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KINETIC-BALLOONING-MODE THEORY IN GENERAL GEOMETRY

W.M. TANG*, J.W. CONNOR, R J . HASTIE
Culham Laboratory, Abingdon, Oxon,
(Euratom/UKAEA Fusion Association),
United Kingdom

ABSTRACT. A systematic procedure for studying the influence of kinetic effects on the stability of
MHD ballooning modes is presented. The ballooning mode formalism, which is particularly effective for
analysing high-mode-number perturbations of a plasma in toroidal systems, is used to solve the Vlasov-Maxwell
equations for modes with perpendicular wavelengths on the scale of the ion gyroradius. The local stability on
each flux surface is determined by the solution of three coupled integro-differential equations which include
effects due to finite gyroradius, trapped particles, and wave-particle resonances. More tractable forms of these
equations are then obtained in the low- (w < <obi, uti) and intermediate- (cjbi, coti < u < wbe, wte) frequency
regimes with o;bj and co^ being the average bounce and transit frequencies of each species. After further
simplifying approximations, the kinetic results here are shown to be reducible to the MHD-ballooning-mode
equations in the analogous limits, co ^ cos where o>s = cs/Lc, with cs being the acoustic speed and Lc the
connection length.

1. INTRODUCTION

One of the most important practical problems in
the area of magnetic-confinement research has been
to calculate properly the limiting beta (ratio of
plasma to magnetic pressure) for stability in toroidal
systems. These theoretical estimates are generally
obtained from ideal magnetohydrodynamic (MHD)
calculations determining the stability of the plasma
against high-mode-number perturbations called
ballooning modes [1,2]. Extensions of the
MHD analysis to include resistivity have led to
results indicating that these critical beta values could
be lower [3]. On the other hand, recent experimental
results from the ISX-B tokamak have given no
evidence of a beta limit caused by ballooning
instabilities [4]. It is, therefore, of some interest to
examine whether kinetic effects, absent in the
MHD-analysis, could significantly modify the beta
criteria. The starting point of such an investigation
involves obtaining an appropriate set of kinetic
equations governing ballooning modes. In this paper,
the primary aim is to present these equations and to
establish their relationship to the familiar ideal-MHD
ballooning-mode equations [3, 5].

It is now generally agreed that the most effective
method for treating high-mode-number perturbations
in toroidal systems is to adopt the so-called ballooning

* Princeton University, Plasma Physics Laboratory,
Princeton, New Jersey, USA.

representation [3, 5 — 7]. Since these perturbations
are characterized by short wavelengths perpendicular
to the magnetic field and long parallel wavelengths
(on the scale of the equilibrium variations, L), the
eikonal representation is a natural choice. To resolve
the resultant complications associated with the
periodicity constraints for a torus with a sheared
magnetic field, the ballooning transformation maps
the familiar poloidal angle-like variable onto an
infinite domain where periodicity is not required.
This approach has proven to be quite successful in
dealing with the MHD ballooning modes and has also
been found useful in the kinetic treatment of electro-
static drift-type instabilities in toroidal systems when
the characteristic perpendicular wavelengths are
comparable to the ion gyroradius, Pj [8 - 10]. The
extension to a general formulation encompassing both
electrostatic and electromagnetic modes, thus
requiring the solution of the Vlasov-Maxwell equa-
tions, has been described in several earlier papers
[ 1 0 - 1 2 ] . Collisional effects associated, for example,
with trapped-particle scattering, have usually been
estimated by employing Krook-model operators [10].
For the highly collisional regimes where trapping
effects can be ignored, more sophisticated collision
operators have been used in particular cases [7, 12].

To investigate kinetic modifications to the MHD
ballooning modes, attention is focused in the present
paper on the collision-free Vlasov-Maxwell set of
equations which govern both drift and Alfve*n waves.
Although the ideal-MHD ballooning-mode equation is
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derived from an energy principle strictly valid only in
highly collisional regimes, it is well known that the
form of this energy principle is closely related to the
kinetic-energy principle derived for a collisionless
plasma merely modified by trapped-particle effects
[ 1 3 - 1 6 ] . By comparing the kinetic equations
governing the Alfve'n modes with the ideal-MHD
ballooning-mode equation, it should be possible to
assess the importance of additional kinetic effects due
to finite gyroradius and wave-particle resonances.
The kinetic effects noted here can also give rise to a
finite parallel electric field which is absent in the
usual MHD analysis.

