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Gyrokinetic particle simulation of neoclassical transport ' 
Z. Lin, W. M. Tang, and W. W. Lee 
Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543-0451 

(Received 24 January 1995; accepted 28 April 1995) 

A time varying weighting (of) scheme for gyrokinetic particle simulation is applied to a 
steady-state, multispecies simulation of neoclassical transport. Accurate collision operators 

. conserving momentum and energy are developed and implemented. Simulation results using these 
operators are found to agree very well with neoclassical theory. For example, it is dynamically 
demonstrated that like-particle collisions produce no particle flux and that the neoclassical fluxes are 
ambipolar for an ion-electron plasma. An important physics feature of the present scheme is the 
introduction of toroidal flow to the simulations. Simulation results are in agreement with the existing 
analytical neoclassical theory. The poloidal electric field associated with toroidal mass flow is found 
to enhance density gradient-driven electron particle flux and the bootstrap current while reducing 
temperature gradient-driven flux and current. Finally, neoclassical theory in steep gradient profile 
relevant to the edge regime is examined by taking into account finite banana width effects. In 
general, in the present work a valuable new capability for studying important aspects of neoclassical 
transport inaccessible by conventional analytical calculation processes is demonstrated. © 1995 
American Institute of Physics. 

I. INTRODUCTION 

It is generally acknowledged that neoclassical theory 
provides a useful lower bound for comparing confinement 
properties in magnetically confined plasmas. I Standard neo­
classical theory begins with the assumption of a static mag­
netic field eqUilibrium with no fluctuating fields. Recently, 
several authors2

•
3 have pointed out that external electrostatic 

and magnetic fluctuations can strongly influence neoclassical 
transport. Another issue of current interest is the realistic 
extrapolation of the neoclassical bootstrap current into ad­
vanced tokamak operating regimes and assessing its efficacy 
for driving a steady-state device.4,5 Neoclassical theory is 
also an important area of stellarator research since present­
day experiments find that this type of transport is apparently 
dominant in the long mean-free path regime.6 Analytical neo­
classical theory has its limitation in all of the just noted 
situations due, for example, to complications introduced by 
realistic geometry. It is, therefore, of interest to systemati­
cally analyze this problem using particle simulation tech­
niques. Potentially significant modifications associated with 
finite gyroradius dynamics, energetic particle effects, sheared 
flows, and the influence of fluctuating electric fields can be 
examined with this approach. The scaling of the bootstrap 
current under realistic conditions in a steady-state tokamak 
can also be properly investigated. Finally, the fully three­
dimensional (3-D) nonaxisymmetric nature of stellarator 
configurations can best be addressed by particle simulations. 

The numerical simulation of neoclassical transport based 
on the drift-kinetic formalism was carried out in early works 
by Tsang et al. 7 More recently, Wu and White8 used a Hamil­
tonian guiding center Monte Carlo code to study the boot­
strap current. Ma et al. 9 developed a particle simulation 
scheme using the conventional gyrokinetic algorithm (total 
f) and binary sollisions. Our present work is intended to 
develop a tool that can be used for more comprehensive in­
vestigations. To this end, we have extended the gyrokinetic 

simulation techniques developed by Lee and co-workerslO-
I2 

to a new regime of applicability. Specifically, the new 8f 
scheme is a fully dynamical, self-consistent, and systematic 
approach, which has distinct numerical advantages over con­
ventionalsimulation methods. 

The approach in this paper differs from previous studies 
in a number of significant ways. First, the of scheme is a 
steady-state simulation without profile relaxation effects, 
while a Monte Carlo simulation will cause profile modifica­
tion due to transport. Second, the noise level is greatly re­
duced in the present scheme compared to conventional par­
ticle simulations. Finally, momentum-conserving collision 
operators can be readily implemented using the of scheme. 
The present work is the first steady-state, multispecies simu­
lation with ion dynamics retained and complete collision op­
erators properly implemented. Simultaneously accounting 
for the ion and electron dynamics is very important because 
of the sensitivity of the ion response to effects such as 
sheared flows and finite gyroradius physics. This, -in tum, can 
significantly modifies the electron transport through the col­
lisional coupling and quasineutrality constraint; 

In the usual of scheme for turbulence simulations, the 
distribution function is separated into a "known" or back­
ground fo and a perturbed part 8f. When of«fo, the noise 
level is reduced by a factor of (8f/fo)2 compared to the total 
f scheme.13 In the simulation of microturbulence, f 0 repre­
sents the background equilibrium distribution function and 
of accounts for the perturbation. In neoclassical transport, 
there are no fluctuations. Nevertheless, to facilitate the com­
putations, the distribution function can still be separated into 
a Maxwellianfo plus a perturbed part, 8f, with the perturbed 
part resulting from magnetic drifts and spatial inhomogene­
ity. We can then load a Maxwellian fo and calculate of as a 
time-dependent quantity in the simulation. In this way, we 
can extend the of scheme to steady-state simulation and 
study-state phenomena by the initial value approach. 

