times through high-performance computing. 
The cross-device prediction in particular will be key for powerful 
near-future burning plasma machines such as ITER, as they cannot 
withstand more than a few3 disruptions. Accordingly, training data 
from such devices can be expected to be scarce.

Deep neural networks22 in general consist of many layers of param-
eterized nonlinear mappings, whose parameters are trained (‘learned’) 
using backpropagation. They have been successful at learning to extract 
meaningful features from high-dimensional data such as speech, text 
and video. In particular, recurrent neural networks (RNNs) powerfully 
handle sequential data by maintaining information in an internal state 
that is passed between successive time steps, in addition to taking into 
account new input data at every time step. Meanwhile, convolutional 
neural networks (CNNs) can learn salient, low-dimensional representa-
tions from high-dimensional data by successively applying convolu-
tional and downsampling operations. As the first application of deep 
learning to disruption prediction, the specific architecture of FRNN 
combines both recurrent and convolutional components to extract  
spatiotemporal patterns from multimodal and high-dimensional 
sensory inputs. The overall workflow and detailed architecture of our 
approach are presented in Fig. 1.

Missing a real disruption or calling it too late (false negative) is 
costly because its damaging effects go unmitigated, while triggering 
a false alarm (false positive) wastes experimental time and resources. 
Changing the alarm threshold value for the scalar ‘disruptivity’ output 
of a prediction model (Fig. 1d) allows a trade-off between these two 
economic operation factors. A low threshold means that the alarm is 
triggered more easily, which will result in fewer missed disruptions but 
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more false alarms, and vice versa for a high threshold. This trade-off 
is captured as a receiver–operator characteristic (ROC) curve23 (see 
the Methods subsection ‘Target functions’ and Extended Data Fig. 1 
for details). The area under this ROC curve (AUC)—our metric for 
evaluating algorithms—lies between 0 and 1, and measures the ability 
of a predictive method to catch real disruptions early enough, while at 
the same time causing few false positives.

In order to assess our algorithm, we trained it to predict disruptive  
and nondisruptive outcomes using past experimental data from the 
JET and DIII-D tokamaks, currently comprising over 2 terabytes. 
Training our model effectively required solutions to several unique 
challenges, such as training with diverse and long sequences and find-
ing signal normalizations that scale appropriately between machines 
(see the Methods subsections ‘Data considerations’ and ‘Algorithm and 
training details’ for further information, and Extended Data Tables 1, 2 
for a detailed summary of the signals and datasets used). We compare 
FRNN to the previous state of the art represented by support vector 
machines (SVMs)10 and small multilayer perceptrons (MLPs)8, as well 
as to other promising models from the machine-learning literature such 
as random forests24 and gradient-boosted trees25. Table 1 reports AUC 

values for the best version of our model and the best classical model 
using various datasets. In all of our tests, gradient-boosted trees per-
formed the best among classical models. Ultimately, only a closed-loop 
implementation during live experimental operation that is subject to 
the associated unforeseeable circumstances can provide definitive evi-
dence of the merits of a predictive method—and may also lead to addi-
tional insights through the process of implementation and debugging 
in the live plasma control system. However, the large and representative 
archival datasets used here cover a wide range of operational scenarios, 
and thus provide substantial evidence as to the relative strengths of the 
methods considered.

For the DIII-D dataset, we sample both the training and the testing 
examples uniformly across all experimental runs (‘shots’). Thus, this 
dataset requires the least ‘generalization’ (the ability of the algorithm to 
learn patterns during training that transfer to new and possibly unseen 
situations, in this case the testing set). In this setting, classical methods 
and our proposed method are competitive, with the classical method 
performing slightly better. However, FRNN improves further in perfor-
mance after the 30-millisecond deadline (providing improved predic-
tive performance if mitigation technology becomes faster in the future), 
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Fig. 1 | System overview and disruption-prediction workflow. a–e, The 
top image shows an interior view of the JET tokamak, with a nondisruptive 
plasma on the left and a disruptive plasma on the right. Diagnostics (a) 
provide streams of sensory data (b) which are fed to the RNN-based 
deep learning algorithm (c) every 1 ms, producing a corresponding 
‘disruptivity’ output at every time step (d). If the output crosses a preset 
threshold value (dashed horizontal line), a disruption alarm is called  
(red star). This alarm triggers mitigation action, such as gas injection 
(e) into the tokamak, to reduce the deleterious effects of the impending 
disruption. f, A detailed schematic of our deep-learning model. The input 
data consist of scalar zero-dimensional (0D) signals and 1D profiles.  
N layers of convolutional (containing NF filters each) and downsampling 
(max-pooling) operations reduce the dimensionality of the profile data 
and extract salient low-dimensional representations (features; here, 1D 

features). These features are concatenated with the 0D signals and fed into 
a multilayer long/short-term memory network (LSTM) with M layers, 
which also receives its internal state from the last time step (T = t − 1) 
as input. The resulting final feature vector ideally contains salient 
information from the past temporal evolution (T ≤ t − 1) and the present 
state of all signals (T = t). This vector is fed through a fully connected 
layer to produce the output. Panel a has been modified from an image of 
the interior of JET obtained from the EUROfusion media library at www.
euro-fusion.org/media-library. Ip,target, plasma current target; Ii, internal 
inductance; LM, locked-mode amplitude; Ip, plasma current; Pin, input 
power; Prad,core, core radiated power; β, normalized plasma pressure; ne, 
electron density; WMHD, plasma energy; Prad, total radiated power; Te (ρ), 
electron-temperature profile; ne (ρ), electron-density profile.
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performs as well as the classical method in the ‘interesting’3 region of 
the ROC curve with high true positives and low false positives, and pro-
vides better generalization for threshold choices (Extended Data Fig. 1).

For the JET dataset, training and testing data are drawn from slightly 
different distributions. The testing set is drawn after an upgrade to the 
device, in which the internal wall was changed from a carbon wall to 
an ITER-like wall (ILW) made of beryllium13, resulting in different 
physical boundary conditions as well as different shot and operations 
characteristics10. Here the superior generalization abilities of FRNN 
become clear.

Being able to learn generalizable disruption-relevant features from 
one tokamak and apply them to another will be key to a disruption 
predictor for ITER, where no extensive disruption campaigns can be 
executed to generate training data. The second and third columns of 
Table 1 show the results for cross-machine performance, where both 
training and validation data come from one machine, and testing is 
performed on the other. This is a difficult task, complicated by various 
subtle factors (see the Supplementary Information section ‘Challenges 

in cross-machine training’), which has presented challenges to earlier 
work11. The results show that, in this setting, only our deep-learning 
approach is able to transfer substantial generalizable knowledge from 
one machine to the other. The results are particularly strong for the 
ITER-relevant case of training on a machine with smaller physical 
size and less stored energy (DIII-D) and generalizing to a ‘big’ unseen 
machine (JET). As far as we are aware, this is the first demonstration of 
substantial cross-machine generalization for machine-learning-based 
disruption prediction.