The remainder of this paper is organized as
follows. In Section 2, the ballooning representation is
applied to the Vlasov equation governing an arbitrary-
beta plasma in general geometry. The usual small-
gyroradius (pJL < 1), low-frequency (CJ/£2j < 1, with
I2j being the ion gyrofrequency) ordering is adopted,
and solutions are obtained for fully electromagnetic
perturbations (including effects due to field
compression). Using this result, with the quasi-
neutrality condition and two components of Ampere's
law, then generates a system of three coupled one-
dimensional integral equations determining <l> (the
perturbed electrostatic potential), A|| (the perturbed
parallel magnetic vector potential), and 5By (the
perturbed parallel magnetic field).

The MHD equations with which the kinetic
results are compared are presented in Section 3.1.
To facilitate this comparison, it is necessary to reduce
the set of kinetic equations derived in Section 2 to
more tractable forms by considering particular
frequency ranges. Specifically, in Section 3.2, the
mode frequency is taken to fall below the particle
bounce frequency (for both electrons and ions)
along the magnetic field, i.e. co < cobi, with cobi

being the average ion bounce frequency. In this
low-frequency regime, the trapped-particle responses
of both species are taken into account. As expected,
this system of equations is closely related to those
derived in earlier kinetic studies [17]. By taking beta
to be a small expansion parameter (a reasonable
approximation for tokamaks), these reduce to two
equations, and, if further simplifying approximations
are made, it is possible to recover the usual ideal-MHD
ballooning-mode equations [6].

For higher-mode number perturbations it becomes
necessary to consider an intermediate frequency range
where the frequency of the wave lies above the
bounce and transit frequencies of the ions but below
those for the electrons, i.e. cjb i , CJ^KUK cobe, cote.

In this regime, trapping effects are retained only for
the electrons, and the appropriate system of three
coupled equations is presented in Section 3.3. The
reduction to two equations for j3 < 1, and the further
simplification to a single governing equation, obtain-
able from an analogous limit of the ideal-MHD
equations [3], are also demonstrated in this section.

Finally, in Section 4, the main results of this paper
are briefly summarized, and the implications of the
results discussed.

2. GENERAL KINETIC THEORY

In theoretical studies of axisymmetric toroidal
systems, it is often convenient to adopt the i//, x,
f co-ordinate system, where \jj is the poloidal flux
within a magnetic surface and acts as the radial
variable, x is the poloidal angle-like co-ordinate, and
f is the toroidal angle. The spatial gradient operator
and volume element in these co-ordinates are,
respectively,

O — "^ n n ^ —̂  1 3 ~+ 1 O /*} 1 \

and

dT (2.2)

where e^, ex , and ê  are unit vectors, R is the major
radius, By is the poloidal magnetic field, and J is the
Jacobian defined by

J = Vx) (2-3)

In general, the equilibrium magnetic field can be
expressed in the form

(2.4)

with I being a prescribed function. The safety factor
then becomes

2TT
dXu/R2 (2.5)

For tokamak plasmas it is usually appropriate to
consider a local Maxwellian equilibrium distribution,

F(o)CE,i|0 = F.
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with E being the kinetic energy per unit mass, imply-
ing a corresponding isotropic pressure, p. In such
cases the quantity I in Eq.(2.4) becomes a function
of 4/ only, and the explicit form of the Jacobian is
determined by

R2
(2.6)

The superscript in F(°) refers to the fact that this is
the lowest order (in Pj/L) of the equilibrium distri-
bution function. Regarding the basic ordering, e is
taken as the fundamental smallness parameter with

with S being the eikonal accounting for the rapid
cross-field variations and f, $, and A accounting for
the slow variations along the field line. The specific
form for S is determined by the requirement
k||Pj ~ e, which implies

(2.9)

with it = 5/B. Since all perturbations can be
Fourier-decomposed in the ignorable co-ordinate
Eq.(2.9) yields

BJ V3x
(2.10)

k±pj is taken to be O(e°) while k ^ is taken to be
O(e).

To solve the well known problem of satisfying the
periodicity constraint in x when using an eikonal
form for high-mode-number perturbations, the
ballooning representation is introduced for all per-
turbed quantities, i.e.