In the present paper, we extend the of schemes based on 
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the small gyroradius ordering of drift kinetic equation to 
simulate steady-state physics. The numerical scheme is 
benchmarked by using a simple model collision operator to 
study neoclassical transport. Simulations results of particle 
fluxes, energy fluxes, and bootstrap current are found to 
agree very well with standard neoclassical theory. Based on 
the approach adopted by Xu and Rosenbluthl 4 and later by 
Dimits and Cohen. ls accurate collision operators are devel­
oped and implemented. Specifically, all collisions conserve 
local momentum and energy, and the like-species collision 
operator properly annihilates the linearized shifted Maxwell­
ian distribution. The relevance of momentum and energy 
conservation and the role of like-species collisions in neo­
classical transport is explored in detail. Ion dynamics are 
self-consistently retained for the first time in these multispe­
cies simulations, and it is dynamically demonstrated that (i) 
like-species collisions produce no particle flux; and (ii) neo­
classical fluxes are automatically ambipolar for simple ion­
electron plasma. Pure toroidal flows have also been intro­
duced for the first time into these simulations. The trends 
predicted by the analytic neoclassical theoryl6 of large toroi­
dal mass flow is confirmed. In the banana regime, the neo­
classical enhancement of the viscosity is a Pfirsch-Schliiter 
factor times the classical viscosity, and the enhancement of 
ion heat flux is observed. The direct effect of toroidal flow on 
electron particle transport is negligible when the Mach num­
ber is smaller than unity. Furthermore, the poloidal electric 
field associated with the flow is found to enhance the 
density-gradient-driven electron particle flux and bootstrap 
current, but reduce temperature gradient-driven electron par­
ticle flux and the associated bootstrap current contribution. 
The effect on electron thermal fluxes is largely negligible. 
Finally. the neoclassical theory is reexamined in the steep 
gradient profile regime where the ion poloidal gyroradius is 
comparable to the eqUilibrium profile scale length. This finite 
banana width effect is studied both analytically and numeri­
cally in the banana regime. It is found that both the ion 
thermal flux and the toroidal mass flow are increased by 
factors of order (ppK)2 when the finite banana width effects 
are taken into account, where Pp is the ion poloidal gyrora­
dius and K is the profile gradient. Future work using this new 
simulation technique to study various aspects of neoclassical 
transport will be discussed. 

The rest of the paper is organized as following. In Sec. II 
we present the basic formalism. In Sec. III we show the 
results of benchmarking single species simulations. Accurate 
collision operators are developed in Sec. IV. The relevance of 
conservation properties of the collision operators is demon­
strated in Sec. V. The effects of toroidal flow and the asso­
ciated poloidal electric field are investigated in Sec. VI. Fi­
nally, neoclassical theory for the steep equilibrium gradient 
profile case is examined in Sec. VII with the finite banana 
width effect retained. In Sec. VIII we summarize the main 
findings of the present work and comment on future studies. 

II. 8f SCHEME FOR NEOCLASSICAL TRANSPORT 

A. Basic formalism 

To illustrate the basic principle behind the computational 
approach developed to address the neoclassical transport 
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problem, we begin by considering a simple steady-state 
plasma with static magnetic field Bb and no electric field. 
The usual drift kinetic equation for a guiding center distribu­
tion function I(E, /-t, x), where E is particle kinetic energy, /-t 
is magnetic moment, and x is a guiding center coordinate, 
has the form I 

(1) 

where v d is the guiding center drift velocity and C is the drift 
kinetic collision operator. In the steady state, 

The basic small expansion parameter is 

8= Pp 
Ro' 

where Pp is the ion poloidal gyroradius and Ro is the major 
radius of the torus. 

Since the drift term v d is smaller than than transit term v II 
by a factor of O. a perturbation expansion base on 8 ordering 
is appropriate; i.e., 

The zeroth-order equation then becomes 

" alo 
vllb. --CC/o)=O ax ' 

(2) 

with its solution being a local Maxwellian, 

i" - 3/2 _ 3 ( V 
2 

) Jo=noFm==no7T vth exp - ~ . 

The first-order equation is 

(3) 

Together with the solubility conditions from the second­
order equation, we can solve for II in terms of linear func­
tions of 10' The formal solution is 

(
"a )-1 

II = vllb· ax - C vd·K/O, 

where 

«=[ Kn+ (~-~) KI}e p 

with Kn and Kt representing the inverse of density and tem­
perature scale length, respectively. 

In order to utilize particle simulation techniques to solve 
the first-order equation, Eq. (3), we adopt the following ap­
proach. This equation is solved numerically by following the 
zeroth-order guiding center trajectory in phase space, which 
is defined by the characteristics of zeroth-order equation, Eq. 
(2). To cast the drift kinetic equation in a form suitable for 
particle pushing, we make a transformation to guiding center 
phase space variables (/-t, v II' x), 
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f(E, /1-,x)-t f(vlI(E,/1-,x),/1-,x], 

which leads to 

( af) (a
f

) (a
f

) (avll) 
. ax E,/-L = ax /-L'UI + aV11 /-L.X ax E./-L· 

After defining 

Eqs. (2) and (3) can then be expressed as 

(4) 

With regard t9 the physical interpretation of these equa­
tions, we note that a steaqy-state distribution function close 
to a local Maxwellian has been considered. It can then be 
linearized and sep¥ated into a zeroth-order background 
Maxwellian and a first-order perturbation part. The back­
ground illhomogeneity only comes in through the drift term 
in the steady-state drift kinetic equation. Since this drift term 
is much smaller than the transit term, we can separate it out 
and treat it as a source term in the linearized drift kinetic 
equation. 

Equations (4) illustrate the desired form needed for nu­
merical simulation. It contains all the important neoclassical 
effects, Le., the v d term accounting for magnetic gradient and 
curvature'drifts, and the all term representing the mirror force 
term, which give rise to particle trapping. These equations 
can be readily solved utilizil1g the linearized weighting 
scheme of Dirnits and LeeY In this linearized scheme, par­
ticles are pushed by following the zeroth-order guiding cen­
ter trajectory without the gradient and curvature drifts, which 
are taken into account in the first-order equation. Herefl (or 
8f in"the usual notation of gyrokinetic simulation) is solv~d 
by integration along the particle trajectory. In this way we 
can solve the steady-state problem by initial value methods. 
The steady-state solution of fl is obtained after several char­
acteristic; "time periods governed by the left side of Eq. (4). 
This is the collisional time in the banana regime or the par­
allel diffusion time in the collisional regime. 

Magnetic surface-averaged neoclassical fluxes and diffu­
sion coefficients only depend on local density, temperature, 
and their gradients. Hence, instead of loading a real profile, 
we can load a normalized f 0 that is uniform in space, with 
density and temperature equal to those of the magnetic sur­
face on which we are computing the neoclassical fluxes. 