Although it is not possible to obtain thousands of training shots 
(including a sufficient number of disruptions) from a new machine 
such as ITER, a small amount of simulated or real (perhaps low-power 
or low-current) disruptive shots3 may be feasible. To simulate this sce-
nario, we sample a small set, δ, of shots from the testing set on the big 
machine (JET), and give the algorithms access to these during training 
(see the Methods subsection ‘Experimenting with a small number of 
shots from the test machine’). Encouragingly, all models greatly benefit 
from this ‘glimpse’ at the testing set (see the last column of Table 1). 
Generalization is particularly strong for the deep-learning model. 
Using only a very few JET shots, FRNN can reach a performance that 
is competitive with that of models trained on the full JET dataset using 
the same restricted set of signals available on both machines. These 
results are highly relevant to disruption prediction on the ITER, as they 
demonstrate the feasibility of training well-performing models without 
the need for many disruptive training shots from the target machine.

Given that manual dimensionality reduction and feature engineering 
(that is, the extraction of useful low-dimensional summaries or rep-
resentations from high-dimensional data26) would first be necessary, 
classical methods have been unable to take advantage of higher-dimen-
sional signals such as profiles. Profiles are one-dimensional data that 
capture the dependence of a relevant plasma parameter, such as the 
electron temperature or density, on the radius as measured from the 
plasma core to the edge. This radial dependence is generally the most 
important degree of freedom, as variations along the poloidal or toroi-
dal degrees of freedom are subject to much greater particle mobility and 

Table 1 | Prediction results
Single machine Cross-machine Cross-machine 

with ‘glimpse’

Training set DIII-D JET (CW) JET (CW) DIII-D DIII-D + δ

Testing set DIII-D JET (ILW) DIII-D JET (ILW) JET (ILW) − δ

Best classical 
model

0.937 0.893 0.636 0.616 0.851

FRNN 0D 0.890 0.952 0.761 0.817 0.879

FRNN 1D 0.922 – – 0.836 0.911

Performance of the best models on test datasets, measured as AUCs at 30 ms before a disrup-
tion. We compare FRNN with (1D) and without (0D) profile information and the best classical 
approach. The best model for each data set is shown in bold. The last column shows results for 
cross-machine testing with a small amount (a ‘glimpse’) of data, δ, from the testing machine 
added to the training set (see text). A score of 1.0 represents perfect performance and 0.5 is 
equivalent to random guessing. Because the relevant diagnostic for 1D profiles was not available 
on most JET shots from the carbon wall dataset, 1D profiles are not included when training on JET 
data. CW, carbon wall.
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Fig. 2 | Example predictions on real shots from DIII-D and JET.  
a, c, Shots from DIII-D; b, shot from JET. For each shot, the top two panels 
show scalar signals; the next two show profile signals; and the bottom 
panel shows the model output as a function of time. T = 0 is defined as the 
first time point for which all signals are present in the database, which can 
differ from the standard DIII-D and JET time base. Only a representative 
subset of the signals used by the algorithm is plotted, and each signal is 
shown in its normalized form (see the Methods subsection ‘Normalization’ 
for details and Extended Data Table 1 for descriptions of each signal). 
The red stars and dashed vertical lines indicate alarms. Disruptive shots 
(b, c) have a vertical red line at the 30 ms deadline before the disruption. 

a, DIII-D shot 148,778: a false alarm is triggered about 5,200 ms into the 
shot by a minor disruption. Careful inspection reveals two separate minor 
disruptions in close succession, corresponding to the spikes in the output 
and the resulting alarms. b, JET shot 83,413: the slow rise in radiated 
power allows our deep-learning approach (FRNN1D; black) to correctly 
predict the disruption hundreds of milliseconds in advance; this is missed 
by the best classical model (yellow; see text). c, DIII-D shot 159,593, only 
the deep-learning model with access to profile information (black) can 
correctly predict the oncoming disruption; it is missed by the model that is 
trained solely on scalar signals (yellow).
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resulting faster averaging times owing to the structure of the confining 
magnetic fields14. Profiles could provide rich new physics informa-
tion and insight, and many reaction metrics and control mechanisms 
already relate to their temporal evolution27 (see the Supplementary 
Information section ‘Extensions and future work’). Although profile 
data show large differences between machines, and are at present of 
limited quality and temporal availability (see the Methods subsection 
‘Data challenges’), our algorithm is nonetheless able to benefit from 
these data and to generalize between machines. Performance of the 
best deep-learning models (including performance on cross-machine 
prediction) increases universally when including profiles (see Table 1). 
This demonstrates that there is a wealth of predictive, disruption-rele-
vant information contained in multimodal, high-dimensional data—a 
critical fusion physics insight. These findings are further corroborated 
by explicit analyses of signal importance (Extended Data Fig. 2). The 
ability of our deep-learning model to take advantage of these new phys-
ics data without resorting to the use of hand-tuned features or invoking 

human expertise is key. Higher-quality, more densely available, and 
potentially even higher-dimensional signals—such as two-dimensional 
electron cyclotron emission imaging (ECEi) data28 (see the Methods 
subsection ‘Data challenges’ for more examples)—will add even more 
predictive power to deep-learning models and might lead to new phys-
ics insights in the future (see the Supplementary Information section 
‘Extensions and future work’).

Figure 2 shows time series of various example shots and the resulting 
algorithmic predictions. In Fig. 2a, an example false alarm is triggered 
on a DIII-D shot at about 5,200 milliseconds into the shot. However, 
this false positive remains a plausible prediction, as the observed symp-
toms are consistent with a ‘minor disruption’ (see the Supplementary 
Information section ‘Disruptions’)—an event characterized by a ther-
mal quench (that is, a rapid loss of thermal energy to the plasma-facing 
components) without a current quench (a loss in plasma current)3. 
Accompanied by only minor disturbances in the plasma current, this is 
evident in, first, the drop in β (the ratio of thermal to magnetic pressure 
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Fig. 3 | High-performance computing results. a, Accumulated fraction 
of detected disruptions (main image) and AUC values achieved (inset) on 
DIII-D as a function of time to disruption for two models, optimized for 
performance at deadlines of 30 ms and 1,000 ms before the disruption, 
respectively. b, Time required to complete one pass over the dataset 
(one ‘epoch’) during training versus the number of GPUs engaged. 
Experimental data are compared with a semi-empirical theoretical scaling 
model (see Supplementary Information section, section ‘Derivation 
of scaling model’) and ideal scaling. The relative errors (measured as 
empirical standard deviations) of the experimental data are ± 2.5% 
and are much smaller than the size of the circular symbols. The inset 
shows actual training progress, measured via mean training loss (that 
is, the difference between the target and the realized output of the 
model; decreasing curves) and validation AUCs (increasing curves) for 
various numbers of GPUs (NGPU) as a function of scaled execution time 