(2.7)

with a similar form for f, the perturbed particle
distribution function, and for A, the perturbed
magnetic vector potential. Note here that although (j>,
which extends from — °° to °° in x, is not itself a
periodic function, the infinite sum is necessarily
periodic. Also, to ensure convergence of this sum,
0 must vanish sufficiently fast as x •* ± °°. As
emphasized in earlier work [9], the linear operator,
£g acting on the perturbed quantities and determining
the eigenfrequency, co, is periodic in x- This implies
that if £fij>(y) = 0, then i^0(x) = 0 is automatically
satisfied. In short, the problem now reduces to one
of solving for the perturbed quantities over an
infinite range in x with no periodicity constraint.

As noted in Section 1, the perturbations of interest
are characterized by short perpendicular and long
parallel wavelengths, i.e. kxpj ~ 1 and k||Pj ~ e.
Hence, it is appropriate to adopt the eikonal
representation along with the ballooning transforma-
tion of Eq.(2.7), i.e.

with n being the toroidal mode number, so that the
most general form for S/e = nS must be

s <- - I dxf u y R2 J k(#) (2.11)

with k(\p) being a function to be determined by a
higher-order radially non-local analysis [6, 10]. In
terms of S, the perpendicular wavenumber can be
expressed as

kb eb n 7 s (2.12)

with e b = n X e^. Using Eq.(2.11) then gives the
effective radial and binormal components of icx as

and

" n RB

nB / (2.14)

To take into account compressional electromagnetic
effects, it is necessary to consider Ax. Adopting the
Coulomb gauge,

- » •

V " A = 0

then gives

s-- w % (2tl5)

with

exp (is/e) (2.8)

NUCLEAR FUSION, Vol.20, No. 11 (19.80) 1441
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It is convenient here to introduce the perturbed
parallel magnetic field, 8Bn, as the third scalar
dependent variable along with 3> and A,,. Since

x A)6 B M «* n

it follows that

(2.16)

Employing the ballooning-eikonal representation
of Eqs (2.8) and (2.11) for the perturbed quantities
and a local Maxwellian equilibrium distribution of
the usual form,

(2.17)

with T being the temperature, the governing
linearized gyrokinetic equation [10, 11 ] in the
collisionless limit becomes

« g * * ->
— ^ h - ih (M-kx.VD>

The diamagnetic drift frequency co^ is defined by

,) (2.22)ncT d
e dty

a = k v /ft

and

v = v (cos<J> e ^ + s i n <t> e

with 0 being the gyrophase.
The last term in Eq.(2.18) accounts for com-

pressional effects and is obtained from the
appropriate gyrophase average of

Specifically, using Eqs (2.15) and (2.16),

e x p

(2.23)

with

with

+ J,(ct) T—

+ h exp (iL)

v,,2 n".Vn)

(2.18)

(2.19)

(2.20)

where

y =

and equilibrium electric fields are ignored,

(2.21)

j being the Bessel function of the first kind, and

AL E -± ( k sin $ - k.cos<j)\ = - -A-A cos (<J)+Y)

/ (2.24)

where

Y = tan (2.25)

The appropriate boundary conditions for
Eq.(2.18) are that

fi -»• o as |xl -" °°

for circulating particles and that the forward and
backward streams match at the turning points
for the trapped particles. Following the usual
procedure of introducing an integrating factor of
the form

JB/| (2.26)

with

H = d£n T/dJln. n

with

"D = kX> VD

1442 NUCLEAR FUSION, Vol.20, No. 11 (1980)
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and assuming that co has a positive imaginary part
corresponding to a growing eigenmode to ensure
convergence as Ixl -*• °°, the general solution for
circulating particles is

exp

(2.27)

A,, |v,,| X Xr 1 "I / X 2 \

in I . 1 . I j } (sin I ) (2.30)+ iJ sin
o c

The basic set of three coupled one-dimensional
integral equations governing the eigenmodes of the
system can now be written in terms of the general
solutions for the perturbed distribution functions
given by Eqs (2.27),(2.29), and (2.30). These are:

(i) the quasi-neutrality condition,

with ± referring to the sign of v,( for the particles in
question.