B. Finite banana width effects 

In order to take into account finite banana width effects 
that usually are not included in the neoclassical theory, we 
need to follow a more exact guiding center motion. Thus, the 
drift term v d must be retained to the leading order in the drift 
kinetic equation, 
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For 

f=fo+ 8f, 

f 0 now satisfies 

a!o ~ afo afo 
-+vllb· -+au--C(fo)=O. 
at ax aVIl 

The governing equation for the perturbation is then 

(5) 

aSf A aSf aSf 
-a +(VUb+Vd)' -a +all-a -C(8f )=Vd'K!O' (6) 

t x VII 

Equation (6) can be efficiently solved using the nonlin­
ear weighting scheme of Parker and Lee. [2 This is accom­
plished by first defining a symbolic operator, 

D a A a a 
-a-+(Vllb+Vd)' -+all--C, 
Dt at ax aV11 

and weight w, 

8f 
waf' 

Then, we have 

Dw fo 
Dt =Vd' K y=(l-w)Vd· K. 

If a Maxwellian distribution is considered, 

f(t=O)= fo=F m' 

for 
N 

f= L 8(Z-Zi), 
;= I 

the solution of 8f is then given by 
N 

8f= L Wi 8(Z-Zi), 
i=l 

where Z represents the five-dimensional phase space vari­
ables (/1-, vu' x). 

When ion-electron collisions are neglected, the solution 
of ion f 0 can be generalized to a shifted Maxwellian 
F SM( v 11- v 110) with mean velocity v 110' The associated equi­
librium gradient scale parameter K is defined'as 

_ (V2 _~) 2(vll-vllo)vllo 
K-Kn+ -::-T 2 K t+ 2 K u , 

v th vth 

where Ku is the inverse of the flow velocity scale length. 

III. BENCHMARKING THE NUMERICAL SCHEME 

To benchmark the numerical scheme, a simulation in to­
roidal geometry is carried out using a model collision opera­
tor. Consider an axisymmetric toroidal geometry with a cir­
cular cross section. The magnetic field can be written as 

B=BT(r)4>+ B per) e, 
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where r, 4>, and e are, respectively, the minor radius, the 
toroidal, and the poloidal angles. Here B r= B 0/ h, 
Bp=Bpo/h, with h defined as 

r 
h=l+ R

o 
cos O=l+ECOS 0, 

and R o is the major radius. Here B o and B po are related by 
the safety factor q. 

rBo 
q=--

RoBpo ' 

For numerical simplicity, we use the familiar Lorentz model 
without velocity dependence, Le., 

" 1 a 2 a 
C= vL= v 2" ag ( 1 - g ) ag' 

where v is the collision frequency, L is the pitch angle scat­
tering operator, and g is the particle pitch with respect to 
magnetic field line, 

A. Analytical neoclassical theory 

In order to provide the benchmarks for the simulation 
results, we analytically calculate the neoclassical fluxes for 
the model collision operators in both collisionless and colli­
sional limits. We begin with the first-order steady-state drift 
kinetic equation, Eq. (3). with the drift velocity 1 and the 
collision operator written as . 

(7) 

and 

a a 
C= v2hg a'A. Ag aA' (8) 

respectively. Here fip=eBpo/mc and 'A.=h(l_g2). 
In the banana ordering, II can be expanded as 

11=/..°)+/11)+ ... , 

where the smallness parameter is 

/..1) v 

/..0)- WI' 

where Wt is the transit frequency. The solution to the zeroth­
order equation, 

where 

all -=0 ae . 

(9) 

Application of the annihilator ~d O/vil to the first-order equa­
tion leads to the following solubility condition: 
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1 dO cc/..O»=0. 
j Vii I 

Thus, we find for 11' 
all 1 
a'A = 2(g> H(hmin-A), 

where H is a step function, and hmin = 1- t: defines the 
boundary between trapped and passing particles. With /..0) 

and the first-order equation for flO specified, we can calcu­
late the corresponding neoclassical fluxes: 

I J 3 ) 3 2 q2 r=\ d V vdr/l ==g/IVP ;rn(Kn+Kr), 

(10) 

jb=IJd3V Vn 11)==lt~ dp =~/3 ~ dp
, 

\ h B pO d r 4 B pO d r 

where < ... ) represents the flux surface averaging, 
fg 7rh d 012'1T. Here, r is the particle flux, Q is the energy flux, 
and j b is the bootstrap current, with P being the thermal 
gyroradius (p=mvthcleBo), It is the fraction of trapped par­
ticles, and to the lowest order in t:, 

II =/3= 1.38fi;. 

For a finite E, as pointed out by Wu and White,S the next­
order correction to the trapped particle fraction can be esti­
mated heuristically by requiring It(t:= 1)= 1. This yields 

It= 1.46JE-0.46e. 

We note that to measure local (not volume-averaged) current 
density, it is essential to calculate (f d3v II vn/h) rather than 
(f d 3v l,vlI)' 

In collisional regime, II can be expanded as 

I,=fl- I )+/..O)+/..I)+ ... , 

where the smallness parameter is 

/,0) WI 

/..-1)--;-

The solution to the lowest-order equation is 

/1- 1)= /..-I)(E,r, (J). 

The zeroth-order equation yields 

/..0)= _ vg b.V/"-l). 
v 

For the first-order equation, 

~l) A ~O) VK " 
C(ll )=Vllb,Vl I - n FmVllb.V(hg). 

p 

flO) can then be substituted, and the annihilator f3 dA can be 
applied, together with fg7r d 0/ h to give 
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r 

'\)* 

FIG. 1. Particle flux r vs v*, computed using the simplified Lorentz colli­
sion model. The solid line is the analytical neoclassical result. 

(
h-2)-1 ) 

b.V/- 1)=;: Fm h h . 

The corresponding neoclassical fluxes are 

r = vq2p2n(Kn + KT), 

B. Simulation results 

(11) 

(12) 

A uniform Maxwellian of electrons is loaded over an 
annulus section of torus. We follow the electron guiding cen­
ter trajectories and treat the ions as a cold Maxwellian back­
ground. The simplified Lorentz collision operator is imple­
mented by the utilizing the Monte Carlo pitch angle 
scattering model, 

e=go(l ~ v At)+(R-O.5)[12(1-g~)v At)] 112, 

where e and go are pitch angles and before collisions, respec­
tively, At is the time step, and R is a uniform random num­
ber between 0 and l. 

