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Ion pressure gradient-driven drift modes are analyzed for their parametric dependence on the shear, the
toroidal aspect ratio, and the pressure gradient using the ballooning toroidal mode theory. An approximate
formula for the anomalous ion thermal conductivity is derived for the turbulent regime.

I. INTRODUCTION

In view of the high ion temperatures now being pro-
duced by powerful auxiliary heating in tokamaks, it is
interesting to re-examine the ion pressure gradient
driven drift modes along with their associated anoma-
lous thermal transport, In this article we analyze the
mode structure of these pressure gradient driven modes
using the recently developed methods for studying
toroidal drift modes,!=® The parametric variation with
toroidal curvature, magnetic shear and the pressure
gradient of the unstable mode characteristics, such as
their angular width, average radial and parallel wave-
numbers, is investigated in an effort to elucidate fea-
tures that could be useful for their identification in
fluctuation measurements,

Let us briefly contrast the pressure gradient insta-
bility with the results known from earlier studies of the
drift wavel? and the trapped electron mode.® With a low
ion pressure gradient, the toroidal drift wave is trapped
on the outside of the torus for the shear parameter §
=7q'/q < }, and the solution of the eigenvalue problem
yields a destabilizing frequency shift, For £> ; the
modes shift their position of maximum amplitude? and
become weakly localized for (kp)zg <¢€,. Inthis transi-
tional regime there is a weak shear damping determined
by tunneling of the wavefunction through an evanescent
region, For still larger shear-to-toroidicity ratios the
well-known slab model shear damping reappears. Now
as the ion pressure gradient becomes finite another
branch of oscillation is added to the system,” When the
ion pressure gradient becomes strong, T; =T, and
ViInT;>Vlnn;, the two modes of oscillation merge into
complex conjugate pairs to produce a strong fluid-like
instability,®

The drift mode analyzed here is driven by the geo-
metric mean of the ion pressure gradient and the un-
favorable magnetic curvature. In the shearless multi-
pole configuration the effect of ballooning and the down-
ward shift in the drift wave oscillation frequency are
known® to occur from the field line variation of the ion
curvature drifts and are aspects of the present stability
analysis, In its ballooning and maximum growth rate the
pressure gradient driven drift mode is similar to its
long wavelength magnetohydrodynamic counterpart,!
The cross-field wavelength for the drift mode scales
with the ion gyroradius in contrast to the macroscopic
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scale of the magnetohydrodynamic mode, In both re-
gimes the growth rate is required to exceed the thermal
ion transit frequenéy for applicability of the hydrodynam-
ic approximation,

In Sec. II we analyze the toroidal normal mode equa-
tion. In Sec. III we investigate the parametric variation
of the instability and compare the numerical integration
with the appropriate formulas, In Sec. IV we construct
a mode coupling theory for the nonlinear regime of the
instability, We obtain a model for the azimuthal mode
number spectrum in the turbulent state, In Sec. V we
evaluate the anomalous ion thermal flux implied by the
fluctuation spectrum,

1. NORMAL MODE PROBLEM

In a previous study! of the ballooning drift modes we
reduced the normal mode problem to the Sturm- Liou-
ville equation by considering the first order frequency
shift Aw produced by the finite toroidal geometry. In
that analysis we first introduce the frequency w, defined
by the shearless slab approximation to the system and
then derive the differential equation for the finite ge-
ometry mode with the Sturm- Liouville eigenvalue Agp,
=Aww,,/wi determined by the balance of the toroidal
curvature, the shear, and the two dimensional wave
propagation, Figure 5 of Ref, 1 shows the variation of
ML= Aww,/w? for the electron drift wave with fixed €,
and &y as a function of shear, The Sturm- Liouville ap-
proximation is justified for parameters which lead to
small Aw/w,. As the frequency shift Aw becomes com-
parable to the slab wave frequency w,, however, the ap-
proximation fails,

In the investigation of the ion pressure gradient mode
it becomes apparent that the toroidal drift mode fre-
quency w,(Vp;) is substantially reduced from the slab
model, w,, and consequently the small Aw/w, approxi-
mation is inadequate, In fact, for n;=dInT;/dlnn; =1,
the fastest growing perpendicular wavenumber in the
slab occurs for k2 p?=~ (1 -2¢,)/(1 +n;), where the drift
mode frequency depends on the toroidal curvature as
€172 Consequently the full nonlinear w dependence of
the toroidal ion drifts and the ion acoustic terms must
be retained., In this regime the normal mode equation
for the ballooning representation function f(y) defined in
Ref, 1 is found to be
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d*f (y) qzwz( w-k 2.k
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KL+ 2= 30) 79 =0, v