In the case of trapped particles, a similar procedure
is followed with the specific boundary conditions at
the turning points being

and h+(x2) - h_(Xz) (2.28)

Here, Xi and X2 refer to the nearest reflection points
surrounding x- After some straightforward algebraic
steps, the results for the trapped-particle perturbed
distribution function yield:

T m{

X' X A|(|V||l X ' X
x cos I cos I + i J o 1 sin I sin I

X2 Xj c X2 X,

d X ' -

l

v 6B,,v x ' X

J cos I cos I
Kj. C / Aj X2

+ i J ,

and

X' X A,,|vn| X' X
x cos I sin I + iJQ s in I sin I

X2 Xj c X2 Xj

cos I
X'

0 - - 2ire [dEdp

(2.31)

with the summation being over particle
species,

(ii) the parallel current equation (component of
Ampere's law along 5),

* S ' ) X I - = JI (2.32}

with kb and k^ given by Eqs (2.12) and
(2.13) and

v-t j (2.33)

(iii) the radial current equation (one component
of Ampere's law perpendicular to 5),

lkb6Bn = T

x(fi++h_) <cos<|>exp(iU>

or

«H - - ^
(2.34)

Instead of constructing j ( | as indicated in Eq.(2.33),
it is often convenient [18] to obtain an equation
governing j ( | by taking the moment

l3v exp(iL)

of the gyrokinetic equation, Eq.(2.18), The result
of this operation is

NUCLEAR FUSION, Vol.20, No. l l (1980) 1443
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7 is the ratio of specific heats, and VS is specified by
Eqs (2.12) to (2.14). Noting that the ratio of the
second to the first term in Eq.(3.2) is of order
(co/a>s)

2 where

/L

(2.35) is the sound transit frequency, with Lc being the
connection length, it is clear that in the limit

This form, which automatically accounts for much
cancellation implicit in Eq.(2.33) ensuing from the
quasi-neutrality condition given by Eq.(2.31), will
be used in Sections 3.B and 3.C.

3.1. MHD ballooning-mode equations

As noted in Section 1, it is necessary to consider
limits where the mode frequency is either large or
small compared to the average transit and bounce
frequencies of the particles in order to reduce
Eqs (2.31), (2.34) and (2.35) to more tractable
forms. Before presenting the results of these low-
and-intermediate-frequency-regime calculations in
the next two sub-sections, it is appropriate to first
recall the ideal-MHD equations with which the
kinetic results will be compared. As shown in
Ref.[3], the ideal-MHD ballooning modes are governed
by two coupled ordinary differential equations. In
terms of the variables used in the present paper these
are

(Wus)

this equation implies that

I 9 r -
J ty (3.4)

Hence, Eq.(3.1) in this low-frequency limit reduces
to the familiar form of the single second-order
differential equation treated in Ref.[6], i.e.

)i> = o
/

(3.5)

It is also of interest to note that in the opposite
limit,

(U)/Ws)
2

Eqs (3.1) and (3.2) again reduce to a single second-
order differential equation. Specifically, for Alfv6n
modes,

(3.1)
and

so that for

(3.2)

where

K = -V (rvVriJxjf.vs (3.3)

$ is the stream function for the cross-field displace-
ment, £ is the displacement along the field line,

In this case, Eq.(3.2) implies that \ = 0. Noting also
that

Eq.(3.1) reduces to

+ 2K X (
w B \

VPXB.VS - AYP(O2$ = 0 (3.6)

1444 NUCLEAR FUSION, Vol.20, No. 11 (1980)
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Equations (3.5) and (3.6) will be compared with the
analogous kinetic equations obtained, respectively,
in the low (co < co^, coti) and intermediate
(co > cobi, cotf) frequency regimes. Since cobi, ^ t i

For trapped particles, the exact form for h given by
Eq.(2.29) reduces in similar fashion to

(.co P- cobi, coti; irequency regimes, amce cobi, coa wi U _ W A ,
are roughly equivalent in magnitude to cos, it is -|(h++h_) = | F

ra f1" ~^J *» + ^ - ^ X , \ V J
expected that the results obtained in Sections 3.2 and
3.3 should correspond closely to Eqs (3.5) and (3.6)
when the kinetic effects (due to finite gyroradius,
trapped particles, etc.) are weak.

3.2. Kinetic analysis in the low-frequency limit

In the low-frequency regime the average transit and
bounce frequencies of ions and electrons are taken
to be much higher than the mode frequencies of
interest. Recall that

<o vT/Lc

with v j being the thermal velocity and Lc being the
connection length, so that, within this approximation,

coLc/vT

can be used as a small expansion parameter. The
low-frequency modes in general are of particular
interest because ideal-MHD theory indicates that
near marginal stability co -*• 0. Earlier studies have
indicated that if finite-gyroradius effects are taken
into account for these modes, a finite oscillation
frequency close to the ion diamagnetic drift
frequency (co ~ co^) will result at marginal stability
[19, 20]. Hence, the requirement that coLc/vT < 1
with co ~ co^ implies that only long-perpendicular-
wavelength modes are of interest here. This
property, together with the assumption that the
ballooning modes are sufficiently localized in the
extended poloidal variable, then allows the use of the
small-argument expansion of the Bessel functions in
the solutions for the perturbed distributions.