The neoclassical fluxes are measured within an annulus 
centered by a magnetic surface. Results from the 3-D toroi­
dal code are shown in Figs. 1, 2, and 3, where we show the 
collision frequency dependence of, respectively, particle flux 
r, energytIux Q, and bootstrap currentj/; Ub is normalized 
by the collisibnless limit value jo). Results from the analyti­
cal neoclassical calculations using the same model collision 
operator are also plotted in these figures for comparison pur­
poses. The effective collision frequency is defined by 
v*=€-3/2ir(2qRo!vth. Throughout this paper, we use the gy­
rokinetic 'normalization of B 0 = T~ = m I = 1. Key parameters 
in the simulations are Ro=512, €=O.213, q=2.5, K n =O.02, 
and Kt=O.· 

The simulation results agree very well with analytic 
theory in both the collisional and the collisionless limits, 
where analytic~ results are valid. This numerical scheme is 
sufficiently accurate to actually measure 8f. To demonstrate 
that the present computational scheme correctly represents 
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Q 

1 x1 0.7 
....-................ "--............... "--................ "--""-'-........... 

0.01 0.1 10 100 

FIG. 2. Energy flux Q vs v* computed using the simplified Lorentz collision 
model. The solid line is the analytical neoclassical result. 

the physics, we now examine the neoclassical transport in 
some details in these two limits of collisionality. 

In the collisional regime, f 1 can be written as 

2u(r,8)vll 
fl = 8n(r, {})Fm+ 2 Fm, 

vth 

where 8n is local density perturbation and u is the parallel 
flow velocity. By expanding 8n and u in poloidal harmonics, 

00 

8n= ~ 8nm(r)e im
(J, 

m=O 

00 

and accurate to the lowest order in E for Eq. (11), the solu­
tions are 

.c<-I)_ 2q2R
oVK 

Ji -cos 8 n F m , 

+ + 
...... + 

" + 
0.75 

, 
'\+ 

.~ 
'\ 

.~ 
0.5 '{' 

\ 
\ 

0.25 ~ , 
+' 

" 
0 + :::-:"t>. 

0.01 0.1 10 100 

* 1) 

FIG. 3. Bootstrap current h (normalized by jo) vs v* computed using the 
simplified Lorentz collision model. 
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o 

-4.35x10-3 

·8.70x10-3 '-'--'-' .................. -'-'-'-....................................... .r.....I-I 
o 

FIG. 4. Poloidal variations of 8n( OJ/no and U I U})/VIh in the collisional 
regime. 

where O=eBolmc. Thus, 

2q2RollK 
onl:=: 0 

and 

qK 
UI=O' 

Good agreement is obtained for the amplitudes of on I 
and U I between analytic theory and simulation results, as 
depicted in Fig. 4. 

In collisional regime, diamagnetic current driven by 
background pressure gradient produces a parallel flow 
(Pfirsch-Schliiter current or return current) in the collisional 
limit, as required by the quuasineutrality condition. Due to 
the short mean-free path of the particles, this return current 
produces a first-order pressure variation within the magnetic 
surface. The resulting diamagnetic-type drift gives rise to a 
neoclassical fluxes. Here the local Maxwellian It-I) repre­
sents the pressure variation, and the shifted Maxwellian ItO) 
account for the parallel return current. In the simulation, I I 

reaches a steady-state solution when the friction force on the 
return current due to collisions is balanced by the driving 
force from the gradient of the pressure perturbation. A plot of 
time history of the particle flux is shown in Fig. 5. It is found 
that the particles reach steady state in a few parallel diffusion 
times. 

In the collisionless (banana) regime, the pitch angle scat­
tering pumps trapped particles into the untrapped population. 
At a giving magnetic surface, trapped particles with opposite 
parallel velocities comes from opposite sides of the surface, 
respectively, and hence carry different parallel momentum 
due to the density gradient. The circulating particles gain this 
momentum due to the detrapping process, and the resulting 
parallel flow gives rise to a bootstrap current. On the other 
hand, the circulating particles lose momentum due to ion­
electron collisions. When the friction force of the collisions 
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° 200 400 600 800 1000 

FIG. 5. Tune history of particle flux in the collisional regime. 

balances the driving force of the density gradient,ll reaches 
a steady-state solution. In this collisionless limit particles 
move freely along the magnetic field line to maintain uni­
form pressure, but the drift motions perturb free particle mo­
tion and give rise to stress anisotropy. The neoclassical fluxes 
again result from the diamagnetic outward drift due to this 
stress anisotropy. A example of the time history of the boot­
strap current is shown in Fig. 6, where it is illustrated that 
this current reaches steady state in a few collision times. 

Since the Lorentz model is extensively used in neoclas­
sical theory, it is interesting to assess its accuracy for com­
puting the actual transport. In Fig. 7 the particle flux (repre­
sented by X) obtained by using the Lorentz model is 
compared to theoretical fluxes calculated with the full 
Fokker-Planck operator. We note that in the collisional limit, 
the Lorentz model is quite adequate to produce the neoclas­
sical fluxes. However, it generally gives smaller fluxes in the 
banana regime where electron-electron collisions cannot be 
ignored. 

To include electron-electron collisions in the banana re­
gime, note that only the pitch angle scattering part is impor­
tant. It is convenient to adopt the model pitch angle scatter­
ing operator from the review paper of Hinton and Hazeltine; 

0.135 

0.108 

0.081 

ib 
0.054 

0.027 

° ° 
FIG. 6. Time history of the bootstrap current in the banana regime. 
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0.005 0.05 0.5 5 50 SOD 
u* 

FIG. 7. Particle fluxes r vs v* for the Lorentz model (x) and pitch angle 
scattering model of Hinton and Hazeltine (+). The solid line is the analyti-
cal result 'of Hinton and Hazeltine. l . , 

c= (Vee + vei)i, 

where 

( 1) -x
2 

¢(x) = 1- 2x2 erf(x) + ;!72x ' 

and erf(x) is the error function. The results of particle flux 
are also shown in Fig. 7 (represented by'+). This form is 
accurate in the small collision frequency . limit butoveresti­
mates the fluxes in the more collisional regimes. 