(execution time × NGPU). The best validation AUC value is denoted by 
a star. The 256-GPU run shows some initial indications that the pattern 
of convergence is changing, while still giving final testing AUC as good 
as the other runs. c, Results for hyperparameter tuning with 104 GPUs 
with parallel random search across 100 models, trained on 100 GPUs 
each. In the main image, the time to solution for finding a model of a 
given validation AUC in this scenario of engaging 104 GPUs is compared 
to the case of using only a single GPU for the same search. The solid line 
shows the actual ratio between the times to solution, while the dashed 
line indicates the ideal ratio (speed-up) of 104. The inset shows the time 
required for finding the best model when using a total of 1, 102 or 104 
GPUs. For 102 GPUs, we distinguish between training the 100 models 
serially but using 102 GPUs for each model (parallel training), and running 
100 models in parallel, trained on 1 GPU each (parallel tuning), which 
both achieve an acceleration (speed-up) of nearly 100 times.
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in the plasma); second, the peaking and rapid change in the tempera-
ture (and density) profiles; and third, the spiking locked-mode.

The fact that false alarms are often understandable like this, and intu-
itively ‘make sense’, gives confidence and physical interpretability to the 
model. By serving as a reliable measure of ‘disruptivity’ as exemplified 
in this shot, FRNN could serve as an analysis tool to filter databases and 
help identify causes, precursors and other events relevant to disruption 
physics2,29, thus supporting discovery science in this area. As is visible 
from the random spikes in Fig. 2b, we find qualitatively that false alarms 
from the classical methods are often erratic and not as easily attributed 
to physically meaningful events.

Figure 2b shows an example of a disruptive shot that is missed by 
the best performing classical algorithm (gradient-boosted trees) but 
is correctly caught by our method. Although no sudden events occur 
near the disruption at the end of this shot, FRNN does pick up on the 
slow (roughly 1,000 millisecond) rise of the core-radiated power, while 
gradient-boosted trees do not. This is probably because of its lack of 
access to temporal information (see the Methods subsection ‘Training 
for classical models’).

Figure 2c compares FRNN that is trained (and tested) only on scalar 
signals (yellow) with a model that is trained on all signals, including 
profiles (black), from a disruptive DIII-D shot. As can be seen from 
the drop in β, the morphological change in the profiles and the locked-
mode spikes (as well as the later spikes in radiated power), starting at 
around 3,350 milliseconds, some events are clearly taking place in the 
plasma that resulted in a disruption. However, only the model that 
is trained using profiles is able to correctly interpret the early warn-
ing signs. Access to one-dimensional profile information qualitatively 
changes the prediction and allows early detection of the disruption, 
which is missed by the model without access to profiles.

Optimizing a modern machine-learning model is an iterative pro-
cess. Selection of well-performing hyperparameters—that is, param-
eters of the model that are not optimized during training and need to 
be set manually, such as the learning rate—requires searching a high- 
dimensional space (see Extended Data Table 3 for a comprehensive list 
of hyperparameters and values that performed well). Evaluating any 
point in this space entails running full model training and inference. To 
make this approach practical, it is essential to reduce the time required 
to train a single model, and to increase the number of models that can 
be trained in parallel in a given amount of time. Growing model sizes, 
datasets, and amounts of one- or even higher-dimensional data will 
only make these demands more challenging.

We address these issues with three levels of parallelism, which 
together enable the engagement of high-performance computing 
(HPC) at the largest scale in order to reduce the time to solution. First, 
graphical processing unit (GPU) computing accelerates training over 
single-machine, multicore central processing unit (CPU) execution 
by roughly 10 to 20 times. Using the message passing interface (MPI) 
standard, we next implement a distributed, synchronous, data-parallel 
training approach30 to engage large numbers of GPUs at once. Finally, 
we parallelize the random hyperparameter search by training many 
such distributed multi-GPU models in parallel.

An important application of hyperparameter tuning is the ability to 
tune models for a specific task, such as providing much earlier disrup-
tion warnings, thus possibly enabling active plasma control without 
the need for shutdown3. In Fig. 3a we show the results of using hyper-
parameter tuning to select models for optimal prediction performance 
at 30 and 1,000 milliseconds, respectively, before the disruption. The 
tuned models display qualitatively distinct behaviour, which gener-
alizes to the testing set: the model tuned for 30 milliseconds shows 
better performance closer to the disruptions, while the model tuned at 
1,000 milliseconds shows superior performance at times further away.

Figure 3b shows the excellent strong scaling of FRNN’s data-parallel 
training up to at least 6,000 GPUs using the Oak Ridge Leadership 
Computing Facility (OLCF) supercomputer Titan. We have repli-
cated this scaling on the Pascal-P100-powered TSUBAME 3.0 and 
Volta-powered OLCF Summit supercomputers, as well as with mixed 

floating-point compute precisions31. In the inset of Fig. 3b, we study 
training progress as a function of execution time multiplied by the 
number of GPUs. The fact that the curves approximately collapse indi-
cates that actually training a model to convergence also scales nearly 
ideally with the number of GPUs used.

Figure 3c shows the results of hyperparameter tuning runs on 100 
parallel random models, each trained with 100 GPUs, engaging a total 
of 104 GPUs. We compare this performance to scenarios in which 
only 1 or 100 GPUs are engaged to perform the same search. The 
black curve compares the time required for the search when using 104 
GPUs to that when using a single GPU, as a function of the AUCs of 
the models found. Parallel search becomes increasingly effective for 
higher AUC values, because those values occur more rarely. The inset 
shows near-perfect acceleration (speed-up) in finding the best model 
when using 102 or 104 GPUs, demonstrating effective engagement of 
supercomputing systems comprising O(104) GPUs—the scale of the 
largest supercomputers available today32—and a resulting overall time-
to-solution of only half an hour.

Ultimately, the goal will be not just to mitigate disruptions but to 
avoid them entirely if possible. Models that learn a salient representa-
tion of the state of the reactor—such as the method presented here—
could lie at the core of a deep reinforcement learning33 approach. 
Using training reactors or simulated data with synthetic diagnostics34, 
these models could be trained to directly control the reactor while 
minimizing disruptivity and also optimizing arbitrary objectives such 
as fusion power output. This also highlights the potential for synergy  
between machine learning and more traditional modelling and  
simulation efforts.