Noting that in the low-frequency regime l]> (defined
by Eq.(2.26)) is a first-order quantity (i.e. of order
coLc/vTi), the expression for h governing the circulat-
ing particle responses and given in Eq.(2.27) reduces
in lowest order to

(3.7)

with

(3.8)

(3.9)

where

(3.10)

and the angular brackets represent the trapped-
particle orbit average, e.g.

f"2

dXJB
X. (3.11)

To obtain Eq.(3.9) from Eq.(2.29), the approxima-
tions cos Ij> -+ 1 and sin l£ -• l£ were made, and an
integration by parts was carried out for the term
involving Ay.

Substitution of Eqs (3.7) and (3.9) into the quasi-
neutrality condition given by Eq.(2.31) yields

(l+T)

(3.12)

where the velocity space integration is over trapped
particles only, r = Te/Tj, and the j subscripts denote
particle species. For later comparison with the
ideal-MHD ballooning-mode equations, it will be
of interest to consider the limit in which

Using this as an expansion parameter and neglecting
terms of order

6BB

and

NUCLEAR FUSION, Vol.20, No. 11 (1980) 1445
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then reduces Eq.(3.12) to

[$„-$-!

(3.13)

Eq.(3.13) reduces to the familiar eigenmode equation
governing electrostatic collisionless trapped-particle
instabilities [21].

The appropriate form of the radial current equation
in the low-frequency regime is obtained by using
Eqs (3.7) and (3.9) with Eq.(2.34). This yields

6- fw

with

x = y ne) (3.16)

with

wK = [n x ( n - V n ) k± (T/nfl)i

u>B = (n x VB«k*i)(T/mfiB)i

and

T . 6B(,

°B" ~ M.n. c
i i

In addition, since

n.viN (1/B2)V[(B5

it is useful to note

72) + 4TIVP]

that

(3.14)

(3.15)

Equation (3.13) can lead to two different classes
of eigenmodes. For

the approximate solution is

$ = $„

resulting in a predominantly electromagnetic mode
with a vanishing parallel electric field, fe|| = 0. On the
other hand, if

2 %
.w ~ e co a)

* D

(with eJ/2 being a measure of the fraction of trapped
particles), it is clear that, at sufficiently low beta,

If t j j ) / ^ is again used as a smallness parameter and
terms of order

and

are neglected, then Eq.(3.16) can be expressed as

6~B|, = ^ 1 f dXBXB(l-XB)~l/2

,^ J J. [l- —

- ^ dXBXB(l-XB)
8 X

. t o , .
" di

0)

(3.17)

As noted in Section 2, the parallel-current equation
can be obtained by combining Eqs (2.32) and (2.35).
In the low-frequency, long-wavelength regime of
interest here, Eqs (3.7) and (3.9) are used in Eq.(2.35).
Re-writing Eq.(2.32) in the form

bA, (3.18)

1446 NUCLEAR FUSION, Vol.20, No. 11 (1980)
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with T.

J J

and ignoring terms of order

Caip/^bv^u , b6B|(

and

b ($-$,.)

then leads to the result

L c 2 3 / b 3 j> \
JB2 3X V ~ 3X *'V

(3.19)

where

and use has been made of Eq.(3.8) re-written as

(3.20)

In the limit oorj/w "^ 1, the trapped particle contri-
bution in Eq.(3.19) can be expanded to give

3 (b 3

6 B.

•4
Tr

-V2 /- A UDi
/2 \j»-y 13-

x - ^ dXB(l-XB)
JTr

XB ^ - X

b$[i- (3.21)

Summarizing, in the low-frequency (a> <
long-wavelength (b < 1) regime, the general set of
one-dimensional integro-differential equations govern-
ing ballooning modes is given by Eqs (3.12), (3.16),
and (3.19). If the finite-gyroradius terms (terms
containing b explicity) are ignored and if a change
from the Coulomb gauge used here to the choice,
A,, = 0, is made, then the set of equations derived by
Rosenbluth and Sloan [17] to analyse finite-beta
effects on the coUisionless trapped-particle instability
can be recovered. Specifically, the relationship
between the potentials of Ref.[17] (denoted by
(0, A)R§ with (A|| )R§ = 0) and the corresponding ones
in the present paper where V- Ax = 0 is given by

<j> = WRS - (Ab)R S o /k b c

A,,o (i/JB)(3/3X)[(Ab)RS/kb]

(3.22)

Noting that V X (A±)Rg = 0 emerges as a solubility
condition in the ordering,

and using Eq.(3.21) then transforms the result for
the perturbed distribution function of Rosenbluth
and Sloan (Eq.(19) of Ref.[17]) into Eqs (3.7) and
(3.9) of the present paper.