IV. FOKKER-PLANCK COLLISION OPERATION 

Realistic gyrokinetic particle simulation requires the 
implementation of accurate collision operators, with all con­
servation properties retained. As shown by analytical theory, 
momentum conservation can play an important tole' in neo~ 
classical transport. Therefore, this problem provides a rela­
tively simple yet direct physical test for collision operators 
conserving momentum and energy. Appropriate accurate col­
lisions operators conserving momentum and energy for a 
simple (electron-ion plasma) plasma are developed in this 
section. 

A. Like-species collision operators 

Following the approach introduced by Xu and 
Rosenbluth14 and then modified by Dirnits and Cohen,15 we 
have developed a like-species particle collision operator that 
can (i) conserve all the collisional invariants (particle num­
ber, momentum, and energy); and (ii) annihilate a shifted 
Maxwellian eqUilibrium distribution with a small mean ve~ 
locity. In dealing with collisions of test particles (a) with 
background particles ({3), we begin with the' Rosenbluth po­
tential, assume both distribution functions fa and ff3 to be 
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close to Maxwellian, linearize, and keep terms responsible 
for momentum and energy conservation. The linearized op-
erator is 17 '-, 

I a2 

+ 2' av av:[G(Iv 2 -vv) + Hvv] or, (13) 

where the first term P accounts for the momentum and en­
ergy conservation, and the other two terms are the test­
particle drag and diffusion parts. Functions F, G, and H are 
defined by 

F=(l+ ma)¢(X)Vo, 
mf3 . 

G= [( 1- L) ¢(x)+ d~~X)] va, 

,1 " 
H= - ¢(x)vo, 

x 

respectively. Berex=v2/v~J3 and ¢(x) ,is, the Maxwellian 
integral defined by 

¢(x)= 1; De-t.Jt.~t. 
The basic collision frequency here is defined by 

47rnf3q!q~ In Aaf3 
vo= 2 3 

maV 

The diffusion' tensor can b~' diagonalized by trarisformingto 
the coordinate system w in which the zaxis is 'the direction 
of the test particle velocity, wn=wz=v. This leads to 

a I a2 

C(or)=p(Fm ,off3)+ -a (vF or) + -2 --:-z (v 2H or) 
wil aW11 

+-21 ('aa
2

2 +-t-z)(V 2G or), 
Wx awy 

(14) 

where w x and w y are orthogonal to wll and to each other. The 
test-particle part can be readily implemented in this diago­
nalized form. 18 

In the drift kinetic, limit, we can transform the velocity 
space coordinate to cylindrical coordinate (v II ,v 1. ,¢), with 
¢ representing thegyroangle. After averaging over gy­
rophase ¢. we have (now of is guiding center distribution 
function), 

(7 d 
. C(of)=-a (Vsll of)+-':"-r(vs1. of)'" 

. VII' dV1. 

a2 1 a2 

.+ a' a 2 (vlI1. of) + 2' -.;;-r (vII of ) 
VII v 1. "VII . . 

1 a2"'" 

+ 2' (avD2 (V1. of) + P, (15) 

where the collision coefficients 'are 
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"sll=VIIF, 

"sl. =2vIF-vIH - (2v ff+ vi)G, 

VII=V[H+vi G, 

"1. =4vi(viH+v[G), 

"Ill. =2vivlI(H-G). 

The test-particle drag and diffusion terms can be imple­
mented by utilizing the following Monte Carlo 
method: 18.14.15 

vlI=Vllo- "sit At+ {li(R 1-O.5)VVIl At, 

vi = vlo- "sl. At+ fi2(R 2 -0.5) ~( Vl. - v~~ ) At 

+ fli(R 1-0.5) vill. V"II At, 
vII 

(16) 

where R 1 ' R 2 are two independent uniform random numbers. 
In particle simulations using the 8f scheme, the momen­

tum and energy conservation term P can be readily imple­
mented. This term has been calculated analytically by Xu 
and Rosenbluth.14 Since it appears as a source term in the 
linearized gyrokinetic equation, Dirnits and Cohen l5 imple­
ment this term by changing particle weights to ensure the 
conservation of first-order momentum and energy, 

Aw= -v·8IL (~-~) 8E, 
vtha 2 

(17) 

where 8P and 8E are weighted changes of the momentum 
(AVi) and energy (Av~), respectively, of test particles due to 
test-particle collisions; i.e., 

(18) 

and 

(19) 

For like-species collisions, the collisional steady-state 
solution is a shifted Maxwellian FsM = F m(v - vllo), and 
the collision operators should accordingly annihilate this 
function. However, the implementation of Eq. (17) fails to 
maintain a shifted Maxwellian. This method compensates the 
test-particle momentum and energy loss due to test-particle 
collisions by putting them back into particie weights. How­
ever, this approach does not take into account the velocity 
dependence of the momentum and energy loss rates gener­
ated by collisions. As a result, the shifted Maxwellian is 
distorted in velocity space, and only three velocity moments 
«uo),(v),(v 2» are conserved. As demonstrated in the next 
section, application of this procedure to the neoclassical 
transport problem will give incorrect energy flux, which is a 
quantity associated with third- and higher-order velocity mo­
ments. 

Note that for small mean velocity (vIIO~Vth)' a linearized 
shifted Maxwellian is linear both in v and v 2 to second order 
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FIG. 8. Comparison of collision operators. The dotted line represents a 
linearized shifted Maxwellian, the solid line represents results using im­
proved operator, and the dashed line represents results using the Dimits­
Cohen operator. 

in Vllo/Vth. We can therefore maintain a linearized shifted 
Maxwellian by restoring the momentum and energy accord­
ing to their loss rates. The loss rates of momentum and en­
ergy can be readily calculated from Eq. (14): 

dv 
-=-Fv 
dt ' 

du 2 

dt =-(2F-2G-H)v2
• 

Substituting the functions F, H, and G defined in Eq. (13), 
we now can implement conservation properties with the cor­
rect velocity dependence, 

Aw=-3 -J#: 4>(X)(v~arV.8P-3-J#: 