Using the example of predicting disruptions in fusion reactors, our 
paper highlights the potential of deep learning to complement theory, 
simulations and experiments in the analysis, prediction and control 
of highly complex physical systems. With the rapidly growing availa-
bility of multimodal and high-dimensional data across several disci-
plines, our findings—as well as some of the associated challenges and 
insights—have clear implications for the applicability of deep learning 
to fusion science.

Online content
Any methods, additional references, Nature Research reporting summaries, source 
data, statements of data availability and associated accession codes are available at 
https://doi.org/10.1038/s41586-019-1116-4.
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Data considerations. Data and preprocessing. The data for individual experimental 
runs (or ‘shots’) are stored as separate time traces for every signal, with sampling 
periods of between approximately 1 × 10−5 and 1 × 10−1 seconds. For each shot, 
we read in all relevant signals, and cut the signals to the range of times during 
which all signals contain data. We then resample the signals to a common sampling 
rate of 1 ms using causal information (that is, for any given time we always use the 
last known value before the time in question).

Each time step contains a vector of n signals (see Extended Data Table 1). For 
multidimensional signals, their values are simply concatenated onto the global 
input vector. A single shot then contains n × T scalar values, where T is the length 
of the shot. The full dataset includes several thousand shots from both the JET and 
the DIII-D tokamaks. Only shots that have data for all signals are included. See 
Extended Data Table 2 for a summary of the full dataset. Overall, the size of our 
dataset from DIII-D and JET amounts to about 2 TB—comparable with some of 
the largest published machine-learning datasets36.
Data challenges. A fusion plasma is a complex dynamical system with an unknown 
internal state which evolves according to physical principles and emits a time series 
of observable data14. Capturing the history and present physical state of the plasma 
should allow predictions about its future behaviour, including the possibility of 
disruption. Noisy and incomplete data make this a challenging statistical task.

Observable data are captured as scalars and 1D profiles by various passive diag-
nostics, such as magnetic measurements, electrical probes, visible and ultraviolet 
spectroscopy, bolometry, electron cyclotron emission (ECE) and X-ray measure-
ments, as well as active diagnostics such as Thomson scattering, light detection 
and ranging (LIDAR), interferometry, or diagnostic neutral beams37. Future work 
may also consider higher-dimensional sources of data such as such as 2D ECEi 
imaging28, 2D magnetic equilibria38, or fast camera data39.

Raw experimental data are difficult to work with directly using machine- 
learning methods. For instance, the relevant physical timescales and experimental 
sampling frequencies of the different signals span several orders of magnitude. 
While many dynamic variables in the plasma change within milliseconds or faster, 
each shot can last anywhere from roughly 1 to 40 seconds. We choose a time step 
of 1 ms to resolve the fastest relevant dynamics without including excessive data. 
This sampling results in training examples with sequence lengths of order O(104).

For each shot, if there is a disruption, this only occurs at the end. Moreover, 
depending on the machine, disruptions can be quite rare (less than 10% of shots). 
This means that the actual learning signal for disruption events is quite sparse. We 
used up-weighting40 of positive examples (see the hyperparameter λ in Extended 
Data Table 3) to stabilize training and found that it was often able to increase 
performance.

Signals are often noisy or exist only partially. We use only shots that have at least 
some data for every desired signal. However, in contrast with past work, we do not 
exclude any shots that are based on ‘bad’ or statistically unusual data. Some signals 
in the experimental databases are computed using noncausal information (for 
example, temporal averaging with a time-centred window, usually with a width of 
about 20 ms). We shift such signals in time to ensure that the algorithm does not 
have access to any future information at any given time. This approach means that 
for some signals the algorithm is seeing slightly ‘old’ data, giving a conservative 
estimate for prediction performance.

Some signals are not stored consistently in the database. For instance, the input 
power signal on DIII-D changed its units from MW to kW around shot 156,000. 
This was not corrected for during our analysis. Because the algorithm divides all 
shots by the same numerical scale, shots before this change incorrectly appear to 
the machine-learning algorithms to have a very low value of input power. Thus, 
the signal importance of the input power on DIII-D is probably underestimated 
in Extended Data Fig. 2.

Profile data available at present are of limited quality and temporal resolution. 
Profiles are available at best every 20 ms for DIII-D and every 50 ms for JET, and 
are often poorly reconstructed or missing entirely. They are also shifted in time 
to accommodate for noncausal filtering in the EFIT equilibrium reconstruction. 
Additionally, the data are qualitatively different between machines, consisting of 
noisy raw data on JET and smooth fitted functions on DIII-D.

The shots in more recent JET ILW campaigns (after shot 84,000 or thereabouts) 
are run at higher power and plasma current, have higher disruption rates, and are 
often affected by active DMSs10,41. Many shots are terminated by the DMS long 
before the onset of a disruption. In such cases, it is impossible to know whether 
any disruption would have actually occurred. Training on affected shots is chal-
lenging, as the ground truth disruption signal is hidden by the ‘competing risk’ 
of the mitigation action, which also obscures physics signals very close to the 
disruption. Moreover, there may be a systematic bias in terms of which shots 
are affected by the DMS. This makes a fair assessment against data without such  
terminations impossible. Although such data are thus not directly comparable 
with the other datasets considered here, we have nonetheless tested our method 

on the later JET campaigns, in order to determine its ability to handle these more 
‘high-performance’ plasmas. We restricted the disruptive shots to unmitigated and 
unintentional disruptions. The resulting ‘late’ JET ILW dataset (as opposed to the 
‘early’ ILW campaigns considered in the main text) and the associated performance 
values are described in Extended Data Tables 4, 5. We find that this large dataset 
seems to be more difficult to classify overall, leading to slightly lower AUC values 
throughout compared with when testing is performed on the earlier ILW data. 
However, consistent with the results presented in the main text, the deep-learning 
approach again shows strong predictive capabilities and generalizes better from 
the JET CW and DIII-D training data to the ILW testing data than do classical 
approaches. The large size of the dataset also allowed us to both train and test 
models on random subsets of the late ILW data (with a split of 50% training, 25% 
validation and 25% testing data; the same split was used for the DIII-D data in the 
main text). The results demonstrate again that in this setting, where training and 
testing sets come from the same distribution—consistent with the DIII-D results 
in the main text—all methods show strong predictive capabilities and the classical 
methods perform essentially as well as the deep-learning approach.