For the remainder of this section attention will be
focused on Eqs (3.13), (3.17), and (3.21). These are
of course the simpler forms obtained from Eqs (3.12),
(3.16) and (3.19) in the limit | w D /w| < 1. By using
beta as a subsidiary expansion parameter they can be
combined into a single integro-differential equation
which contains kinetic modifications to the
MHD ballooning modes.

NUCLEAR FUSION, Vol.20, No. l l (1980) 1447
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As noted in the discussion following Eq.(3.13), the
approximate solution of interest to the quasi-
neutrality condition when

IS

This result can be used in Eq.(3.17). The right-hand
side of this equation can be further simplified by
noting that SBn term there can be treated by iteration
with j3 as an expansion parameter. The radial current
equation then reduces to

6B.

-±±£ dXBXB(l-XB)" 2

Tr (3.23)

where use has been made of Eq.(3.15). Finally,
substituting these results into the parallel-current
equation, Eq.(3.21), leads to a single integro-
differeritial equation for 0 (or \p^) given by

r T i r w* i is

(3.24)

In the absence of the finite-gyroradius term

and the trapped-particle contributions, Eq.(3.24)
reduces exactly to Eq.(3.5), the MHD-ballooning-
mode equation in the analogous limit,

(to/a) f « 1

Of the two kinetic effects included in Eq.(3.24) the
trapped-particle terms tend to be relatively weak since
they are of order

smaller than the pressure-gradient driving term [22].
In the absence of trapped particles the finite-
gyroradius term is clearly a stabilizing contribution,
and at marginal stability leads to a mode frequency
given by

but when trapped particles are included the finite-
Larmor-radius effect may be de-stabilizing. Since the
condition

| W L c / v T i | « 1

was assumed in arriving at the equations in this
section, the results apply only to perturbations with
sufficiently low toroidal mode numbers, i.e. n <
with ncrjt determined by

Taking Lc ~ Rq and

Ln = (ddnno/dr)~l ~ a

with a being the minor radius of the torus, then
leads to

a1

n . ci r
crit Rp-q (3.25)

For typical tokamak parameters, ncrit falls in the
range 10 to 20. In the next section the intermediate-
frequency regime, where n > nc r i t , will be analysed.

3.3. Kinetic analysis in the intermediate-frequency
limit

Since higher toroidal mode numbers are of interest
in the intermediate-frequency regime

V wti < w < V %

it is appropriate to retain the Bessel functions in their
complete rather than expanded form when dealing
with the ion responses. With

0) > (iL 0)

trapped-ion effects can be neglected, and
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becomes the relevant expansion parameter. In this
limit, the appropriate lowest-order form for the
perturbed ion distribution function is

i(VfiJ..MF r ^

(3.26)

This leads to a perturbed density response of the form

^ o = " ^ 1 [ ( 1 - Q ) $ + Q/ *""] (3.27)

where

(3.28)

and

(3.29)

The finite gyroradius effects due to the electrons
are again taken to be small, and since co < co^g, cote,
the results for the circulating- and trapped-electron
distributions given in Eqs (3.7) and (3.9) can be used
to give a perturbed-electron-density response of the
form

(3.30)

Hence, the quasi-neutrality equation becomes

(3.31)

Using Eqs (3.7), (3.9) and (3.26) in Eqs (2.34) and
(2.35) leads to the radial current equation in the
form,

6B,, =-L|QV

with

= 1 dsv _J: A— î\ J j 2 ( 3 3 3 )

and to the parallel-current equation in the form

V 3 fb 3 A

JB2 3

[ 6B,,

(3.34)

where use has been made of Eqs (3.18) and (3.20).
The last term in Eq.(2.35) is formally of order
(coti/o;)2 and has been neglected here. Equations
(3.32) and (3.34), together with Eq.(3.31), comprise
the general set of coupled one-dimensional integro-
differential equations governing ballooning modes in
the intermediate-frequency regime.