X(4)(X)- d4>(X») Vtha 8E, (20) 
dx v 

with bP and 8E determined by Eqs. (18) and (19). 
Equations (15) and (20) represent an appropriate set of 

Fokker-Planck collision operators. It is obvious that these 
operators conserve the collisional invariants and properly an­
nihilate a Maxwellian. To test the second property, a shifted 
Maxwellian 8r=2vllvolu~a is loaded and subjected to the 
test-particles drag and diffusion processes [Eq. (IS)]. We 
then compare the results obtained from applying Eqs. (17) 
and (20), respectively. The shifted Maxwellian 8r after four 
collisional times is shown in Fig. 8. It is clearly evident here 
that results using our new formulation, i.e., Eq. (20), (repre­
sented by solid line) maintains the form of the shifted Max­
wellian 8r (represented by a dotted line), while results from 
the application of Eq. (17) (represented by dashed line) fail 
to do so. The older model pumps the momentum from low­
velocity particles to high-velocity particles and generates an 
increase in the higher-velocity moments associated with the 
momentum accumulation of these high-velocity par-
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FIG. 9. Time (in the unit of collision time) history of the third velocity 
moment. The solid line represents results using the improved operator. and 
the dotted line represents results using the Dimits-Cohen operator. 

ticles. Figure 9 compares the third-velocity moment history 
of the same shifted Maxwellian under these two schemes. 

B. Interspecies collision operators 

Collisions between ions and electrons can be simplified 
by neglecting the mass of the electron. In the ion frame, the 
electron-ion collision operator, accurate to first order in (11 
x) and including pitch angle scattering and energy diffusion, 
can be expressed as 

C .( 8+'!) = Vo ~ ~ (1 - /:.2) ~ + voU ~ 
el 'J 2 a~· ~ ag au 

( 
2 ) m Uth· a x _e 8fe+-' - 8r . 

mi 2u au 
(21) 

For the present analysis, only the pitch angle scattering needs 
to be retained. 

Ion-electron collisions can be simply modeled as ion 
Brownian motion in an electron fluid. Only the friction force 
by the electrons must be retained, since the ion-ion colli­
sions provide the ion-velocity-space diffusion on a time 
scale much faster than that of the ion-electron collisions. 
The local momentum loss of the electrons due to electron­
ion collision is properly taken into account, and the first­
order ion momentum is then modified to ensure that the local 
momentum conservation between ions and electrons is main­
tained. 

v. TWO-SPECIES SIMULATIONS 

A. Role of like-species collisions 

To the lowest order in the mass ratio expansion, the ion 
collision operator only includes ion-ion collisions. It is well 
known that due to the momentum conservation like-species 
collisions alone should produce no neoclassical particle 
transport. It is demonstrated in Fig. 10 that ion particle fluxes 
resulting from like-species collisions will indeed drop to zero 
when appropriate conservation properties are retained in the 
simulations. In the case of no temperature gradient, Kt=O, 
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FIG. 10. Ion particle flux time history (time averaging) resulting only from 
ion-ion collisions. r 0 represents particle flux due to the same operator with­
out momentum conservation. 

the energy flux is also expected to vanish.! In Fig. 11, the 
new collision operator developed in Sec. IV gives the correct 
zero energy flux, while the Dimits and Cohen model pro­
duces an unphysical inward energy flux. We note that this is 
the first dynamic simulation that clearly verifies the zero flux 
result for like-species collisions. The total f scheme has con­
siderable difficulty in implementing kinetic collision opera­
tors with all conservation properties retained. Although at­
tempts have been made to implement binary collisions 
including all conservation properties for total f schemes,9 
definitive results of the type reported here have not been 
published. Ion-ion collisions are known to produce a toroic 
dal neoclassical rotation through the decay of poloidal rota­
tion due to magnetic pumping. 19 Although this parallel flow 
is present, momentum conservation prevents collisions from 
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FIG. 11. Ion energy flux time history (time averaging) due only to ion-ion 
collisions (K,=O). Here Qo represents energy flux due to the same operator 
without momentum conservation. The solid line represents results using the 
improved operator, and the dotted line represents results using the Dimits­
Cohen operator. 
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FIG. 12. Ion energy fluxes Q vs v* (K,,pO). The dashed line is the analytical 
neoclassical result. 

generating frictional forces. As a result, since pressure varia­
tions or stress anisotropy cannot be set up, no flux is induced 
because of the absence of outward diamagnetic-type drifts. A 
more important consequence of ion-ion collisions is the en­
hanced ion energy flux in the presence of a temperature gra­
dient. Since this flux is a square root of the mass ratio larger 
than that of the electron, they can dominate ion thermal 
transport under certain circumstances. In Fig. 12 the depen­
dence of ion energy fluxes on the effective collision fre­
quency is plotted, and a comparison of the simulations re­
sults to the theoretical results of Hinton and Hazeltine l is 
illustrated. 

Complete electron dynamics requires including 
electron-electron collisions as well as electron-ion colli­
sions, since they are on the same time scale. To show the 
importance of conservation properties, we compare results 
from an electron-electron collision model conserving mo­
mentum and energy with a nonconserving modeL In Figs. 13 

5x10-6 

5x10-ll Ll. ........ u.u."'-""-"-'-'-"WI-.......................... -'-......... .wJ 

0.01 0.1 10 100 

FIG. 13. Particle fluxes r vs v* for ion-electron and electron-electron 
collisions with momentum conservation (x) and without momentum con­
servation (+). The solid line represents the analytical result of Hinton and 
Hazeltine' for Zeff"" I. 
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FIG. 14. Bootstrap curtent ib (normalized by iol vs v* with ion-electron 
and electron-electron collisions with momentum conservation (x) and 
without momentum conservation (+). The solid line represents the analyti­
cal result for Zeff""'oo. The dashed line cortes ponds to Ze(f= I. 