The computer-science community has established a strong example of providing 
unified, open datasets (for example, ImageNet, IMDB, Penn Treebank, and so 
on)35,42,43 against which new machine-learning methods can be tested. This allows 
a direct and fair comparison between various methods and leads to measurable 
incremental progress. In practice, the separation and complexity of the various 
international experimental facilities make the construction of such unified data-
bases more challenging for the fusion community. Thus, most data currently exist 
in separately managed databases. We have taken the approach of implementing 
not only our own method but also a generalized interface that allows a user to 
plug and play any machine-learning algorithm that adheres to a ‘train’ and ‘pre-
dict’ application programming interface (API). This allows direct comparison and 
benchmarking between variants of our RNN approach and other machine-learning 
methods, including the state of the art as used in past publications, such as SVMs 
and MLPs, as well as recently popular classical methods such as random forests or 
gradient-boosted trees24,25. We believe that the continual development of a wide 
variety of methods and a direct comparison on exactly the same data is key for 
accurately measuring progress and for allowing detailed and transparent compar-
isons of the relative strengths and weaknesses of all methods. To simplify database 
access once permission has been obtained, we have included in the code base44 
object-oriented code based on human readable signal names, which fetches raw 
data from the appropriate original databases and performs error checking; this is 
key for generating training datasets reliably and at scale.

We have found empirically that absolute predictive performance can be quite 
sensitive to ad hoc choices about the dataset, such as the precise group of shots that 
are used (and which ones are excluded because of bad or abnormal data, intentional 
disruptions, or other criteria) and which signals are used. In our approach, we use 
all shots from a given time period. We exclude a shot only if, for any of our desired 
signals, it does not contain data at all. This means that our dataset includes shots 
with known bad data, intentional disruptions, testing shots, and so on. Although 
this can hurt performance, it is the approach that is most conservative, the least ad 
hoc, and the most representative of live, closed-loop operation. Overall, improved 
handling of these data issues may raise absolute performance beyond the levels 
reported here. Thus, although absolute performance numbers are important and 
will be key for the application of disruption prediction to ITER, we also invite the 
reader to pay particular attention to the relative performance of different methods, 
as these highlight their relative strengths and weaknesses.
Algorithm and training details. Training the neural network effectively requires 
overcoming several unique challenges, such as the need for generalizable signal 
normalization, poorly defined target functions not directly related to the ulti-
mate learning objective (high area under the ROC curve), and a need for stateful 
training26 on very long (O(104)) sequences of varying length. In this section we 
describe our approach to overcoming these challenges in our training procedure. 
We also provide a comprehensive list of tunable hyperparameters for our model in 
Extended Data Table 3. All deep-learning models were implemented using Keras45 
and Tensorflow46.
Normalization. Neural networks typically expect their inputs to lie in similar 
numerical ranges across all dimensions. Moreover, they expect a signal of equal 
amplitude to have equal meaning across examples. This poses a substantial chal-
lenge in the use of raw physical signals as inputs to any neural network architecture. 
Because the raw signals have values in the range 10−6 to 1019, the signals must be 
normalized such that they all lie around 100. Moreover, many signals (such as the 
plasma current, the stored energy, or even the timescale itself) will have differing 
characteristic scales on different tokamak machines. The normalization should 
ideally have the property that signals that have the same ‘physical meaning’ from 
different machines are mapped to the same numerical value after normalization. 
As suggested previously11, physically motivated dimensionless combinations of the 
raw measurements are a sensible option for generating such input data.
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However, we find empirically (the particular normalization scheme used is 
in essence a tunable hyperparameter of the model, just like any other) that the 
best-performing method is to simply normalize each signal by its ‘global numerical 
scale’ across the entire dataset. This automatically brings signals to a reasonable 
numerical range and scales appropriately to different tokamak devices. Thus, the 
‘normalized form’ of each signal (which is how signals are plotted in Fig. 2 and how 
the actual algorithm receives them) is simply the original signal value divided by 
this global numerical scale, which is computed as follows. For each shot, we com-
pute the standard deviation of a single signal across that shot (multidimensional 
signals are counted as one signal, because gradient information is important in such 
signals and would be distorted if each channel were normalized individually). Then 
we define the ‘global numerical scale’ of that signal as the median across all shots 
of those per-shot standard deviations. Given that a small fraction of shots contains 
strong outlier data points that lie orders of magnitude outside of their typical range 
(which could distort the computation of the standard deviation), the median pro-
vides a resilient way of obtaining aggregate scale information from all shots. No 
shots are removed or filtered out from the datasets for having outlying or unusual 
data. To further ensure that outliers do not deteriorate performance, we also clip 
each signal to lie within (−100σ, +100σ), where σ is its corresponding numerical 
scale, although we find that this does not measurably affect performance.

To make profiles scalable between machines, they are at every time step stored 
not as a function of real spatial position, but rather as a function of normalized 
toroidal magnetic flux (ρ). In Extended Data Table 1 we give a comprehensive list 
of signals, including their respective units and global numerical scales.
Target functions. The ultimate goal of this learning project is to predict the onset of 
disruptions. The exact definition of what target function the neural network should 
learn to approximate is important for the architecture of the model and ultimately 
for its performance. While ultimately a shot is either disruptive or not (that is, the 
decision is binary: 0 or 1), the RNN needs to return an output value at every time 
step. For a nondisruptive shot, the output should clearly always be 0 or ‘nondis-
ruptive’. However, in a disruptive shot, the best choice for the ‘target output’ is less 
obvious. Shortly before the disruption the output should be 1 or ‘disruptive’, but 
this is not necessarily true several seconds before the disruption. It is also unclear 
which choice for such a target function would ultimately result in the highest 
possible AUC—the ultimate performance metric that we are trying to optimize.

Our solution defines a parameter Twarning such that the target function is 1 if 
the time to disruption is TD − t < Twarning and 0 otherwise (TD − t is the time to 
disruption, where TD is the time at which the disruption occurs and t is the current 
time). The intuition is that the neural network should not be able to know about 
a disruption more than Twarning away. Setting Twarning too high might lead to many 
false positives, while setting it too low might cause the algorithm to fail to learn 
‘early warning signs’ of disruptions. On JET, for instance, we find empirically that 
values of Twarning of around 10 s work best. We also tried predicting TD  − t or 
log10(TD  − t) directly using a regression loss function. The log version performs 
well for the DIII-D tokamak, but not on JET.

We also implemented a ‘max hinge’ loss in the hope of more closely approximat-
ing the ultimate learning objective: a high ROC area. This loss merely considers the 
maximum output value across all time steps and penalizes it if it does not cross the 
threshold in a disruptive sample, or if it does cross the threshold in a nondisruptive 
sample. The penalty is an L1 hinge loss with threshold minus 1 for nondisruptive 
time steps and threshold plus 1 for time steps within Twarning of a disruption. The 
intuition is that, in the final evaluation of a shot, only the maximum value of the 
network matters: either it triggers an alarm or not. Thus, this loss should give a 
more direct incentive for the network to optimize the area under the ROC curve. 
In practice, we find that ‘max hinge’ performs about as well as a standard hinge 
loss with the same parameters (for the standard hinge loss, the same loss is applied 
individually for every time step, not just at the time step of maximum output).