If trapped-particle effects are ignored, the three
kinetic ballooning-mode equations can be readily
combined into a single differential equation as
follows. First note that with this approximation
Eq.(3.32) reduces to

6B, (3.35)

l +
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Combining with Eq.(3.31) then gives

(3.36)

with

r dj.

Hence, 5B,, in terms of $ alone is just

« B r 1
6B|, = <fr-f K e

Q ' + a i e ( 1 + T ~ T Q ) J

(3.37)

Substituting Eqs (3.36) and (3.37) into the parallel-
current equation, Eq.(3.34), with the trapped-
particle contributions suppressed, then gives a single
differential eigenmode equation of the form

— — (— 1 = ^-7 1̂11
2 3v V J 3v / ( I I A "

where

(3.38)

-T( Q'4 Cie>[°0eQ'4 a ie ( 1*T"T Q )]}

x[,
CwK + uiB)

ie to
(3.39)

Note that Eq.(3.38) allows for ion drift resonance
effects which are contained in the terms involving Q,
Q', and R. In addition, neither |3 nor b have been
assumed small in arriving at this result.

The kinetic ballooning-mode equation just derived
for the intermediate-frequency regime can now be
compared with the analogous MHD result given in
Eq.(3.6). First recall that to arrive at Eq.(3.6) it was
assumed that /3 < 1 and (co/cos)

2 > 1. As noted

earlier, the condition on co here corresponds to the
intermediate-frequency regime since cos, co^, and
cotj are all roughly of the same magnitude. In con-
sidering the MHD limit of Eq.(3.38), it is appropriate
to treat b and |COD/CJ| as small parameters. Taking
P < 1, together with these approximations, then
reduces the kinetic equation to

JB2 3X \ J 3X V = " W u • 2
K *p

aie/aoe)

(3.40)

The MHD result given in Eq.(3.6) corresponds
exactly to this form in the limit | co /̂col < 1 if

[»/4) T. + T T . ) (3.41)

with 7 being the ratio of specific heats.
Note that, in the limit CJ > co#, the terms pro-

portional to io2
K provide additional stability compared

with the low-frequency regime. However, if CJ^/CJ

effects are retained this may not be so in general
when OJ at marginal stability must be determined by
solution of Eq.(3.40). Thus, for example, if

the marginal value in the low-frequency regime, the
additional terms may be de-stabilizing!

If the trapped-particle contributions are retained,
it becomes considerably more complicated to obtain
a single eigenmode equation from Eqs (3.31), (3.32),
and (3.34). Nevertheless, by making the same
approximations as those leading to Eq.(3.40), the
resulting kinetic ballooning-mode equation becomes
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I 5 «
Ta2e + 2

Qe

(3.42)

Thus, the last term in Eq.(3.42) introduced by the
trapped-particle effects changes the governing
eigenmode equation into an integro-differential
equation. However, since this term is of order
le1/2 cop/col smaller than the pressure-gradient driving
term the effects here are again relatively weak.

the inclusion of finite-ion-gyroradius effects will lead
to a finite oscillation frequency, co ~ co^, at marginal
stability, so that the relevant regime will depend on
the perpendicular wavenumber. In particular,

i f

and the transition may well occur for quite moderate
values of n. For comparison with these predictions,
the limits

of the ideal-MHD ballooning-mode equations must
be considered since

4. CONCLUSIONS

To investigate the influence of specifically kinetic
effects on the ideal-MHD ballooning modes with high
toroidal mode number n, the Vlasov-Maxwell equa-
tions have been solved by using the familiar gyro-
radius expansion in e = pJL. Since these modes have
the property of long wavelengths parallel to the
magnetic field but short perpendicular wavelengths,
the ordering, n ~ 1/e, is appropriate and suggests an
eikonal representation for the perturbations. The
attendant problems of periodicity in a sheared toroidal
field are solved by employing the ballooning trans-
formation. This procedure reduces the stability
problem, in lowest order in e, to one of solving three
coupled one-dimensional integro-differential equations
on each flux surface. Corrections to these lowest-
order local eigenvalues together with the radial
structure of the eigenmodes can be determined in
next order.