where K(y,y,)=cosy +£{(y ~y,) siny. We seek solutions
of Eq. (1) which for large y* approach the asymptotic
solution

ff(yz) =AOexP[ (iquw/zfn) yZ] B

which is exponentially convergent for w in the growing
part of the complex plane, In contrast to the Sturm-
Liouville problem that governs the frequency shift Aw,
the different axial modes of the normal mode problem
given by Eq. (1) are not orthogonal, The sequence of
modes [w,, f,(y)] is linearly independent and forms a
complete set with respect to nonsingular initial per-
turbations, In Eq. (1) the dimensionless variables!'®
are given by k=k,p, w=w7,/¢,, €,=7,/R, g=7B/RB,,
and £=7q'/q and are defined in more detail in Refs, 1
and 5,

We now proceed to obtain approximate solutions of
Eq. (1) in the strong mode coupling approximation and
compare the results with numerical integrations, We
consider modes that are localized to the outside of the
torus where K(v,y,=0)= 1+ (¢— $)y*. In this case the
solutions of Eq, (1) are

fuly)=H,(0,y)exp(- 50,5,

where 0, =0(w,) with

_awl26k (1 22]'”
ow =122 (3~ 5)-#] @)
and the eigenfrequency for f,{(v) is given by
w-Fk 2¢ R 9
= +5=8 =+
Dlw) w+kl+n) w k
172
=M[Eﬂ£(l_£>_k2gz] . (3)
qw w \2

Although it is straightforward to solve the dispersion
relation (3) numerically, we find it satisfactory for the
present analysis to consider the right-hand side of Eq.
(3) as a perturbation, We then obtain

wlk,m)=w} (k) +Bw,(k,m), @)
where
W) = gy (- 26, B2 ) {1 - 26, - 220+ )]
- 86, (1 + M)A +£4)}1/Y) (5)

and the frequency shift is

a /'
Aw,(k,m)—_-fn_(lﬁrﬂ [26 k\(l —&)-kzgz]l 2 o

qw@D/aw) w \2 0

w=w, &)

The lowest order eigenfrequency (5) is independent of
shear and agrees with Eq, (28) of Ref, 8 when trapped
electron effects are neglected. From Eq. (5) we see
that the lowest order frequency becomes complex for
8¢, (1 +1,)(1 +£%) > [1 - 2¢,— B*(1 + )] which is satisfied
for modes with k® < (1 - 2¢,)/(1 +7,;). The contribution
of the complex frequency shift Aw (e, m) to y=Imw is
less important than the lowest order growth rate ob-
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tained from Eq. (5). For the faster growing modes,
Eq. (5) gives the growth rate

- \/Tk 1/2 1+ 1/2
Y™ (;"+£2)I/;1) (7)

proportional to the geometric mean of the unfavorable
toroidal curvature and the ion pressure gradient,

Now it is instructive to consider the slab limit of the
dispersion relation (3), The slab limit ¢,—~ 0 and ¢ ~ 0
such that €, /g is finite. Taking (— #*t%)1/% — — ikt the
quadratic dispersion relation for the sheared plasma
slab obtained by Coppi et al.” is obtained, The two roots
are

wiE)=[r/201 +EH)(1 - 221 +1)-iS
+{[1 -1 +n)-iS]* - 4SA +n)(1 +ED} /D),

where S= ¢, /g=7,/L,. The fastest growing modes
occur in approximately the same wavenumber domain as
in the toroidal problem, but the frequency is now com-
parable to the growth rate as given by

. 14i RSY2(14m)M?
wy Fiyy ™ vz a+BvE 8)

The relationship between the toroidal mode given in
Eq. (7) and the slab mode in Eq. (8) is shown in Fig, 1,
From the analysis it is evident that the growth rate
varies continuously from (7) to (8) as S exceeds 2¢, or,
equivalently, as £>2q. Typical tokamak plasma pa-
rameters fall well into the toroidal domain in Fig, 1.

In the toroidal regime the real frequency is smaller
than the growth rate and is calculated by including the
contribution from Aw,(k, m), The growth rate formula
(7) shows the relationship between these kinetic modes
with %, p of order unity and the pressure gradient driven
ballooning magnetohydrodynamic modes'® which have
k.p~ o/ 7,. In the magnetohydrodynamic ballooning mode
there is no shielding of the dynamics by adiabatic elec-
trons, and the ion and electron pressure gradients add to-
gether due toboth species having the same dynamics. We

LR (9)
NG

1 [
. kyp(Zen)/z(Hn)/?
k= 2.1/
(1+kZp%)"2
o Y wy
M qes
v o7 kypllem)2 (—"‘—)I/z
KT ez 2 \Lg
wy~ ¥
ION DIAMAGNETIC DIRECTION N
o} n
s
Ls