A user of a deployed version of this predictive system must define an alarm 
threshold, such that when the RNN output signal reaches a certain value, an alarm 
is triggered and thus disruption mitigation actions are engaged. This alarm thresh-
old allows the user to trade off between maximizing true positives and minimiz-
ing false positives. A true positive is a true disruption that is correctly caught by 
the algorithm (that is, an alarm is triggered). A false positive is an alarm that 
is triggered even though there was not going to be a disruption. We define the 
true-positive rate as the fraction of real disruptive shots for which the algorithm 
triggers an alarm before the 30 ms deadline. The false-positive rate is the fraction 
of nondisruptive shots for which the algorithm triggers an alarm at any point in 
time. As the alarm threshold is raised (harder to cause alarms), there will be fewer 
false positives, but also fewer true positives. As the threshold is lowered (easier to 
cause alarms), there will be more false positives, but also more true positives. By 
varying the threshold, an ROC curve that plots the true-positve rate versus the 
false-positive rate (see Extended Eata Fig. 1) is traced out, describing the predictive 
performance of the algorithm holistically. To capture this overall trade-off, we use 
the AUC to measure the performance of a given method.

Training on long sequences. The typical duration of shots and the sampling rate 
imply a length of about 1 × 104 samples per shot. We approximate the computation 
of the gradient of the loss with respect to the model parameters by truncated back-
propagation through time47. We feed ‘chunks’ of TRNN = 128 time steps at a time 
to the RNN. The gradients are then computed over this subsection, the internal 
states are saved, and then the next chunk is fed to the RNN while using the last 
internal states from the previous chunk as the initial internal states of the current 
chunk. This allows the RNN to learn long-term dependencies while truncating the 
gradient backpropagation through time to TRNN time steps.
Mini-batching. Mini-batching48 is an important technique for improving GPU 
performance49 and accelerating training convergence of deep-learning models. 
The gradients of the loss with respect to the parameters are computed for several 
examples in parallel and then averaged. For this to work efficiently, the architec-
ture for the forward and backward pass of each gradient computation needs to be 
equal for all the examples computed in parallel. This is not possible if different 
training examples have different lengths. Thus, training on sequences of diverse 
lengths is a large and open problem for many sequence-based learning tasks47, 
particularly for sequences of vastly differing lengths. The traditional approach of 
bucketing47,50 would not work in our case because the sequence length is strongly 
correlated with whether shots are disruptive or nondisruptive, and thus individual 
batches would be biased.

We implement a custom solution based on resetting the internal state of indi-
vidual examples within a mini-batch (Extended Data Fig. 3). Because there is a 
persistent internal state between successive chunks in time, it is not possible to 
use more than one chunk from a given shot in a given mini-batch (chunks that are 
successive in the shot must also be presented to the RNN in successive mini-batches 
during training such that the internal state can persist correctly).

To train batchwise with a batch size of M, we need M independent (that is, 
stemming from different shots) time slices of equal length to feed to the GPU. We 
do this by maintaining a buffer of M separate shots. At every training step, the first 
TRNN time slices of the buffer are fed as the next batch. The buffer is then shifted by 
TRNN time steps. Before adding shots to the buffer, they are cut at the beginning to 
be a multiple of TRNN steps. Every time a shot is finished in the buffer (for example, 
the light green shot in Extended Data Fig. 3), a new shot is loaded (dark green) and 
the RNN internal states of the corresponding batch index are reset for training. It 
is this ability to reset the internal state of select batch indices that allows batchwise 
training on shots of varying lengths. The internal states of the other batch indices 
are maintained and only reset when a new shot is begun in their respective index 
of the buffer. Thus, the internal state persists during learning for the entire length 
of any given shot. This allows the RNN to learn temporal patterns much longer 
than the unrolling length TRNN and potentially as long as the entire shot. The ran-
dom offsets of the shots against each other and random shuffling of the training 
set provide a mixture of disruptive and nondisruptive samples for the network at 
every batch to stabilize training. The fetching of shots and filling of the buffer are 
performed in a separate computational thread to pipeline neural network training 
work with data-loading work.
Hyperparameters. Overall, the data normalization, training procedure and model 
architecture produce a large number of hyperparameters that must be tuned in 
order to maximize predictive performance. These hyperparameters include numer-
ical values such as the learning rate and the number of LSTM layers, but also more 
abstract categorical variables such as the precise model architecture or the nor-
malization algorithm used for different signals. We summarize these parameters 
in Extended Data Table 3.

Throughout this work and for each dataset, the ‘best’ model is found by hyper-
parameter tuning. This is done by random search in the respective hyperparameter 
space of each method—that is, by training a number of models with random hyper-
parameters on the training set and choosing the one with the highest performance 
on the validation set. Note that the validation set is from the same distribution as 
the training set, since we assume that a real application would not have access to 
any data from the testing set at training time. Thus, hyperparameter tuning might 
not find the truly best model, because the optimization metric is performance on 
the validation set and not the test set itself. In all of our tests, gradient-boosted 
trees25 performed the best among classical models, leading to the results in Fig. 2, 
Extended Data Fig. 1 and Table 1. All deep-learning models are trained with 
early stopping using the validation AUC as the metric, with a patience of three 
epochs51. The best-performing models for Table 1 are obtained in this way by using  
20 random trials for each method.
Experimenting with a small number of shots from the test machine. To simulate 
the scenario of being able to run a few disruptive shots on the test machine for 
cross-machine prediction, we remove a set δ of shots from the testing set on 
the ‘big’ machine (JET) by sampling random shots until a fixed number of five  
disruptive shots has been sampled. In our experiment, δ contains 5 disruptive 
shots and 16 nondisruptive shots. The training and validation data from the 
‘small’ machine (DIII-D) are augmented with this set δ to have both more accurate  
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training and a better measure of validation performance, and the best cross- 
machine model is retrained without extra tuning. Moreover, we apply no particu-
lar importance-weighting or loss adjustment for these extra shots. It is possible 
that the positive effect of the additional shots could be even further enhanced 
by such methods. The numbers reported in Table 1 were generated using this 
procedure.

We also tested the same scenario by sampling shots chronologically instead 
of randomly from the testing set for the same hyperparameters. The idea behind 
this approach is that this may more closely resemble the true distribution of shots 
that one would have access to during a new campaign on a new machine. We 
found that this approach did not change the results greatly beyond the generally 
expected stochastic fluctuations in AUC values of order ± 0.01 (which are due to 
random training and parameter initializations). The overall ordering of methods 
and qualitative range of performance remained the same.