The kinetic ballooning-mode equations can be
considerably simplified in two limits: the low-
frequency regime,

to < to,. , to .

bi ti

and the intermediate-frequency regime,
to, . , to . < to < to.

bi* t i oe t e

In ideal-MHD theory, the fact that one is particularly
interested in marginal stability (co -*• 0) suggests that
a kinetic treatment of the low-frequency regime alone
might be appropriate. It is, however, expected that

to . ~ to
tl S

In the low-frequency regime the three fundamental
equations, Eqs (3.12), (3.16), and (3.19), are naturally
closely related to those derived by Rosenbluth and
Sloan [17] in their study of finite-/3 modifications of
the electrostatic trapped-particle modes. Introducing
an expansion in /3 < 1 and taking | coD/co| < 1 (which
requires a/R < 1 for co ~ o^) reduces the system of
kinetic equations to the single integro-differential
equation given as Eq.(3.24). In the situation a/R < 1,
the integral terms arising from trapped particles are
relatively weak. If these are ignored, then Eq.(3.24)
reduces, in the limit Ico^/col < 1, to the MHD-result,
Eq.(3.5), obtained in the analogous low-frequency
regime, co < cos. When the terms of order co Joi are
retained, the general effect is stabilizing with marginal
stability occurring when co = co j/2. Specifically,

^MHD ~* ^MHD "*" ^iiW^' ^ should also be noted
that the trapped-particle terms, which are stabilizing
when i co /̂col < 1 (as follows from the kinetic energy
principle [11]) become de-stabilizing when
co = to -/2. Finally, it is of interest to point out that
field compression effects associated with 5BM convert
the magnetic drifts entirely into curvature drifts in
Eq.(3.24).

At higher values of n, the appropriate frequency
regime to study is the intermediate range where
stability is governed by the three coupled integro-
differential equations, Eqs (3.31), (3.32), and (3.33).
If the trapped-particle integral terms are ignored, then
this system of equations can be reduced to a single
second-order differential equation, Eq.(3.38), which
accounts for finite-gyroradius and ion-drift-resonance
effects without approximations. In the limit 0 < 1
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and |coD/co| < 1, this simplifies to Eq.(3.40). If
I CJJO)\ < 1, then this equation further reduces to the
MHD-result, Eq.(3.6), obtained in the analogous
frequency regime, co > cos, for an appropriate choice
of the adiabatic index 7. Note that, in this MHD-limit,
the intermediate-frequency-regime equation differs
from the low-frequency result through the addition
of stabilizing terms proportional to co£ . However,
as emphasized in Section 3.3, these terms can change
sign and may become de-stabilizing for co ~ co .
Hence, the specific effect of the co£ terms depends on
the eigenvalue co determined by Eq.(3.40). By
modifying the results of Ref.[17] to the intermediate
regime and making a number of simplifying assump-
tions, Chu et al. [20] have obtained an equation
similar in structure to Eq.(3.40). However, in assessing
the importance of the co£ terms it was assumed that
at marginal stability the eigenvalue is given by
co = co _ 12. This is valid only if the co* terms are

*Pj K

treated as small corrections. If the trapped-
particle correction terms (for a/R < 1) are included,
then Eq.(3.40) is modified to the integro-differential
equation, Eq.(3.42). As a final point it should be
noted that the role of the field compression (5Bn)
effects is again to ensure that only curvature drifts
appear in the kinetic ballooning-mode equation.

Although the relation of the kinetic results based
on the Vlasov-Maxwell equations to the ideal-MHD
results has been stressed in this paper, it is also
important to emphasize that the original sets of
three coupled one-dimensional integro-differential
equations [Eqs (3.12), (3.16), and (3.19) for the low-
and Eqs (3.31), (3.32), and (3.33) for the
intermediate-frequency regimes] fully describe the
effects of finite ion gyroradius, trapped particles, and
ion drift resonances on the MHD ballooning modes.
By taking 0 < 1 as an expansion parameter, the radial-
current equations governing 6Bn can be iterated to
reduce these equations to sets of two coupled
equations. If trapped-particle terms are ignored, then
the results can be further simplified to single second-
order differential equations. For example, Eq.(3.38),
obtained in the intermediate-frequency regime, can
be readily used to assess the influence of finite ion
gyroradius and ion drift resonances. Note that the
result here does not require the gyroradius
parameter b to be small and that the drift resonance
effects are emphasized by the secularities in the radial
wavenumber (Eq. (2.12)).

To summarize, it has been shown in this paper that,
despite the apparently very different physical basis
for their existence, both ideal-MHD and collisionless

kinetic ballooning-mode theories lead to closely
related fluid-like equations. Furthermore, the equa-
tions necessary for a systematic investigation of the
role of specifically kinetic effects, such as finite ion
gyroradius, trapped particles, and ion drift resonances,
have been derived.
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