and 14, the results of particle flux and bootstrap current are 
compared with theoretical predictions from Hinton and Ha­
zeltine's review paper (with T; =0). 1 Here it is seen that the 
momentum-conserving collision operators give a much bet­
ter fit to the theoretical calculation results in the entire range 
of coUisionality. Furthermore, as predicted, the electron­
electron collisional contribution to neoclassical particle 
transport only occurs in the presence of electron-ion colli­
sions. Estimates for the particle flux from the nonconserving 
collision model overestimates the neoclassical flux in the 
collisional regime. The reason is that the flux here is caused 
by parallel frictional forces due to first-order parallel flows. 
Since the electron-electron collisions do not contribute to 
this frictional force in lowest order because of momentum 
conservation, the associated flux is negligible. On the other 
hand, the test-particle drag and diffusion operators without 
momentum conservation tend to drive the distribution func­
tion to a Maxwellian, and thus artificially create frictional 
forces. In the banana regime, the particle fluxes are domi­
nated by trapping and detrapping processes. Thus, only the 
test-particle drag and diffusion terms are important. For the 
bootstrap current, the operators without momentum conser­
vation underestimate the current. This is because the boot­
strap current is governed by the momentum balance of cir­
culating electrons. The electron-electron collisions should 
contribute to the rate of momentum transfer from trapped 
particles to circulating particles, but not to that from elec­
trons to ions. Again, the operators without momentum con­
servation create an artificial frictional force and therefore 
cause additional unrealistic momentum loss of circulating 
electrons to ions. Consequently, the results from such colli­
sion operators fit quite well only with the theoretical results 
of Zeff==oo, where electron-electron collision can be ne­
glected. 

B. Ambipolarity 

Ion dynamics affects electron transport through the col­
lisional coupling and quasineutrality constraint. When ion 
dynamics is retained in two-species simulations with T;= Te 
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FIG. 15. Time history of ambipolar particle fluxes (time averaged). The 
solid line is for the ion, and the dashed line is for the electron. 

and Kt=O, the bootstrap current, as well as electron particle 
and energy fluxes, are doubled with respect to the single­
species simulation results (corresponding to Ti=O) (as ex­
pected from neoclassical theory). 

For a simple plasma, ion and electron particle fluxes are 
automatically ambipolar because of the momentum conser­
vation between ions and electrons. This key ambipolar fea­
ture is demonstrated for the first time in the present dynami­
cal simulations. Representative results are displayed in Fig. 
15. 

VI. TOROIDAL FLOWS 

A. Basic formalism 

In steady state, toroidal flow is a function of the mag­
netic surface only; i.e., uo=u(r)et=w(r)Roet . Following the 
approach of Hinton and Wong,16 we transform to a rotating 
frame, v-uo-tv, linearize, and then gyroaverage the 
Fokker-Planck equation for the ion distribution function. 
The inertial forces, and thus the guiding center drifts associ­
ated with these forces, are retained in this rotating frame. The 
governing linearized drift kinetic equation becomes 

A [ (me 3) vllb.V 8f-C(8f )=Vdr Kn+ T- 2. Kt e 

+ ; WR(VII+WR)Kwko, (22) 

where Kw is the inverse of the angular velocity scale length. 
Here the zeroth-order distribution function is 

Fo=no(r)Fm =no(r)1T- 312
vU;3 exp( - T;r») , 

where the invariants of motion are defined in the rotating 
frame, 

and 

2 
V.L 

p,=-
2B 
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The guiding center drift velocity includes the usual VB, 
VxB and V<pxB drift terms, together with new drift terms 
produced by the centrifugal force, mw2R, and the Coriolis 
force, 2mvllbxwe, in the rotating frame. This has the form 

b (vi VB 2A A e 2 
Vd= n X 2 B+ullb.Vb+ m V<P-w R 

+ 2wezxbull)' 

The electrostatic potential is defined solely by charge 
neutrality, and can be represented as 

T m o w2 

e<P= T :To T (R 2 -(R2». (23) 
e , 

B. Simulation results 

To separate the effects of the poloidal electrostatic field 
and rotation, one approach is to set this potential to be zero 
and assume charge neutrality is achieved by other mecha­
nisms. The solution of Eq. (22) gives rise to neoclassical 
viscosity (JLi) and ion thermal conductivity (xJ In the large 
aspect ratio limit of the banana regime, the results obtained 
by Hinton and Wong16 are 

and 

q2p~ 
,ui=O.l -­

'Ti 

~ 2 
O.66q~ Pi 2 3 

Xi= €1.5 -;; (I +2.24~-3.62l" +2.32l" ), 
I 

where l" is defined by l"=miw2R2/2(Ti+ Te). 

(24) 

(25) 

The radial derivative of the angular velocity appears in 
the linearized drift kinetic equation as a driving term. There­
fore, Eq. (22) is a generalization of the usual linearized drift 
kinetic equation, Eq. (3), and can be readily solved by the 
numerical scheme developed in Sec. II. 

Simulation results including toroidal viscosity are shown 
in Fig. 16. They agree quite well with the theoretical results. 
Specifically, it is confirmed that the neoclassical enhance­
ment of the viscosity is a Ptirsch-Schluter factor times the 
classical viscosity in banana regime, and that there is no 
enhancement in the collisional regime. No anomalous vis­
cosity is observed. It is noted that if the energy conservation 
property of the collision operator is not incorporated, results 
indicate a much higher viscosity. 

Figure 17 shows the toroidal mass flow enhancement of 
ion energy fluxes in the banana regime, in agreement with 
Eq. (25). This enhancement comes from the additional guid­
ing center drift associated with the centrifugal force. It is 
observed in these two-species simulations that when the 
Mach number is much smaller than unity, the influence of 
toroidal flow on electron transport and the bootstrap current 
is negligible. 