Finally, we also performed tests with numbers of disruptive shots that were 
different than five. While some stochastic fluctuations are as always expected, we 
find that performance generally increases monotonically for zero to seven shots, 
and saturates after about seven disruptive shots. Increasing the number of disrup-
tive shots also improves the fraction of models (given randomly chosen hyperpa-
rameters) that converge to strong cross-machine performance during training. 
Given that the shots used are removed from the testing set on which the method 
is ultimately evaluated, it is not possible with this approach to make a fair compar-
ison of performance for large numbers of removed shots, as the testing set would 
become very different.
Training for classical models. Training on large datasets is problematic for classical  
methods, because training algorithms often do not scale well to HPC envi-
ronments. SVMs, for example, have a training cost quadratic in the number of 
examples52, which makes very large datasets unfeasible. Additionally, parallel 
algorithms for training single models across many worker nodes are lacking. We 
use a similar approach to that of ref. 10 for producing features to train the classical  
machine-learning models here. At every time step, features are extracted for each 
signal from a time window comprising the last 32 ms. Given that classical methods 
cannot learn to automatically extract patterns of various temporal scales from 
arbitrary sequence lengths, this window size represents a manually tuned trade-
off between detecting long and short temporal patterns that might be relevant for 
disruption prediction. For each time window of each signal, we compute the mean, 
maximum and standard deviations, as well as the four parameters of a third-order 
polynomial fit. Thus, for n signals, we have a 7n-dimensional feature vector at 
every time step. We then train the models by considering each time step a separate 
‘training example’. We train on a random subset of 106 such examples to avoid  
prohibitively long training times. The target value is the same as in the ‘hinge’ target 
for the deep-learning model (that is, −1 or 1). We implemented random forests,  
SVMs with linear and nonlinear kernels, multilayer perceptrons with a single  
hidden layer, and gradient-boosted trees. All classical machine-learning models 
are implemented in Scikit-Learn53, and we use XGBoost25 to provide functionality 
for the gradient-boosted trees.
Distributed training. In our code, we use python multiprocessing to parallelize 
preprocessing, shot loading, downloading and basically all components of the 
preparation and training pipeline. The vast majority of the computational load, 
however, occurs during the model training phase. While effective massive-scale 
parallelization of neural network training is an important open research ques-
tion30,54, the idea of data-parallel training is already being used for the largest and 
most advanced deep-learning models to date55.

Most state-of-the-art industrial algorithms46,56 use a parameter server approach 
with centralized communication paradigms. By contrast, our MPI implementa-
tion allows us to take advantage of highly optimized divide-and-conquer com-
munication routines with logarithmic scaling in the number of processes. As 
communication is often the bottleneck in distributed training systems, efficient 
implementation of this component of the training algorithm is key. We empirically 
observe a very high ratio of computation to communication time (greater than 90% 
to 10%) during distributed training, even on hundreds of GPUs.

The distributed training sequence can be described as follows: (1) N models 
are run with their own copy of the current parameters (W); (2) each computes a 
gradient step on a different subset (mini-batch) of the data using backpropagation; 
(3) the gradients are reduced (averaged) using a global reduction, such that every 
model has a copy of the averaged gradient; (4) each model updates the parameters 
W using the averaged gradient information; and (5) efficient communication is 
achieved using a custom MPI implementation.

This effectively amounts to training with a large batch size that is the original 
batch size, Nexamples/batch, multiplied by the number of workers: Nexamples/batch → 
Nworker × Nexamples/batch. To actually achieve a speed-up for training, we then multiply  
the learning rate by Nworker. This means that the algorithm is taking fewer learning 
steps, but each step is larger in magnitude and has smaller variance (because it is 
based on more data, owing to the larger batch size).

Our parallelized MPI implementation is also used for massively parallel batch-
wise inference, which speeds up the computation of validation metrics between 
training epochs. To run batchwise inference, all shots are padded in the end with 
zeros to be of the same length. Because information enters the RNN only causally, 
these paddings do not influence the computation in the earlier sections of the shot 
and can then simply be cut off to obtain the final shot output.
Scaling studies. The experiments illustrated in Fig. 3b were performed on the 
Titan supercomputer57, and we have replicated these scaling results on both the 
TSUBAME 3.0 and OLCF Summit supercomputers58,59. The hyperparameter tun-
ing experiment described in Fig. 3c, engaging 104 GPUs by training 100 models 
in parallel, each using 100 GPUs, was also conducted on the Titan supercomputer 
and on the JET dataset. The 1 and 100 GPU scenarios are fictitious, because the 
time required to actually run these scenarios would have been prohibitively large. 
The ratio of time required to train a single model using 1 instead of 100 GPUs was 
estimated using scaling data as in Fig. 3a. Specifically, the estimate is obtained by 
comparing timings between 4 and 100 GPUs and extrapolating from there down 
to 1, because 4 is the smallest machine architecture that is equal in configuration to 
100 GPUs (since each node has 4 GPUs). The scenario of training the 100 models 
serially (one at a time) was modelled by considering a large number (5 × 103) 
of randomized serial arrangements of the 100 already recorded runs, extracting 
results (such as the time required to find a model of a certain validation AUC) from 
each of those fictitious reorderings, and averaging the results over all arrangements.

Figure 3c shows some initial indications that convergence patterns are changing 
when using 256 GPUs or more. Although it is known that deep neural networks 
become harder to train to full accuracy with many worker GPUs30—which corre-
sponds to very large batch sizes—we expect that with larger models (in terms of 
trainable parameters), larger datasets and higher-dimensional signals, even greater 
parallelism than that reported in Fig. 3c and the main text will become practical for 
single-model training. Moreover, promising recent techniques such as learning-rate 
warm-up, scaling or cycling30,60 will probably also extend the practical range of 
parallelism, thus further engaging our code’s capability of scaling to thousands 
of GPUs.
Signal-importance studies. In order to prioritize investments in higher-quality 
data acquisition, and to gain new scientific/physics insights, it is important to 
quantify the importance of the various signals to the predictability of disruptions. 
To this end, we train a model with just a single signal at a time and measure the 
final prediction performance (Extended Data Fig. 2a). This is then a proxy for 
the disruption-relevant information contained in the respective signal. We also 
train a model with all signals but a single signal left out (see Extended Data Fig. 2b 
for results). By comparing the performance to a model trained on all signals 
(green), the relative drop in performance is a measure of how important that 
signal was for the full model. Naturally, a model trained on many signals might 
incorporate high-order interactions between signals, whose effects are not well 
measured by either of these two approaches. Moreover, the results are stochastic 
and vary according to model instantiations (due to random training initialization) 
and hyperparameters. Thus, these estimates should be seen only as a first-order 
measure of signal importance. Given that these studies require training and testing 
several models in parallel, as for hyperparameter tuning, they again can be sped 
up greatly using HPC.

Data availability
The data for this study have restricted access, with permission required from the 
management of EUROfusion and General Atomics. DIII-D data shown in figures 
in this paper can be obtained in digital format by following the links at https://
fusion.gat.com/global/D3D_DMP.

Code availability
The code used in this work is open source and available from ref. 44.
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Extended Data Fig. 1 | ROC curves from the test set for our model and 
the best classical model, for DIII-D and JET. a, DIII-D; b, JET. The true 
positive rate is the fraction of disruptive shots that are labelled disruptive 
in advance of the 30 ms deadline. The false positive rate is the fraction 
of nondisruptive shots that are labelled disruptive at any time. The areas 
under the curves correspond to the values in Table 1. The insets show the 
fraction of detected disruptions as a function of the time to disruption 
for an ‘optimal’ threshold value. On the corresponding ROC curve of 
the same colour, this optimal threshold defines a point that is indicated 
by a circle (see main text for details). The inset also shows the 30 ms 
detection deadline as vertical red line. In a, the AUC is slightly higher 
for the classical method (see Table 1), but FRNN performs equally well 
in the interesting upper left region of high true positives and low false 
positives. Moreover, only our approach provides additional detections 
between 30 ms and 10 ms to the disruption, reacting to the spikes in 
radiated power that often occur on this timescale before the disruption 
(see Prad,core in Fig. 2c). Thus FRNN could provide improved predictive 
performance if mitigation technology becomes faster in the future. In 
addition, a threshold value in practice needs to be selected for calling 

alarms. The best threshold value is estimated by optimizing it on the 
training set, in the hope that it will still perform well on the unseen testing 
set. We define the ‘best’ threshold as the value that maximizes the quantity 
TP − FP, where TP is the true positive rate and FP is the false positive 
rate. This is equivalent to finding the point on the ROC curve furthest in 
the ‘northwest’ direction. For FRNN, the threshold generalizes excellently 
(black and purple circles). For the classical approach, although the 
overall ROC curve is encouraging, the threshold estimate is poor (orange 
square) and far from its ideal position (orange circle). For each method, 
the fraction of detected disruptions is shown in the inset as a function of 
time until disruption by using the threshold values corresponding to the 
circle positions, which for the classical method we determine manually 
with knowledge of the testing set (to give a conservative and maximally 
favourable estimate of its performance). Median alarm times are about 
500–700 ms on DIII-D and around 1,000 ms on JET. Encouragingly, a 
majority of disruptions is detected with large warning times of hundreds 
of milliseconds—sufficient for disruption mitigation (requiring around 
30 ms) and key to possible future preventative plasma control without the 
need for shutdown.
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Extended Data Fig. 2 | Signal-importance studies. Signals are ordered 
from top to bottom in decreasing order of importance. Signals are defined 
in Extended Data Table 1. Models were trained on the DIII-D dataset. 
a, Test set AUC values achieved by models trained on a single signal 
at a time. The AUC value is representative of how much information 
is contained in that single signal. For comparison, we also show the 
performance for a model trained on all signals (green bar). b, Test AUC 
values for a model trained on all signals except the labelled one. In this 
case, the drop in performance compared with the performance of the 
model trained on all signals (green bar) is a measure of how important 
the given signal is for the final model. The exact results for both figures 
are in general stochastic and vary over hyperparameters and for each new 
training session, so only general trends should be inferred. It appears 
consistently that the locked-mode, plasma current, radiated power and q95 
signals contain a large amount of disruption-relevant information, similar 

to the results of past studies of signal importance on JET21. Both panels—
in particular panel a, which measures the information content of a single 
signal at a time—also confirm that there is a large amount of information 
in the profile signals. With higher-quality reconstructions, more frequent 
sampling and better (causal) temporal filtering (to obviate the need to shift 
the signal in time and thus lose time-sensitive information), they are likely 
to become even more relevant. This indicates that higher-dimensional data 
probably contain much useful information that should be considered in 
the future. Panel b also highlights another benefit of deep learning, which 
is that almost all additional signals increase performance, or at least do 
not have a substantial negative impact. Signals can thus generally be used 
without having to worry about confusing the algorithm and reducing 
performance, and therefore without having to spend much time on signal 
selection. For other methods, signal selection (for example, removing 
correlated, noisy or noninformative signals) is key21.
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Extended Data Fig. 3 | Snapshot of the training buffer. The figure 
illustrates how data are fed to the RNN for batchwise training with a batch 
size of M. Each horizontal bar represents data from a shot, and different 
colours indicate different shots. A colour change in a given row means that 
a new shot starts. At every time step, the leftmost chunk is cut from the 

buffer and supplied to the training algorithm, and all shots are shifted to 
the left. When a shot is finished (as the lighter green bar is about to be), 
a new shot is loaded into the buffer, and the internal state of the RNN at 
that batch index is reset. See the Methods subsection ‘Mini-batching’ for 
details.
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Extended data Table 1 | Signals considered and availability on the machines

Electron-density and electron-temperature profiles (denoted by an asterisk) are available only on the more recent JET campaigns (ILW). Each signal is normalized by its numerical scale before feeding 
to the machine-learning algorithms. The numerical scale is computed as the median of the standard deviations of the signal for all shots (see the Method subsection ‘Normalization’).
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Extended data Table 2 | datasets used here

Shots were obtained from the respective machines. All shots that contain data for all signals were used. No shots were discarded for bad or abnormal data, or for being known testing shots or  
intentional disruptions.
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Extended data Table 3 | hyperparameters to be optimized, explanations and well-performing values

The Adam optimizer is described in ref. 61. The ‘hinge’ target is −1 before Twarning, then +1 for disruptive shots. It requires a hinge loss62. The normalization scheme referenced in the ‘Normalizer’ row 
divides each signal by its global numerical scale across the dataset (see the Methods subsection ‘Normalization’). Although all quoted parameters perform well on both tokamaks, the specific values 
shown here are found by optimizing for validation performance on JET.
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Extended data Table 4 | data from the later JET ILW campaigns

Only nondisruptive shots and unintentional disruptive shots without active mitigation were used. Thus, the shots used contain only a small subset of the total number of disruptive shots (1,952) from 
these campaigns. Of those considered, all shots that contain data for all signals were used. No shots were discarded for bad or abnormal data.
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Extended data Table 5 | Prediction results on the late ILW data

Test set performance of the best models, measured as AUCs at 30 ms before disruption. We compare FRNN with (1D) and without (0D) profile information and the best classical approach. The best 
model for each dataset is shown in bold. As in Table 1, the last column shows results for cross-machine testing with a small amount (‘glimpse’) of data, δ, from the testing machine added to the training 
set (see text for details). A score of 1.0 indicates perfect performance and 0.5 is equivalent to random guessing. Because the relevant diagnostic for 1D profiles was not available on most JET shots from 
the CW dataset, 1D profiles are not included when training on JET CW data.
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