The effects of the electrostatic field associated with the 
toroidal flows can be included by adding the equilibrium 
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FIG. 16. Ion momentum flux versus v* normalized by analytical result in 
the collisionless limit. 

potential defined in Eq. (23). It is found that this electric field 
can enhance both the density gradient-driven electron par­
ticle flux and the bootstrap current, but tend to reduce tem­
perature gradient-driven electron particle flux and the asso­
ciated bootstrap current. The effect on electron thermal 
fluxes again tends to be negligibly small for a small Mach 
number. This behavior is likely associated with the fact that 
the poloidal electric field has a stronger influence (trapping 
and detrapping) on low-energy particles than on those at high 
energies. 
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FIG. 17. Ion energy fluxes Q versus rotation parameter ~. Here Q is nor­
malized with the corresponding value in the zero rotation limit Qo. The 
solid line represents the analytical results. 
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VII. STEEP GRADIENT PROFILE 

The standard neoclassical theory assumes that the ion 
poloidal gyroradius is much smaller than the equilibrium 
profile scale length (pp~Lp). However, this assumption 
breaks down both in the tokamak edge regime, where steep 
gradient profiles have been observed in the H mode plasmas, 
and in the region close to the separatrix of diverted toka­
maks. This motivates the analysis of possible new physics 
effects when the usual small gyroradius ordering is not in­
voked. Using the formalism developed in Sec. II, both nu­
merical and analytical studies have been carried out to inves­
tigate the finite banana width corrections to standard 
neoclassical theory in the banana regime. Simulation results 
indicate that the ion thermal flux and toroidal mass flow 
increase due to the finite banana orbit size. As shown in Fig. 
18, simulation results show that the ion thermal flux in­
creases linearly with (ppKf Even modest gradient (pK==O.l) 
leads to significant enhancement of the ion energy flux 
(50%). In order to analytically estimate the finite orbit size 
correction. we adopt the smallness ordering (pp <Lp). The 
drift kinetic equation. based on this small parameter is then 
expanded with the lowest-order correction. retained. The fol­
lowing analysis is rather simple and heuristic, and aims to 
provide the understanding of the simulation results. 

We consider the following steady-state drift kinetic 
equation with an axisymmetric circular cross section toroidal 
geometry. 

Dllb,V!1 +Vd,V!l-C(fI)= -Vd'V Fm. (26) 

The drift velocity Vd is defined in Eq. (7), and the simplified 
Lorentz model defined in Eq. (8) is considered. Expanding!l 
using banana ordering, the zeroth-order equation becomes 

vnb.Vft°)+Vd·Vft°}=-Vd·VFm' (27) 

The second term (drift term) on the left-hand side introduces 
finite banana-size dynamics. Only the radial drift velocity 
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needs to be retained here since the poloidal component 
makes a negligible contribution to the banana size. Hence, 

~ (AD) ~K ) VII A ati°) 
vl/b.V n --hgFm =--. b.V(hvjj)-. 

Up Up ar 
(28) 

This equation can be solved iteratively by treating the term 
on the right side as a smail perturbation. Keep the lowest­
order correction, 

tiD) = ( 1 + ~: h g) ~: F m(hg+ 11), 

where we assume that II is independent on r and 

all 
afi=O. 

We then apply the annihilator, 

J de 
j VII' 

to the first-order equation, 

1,c(1) 
A .,,(1) Vjl A aJ I (0) 

vllb'VJi +-b·V(hvjj) --C(fl )=0. 
Up ar 

(29) 

(30) 

To lowest order, we use zero-size orbit to simplify the orbit­
averaged collision operator, 

all VK (hg) 1 
a'A = Up (g) + 2(g) H(hmin-'A), 

where H is a simple model step function. Note that the first­
order correction is odd in g and does not contribute to the ion 
thermal flux, while the second-order correction makes a posi­
tive contribution. Specifically, 

Q-Qo=(f d3v ~mv2Vdr(~:rFM[h2e+G('A)]) 
=a(ppK)2. (31) 

Here Qo is the usual neoclassical thermal flux with zero orbit 
size, G('A) is a positive function of 'A, and a is a positive 
number. This simple estimate confirms the same trend as that 
observed in the simulation; i.e., ion thermal flow is increased 
by a factor of order (pp K)2. 

Using the fact that the ion-ion collision operator anni­
hilates a shifted Maxwellian, we can solve Eq. (3) when 
temperature is uniform (Kt=O), 

.dO)_ VK 
Ji -0: Fmhg. 

p 

The finite orbit-size correction in the banana limit is 

(32) 

(33) 

It then follows that the associated parallel mass flow is in­
creased from the usual neoclassical toroidal flow by a factor 
of order (pp K)2. As a consequence, the poloidal component of 
the parallel flow no longer balances the ion diamagnetic flow. 
A net poloidal rotation is thereby generated by the density 
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gradient. If the impurity dehsity gradient is the same as that 
of the main ion component, this effect should be stronger 
because of the larger gyroradius. 

VIII. CONCLUSIONS 

A gyro kinetic simulation of steady-state, multispecies 
neoclassical transport has been successfully carried out for 
the first time. Simulation results using appropriate model col­
lision operators are found to agree very well with standard 
neoclassical theory. 

A new 81 scheme to deal with this class of problem has 
been developed and implemented including appropriate col­
lision operators conserving momentum and energy. The im­
portance of momentum and energy conservation is demon­
strated; i.e., it is shown that significant qualitative errors are 
introduced if the conservation properties are violated. 

Ion dynamics are self-consistently retained in a multi­
species simulation, and it is dynamically demonstrated that 
(i) like-species collisions produces no particle flux, and (ii) 
neoclassical fluxes are automatically ambipolar for a simple 
ion-electron plasma. 

Toroidal flow has~lso been introduced into these simu­
lations. Trends from the neoclassical, viscosity theory of Hin­
ton and Wong are cOh.firmed. The poloidal electric field as­
sociated with this flow is found to enhance the density 
gradient-driven electron particle flux and the bootstrap cur­
rent. 

Neoclassical theory in the banana regime appropriate for 
steep equilibrium gradient profiles is examined boili,. analyti­
cally and numerically. It is shown that both the ion thermal 
flux and the toroidal mass flow increase by factors of order 
(pp K)2 when the finite banana width effects are taken into 
account. 

Building on the advantages of the present approach, 
(e.g., multispecies capability, steady-state, fully dynamical 
approach, low noise), we will explore in future studies po­
tential significant modifications of neoclassical transport that 
are usually inaccessible by conventional calculation pro­
cesses. These investigations will deal with sheared toroidal 
flows, energetic particle physics, fluctuating fields (non-self­
consistent and self-consistent), and realistic geometric effects 
in advanced tokamaks and stellarators. 
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