FIG. 1. A diagram showing the transition from the toroidal
ballooning mode to the high-shear slab mode of Ref. 7. The
changing character of the parallel wave function ¢(6) is also
indicated.
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recover the magnetohydrodynamic growth rate when
these changes are made ad hoc in Eq, (7)., In Fig, 2 we
show the mode frequency obtained from Eq. (5) com-
pared with the value obtained from numerical integra-
tion of the eigenvalue problem (1) as a function of the
azimuthal wavenumber, We see, for example, that for
the growing mode w’(2 =0.6) = 0.0485 +40.5122 given
by (5) that Aw(k, m =0) is of the order of a few percent
of ¥°(¢). The numerical integration yields an w(k, m =0)
which agrees with w® +Aw to within a few parts in a
hundred in most cases. The influence of the &w term
(8) is greatest at the branch point shown near k2p=1.4 in
Fig, 2.

i1l. PARAMETRIC DEPENDENCE OF THE NORMAL
MODE GROWTH RATE AND WAVEFUNCTIONS

In the previous study of the low ion temperature equa-
tion the modes are shown to be strongly localized to the
outside of the torus only for £ < 5. A typical mode at
larger shear, £=1, is shown in Fig, 4 of Ref, 1 to have
a small oscillatory wavefunction extending to large y®.
The low ion temperature equation is recovered from
Eq. (1) in the limit n; = -1, In this limit the (+) root
reduces to the drift wave with w,=~ k(1 — 2¢,)/(1 +£?) and
the (-) root to a toroidal mode with w_ = 2ke,(1 +n)/(1
+EH (1 - 2¢,).

For n; =1, the eigenvalues and wavefunctions deter-
mined by Eq. (1) are qualitatively different from the low
ion temperature modes, The modes with finite ion pres-
sure gradient are more strongly localized to the outside
of the torus even at large shear. As a result the wave
energy is trapped and the modes now grow even in the
absence of electron dissipation (6;=0). The growth rate
is found to be described adequately by Eq. (7) over the
range of parameters (,¢,, £, 7;) of most physical in-
terest, .

When the ion pressure gradient is sufficient to drive
localized modes in a torus with Re(w?) =w? -y <0, the
asymptotic behavior of the wavefunctions no longer gives
rise to an outward propagation of wave energy. Thus,

T T T T T T T

WAVENUMBER VARIATION OF w, ¥
7210, €,70.25, £=1.0, q=3 1

o
w

-0.5L XQUADRATIC DISPERSION
RELATION (w=wi(k))

® NUMERICAL INTEGRATION
0.5
Ty
c, 3
o]
-0.5
0 04 08 I.I2 ‘

kyp

FIG. 2, The variation of w,,7, with azimuthal mode number
obtained from the dispersion relation (3) and the normal mode
equation (1) is shown.
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FIG. 3. Shows the variation of w,,Y, with shear as obtained
from the dispersion relation and the numerical integration.
The variation is weak for £ <2q.

the shear damping mechanism is defeated by the toroidal
localization of the ion pressure gradient and bad curva-
ture driven modes.

We confirm that Eq. (7) adequately represents the
growth rate of the 7; modes by considering parameter
variations from the reference case with ¢,=1/4, t=1,
n;=1, ¢g=3, and k=0.6. For the reference case, form-
ula (7) gives y(k=0.6)=0.514, Numerical solutions with
variations for €,=1/8 to 1/2; £=0 to 2; 1, =0 to 2.0;
¢=1.,4; and £=0.,2 to 1.4 show good agreement with
formula (7). The complex frequency shift given by Eq,
(6) is important in calculating the mode frequency but
not the growth rate,

Figure 3 verifies that the growth rate obtained from
the numerical integration of Eq. (1) is nearly indepen-
dent of the shear in the toroidal domain (¢ <2q) of Fig,
1, The growth rate given in Fig. 3 agrees well with that
obtained from the simple formula (7), while the lowest
order frequency formula w'(k) is sufficient only for &
<1, For £>1 the normal mode frequency increases
weakly with shear while rotating in the ion diamagnetic
direction, For the reference parameters the rotational
velocity is approximately one-half the ion diamagnetic
drift speed.

Figure 4 verifies that the growth rate increases as

PRESSURE GRADIENT VARIATION
kp=0.6, €,20.25, £1.0, q=3

X v}

0 ML\‘\

X QUADRATIC DISPERSION RELATION (w = wg)

-0.5% e NUMERICAL INTEGRATION -

05' q

Yrn [ :

Cy 4
O—LO 0 1.0 2.0

M
FIG. 4. Shows the variation of w,,Y, with the ion pressure

gradient, 1+7;, as obtained from the dispersion relation and
numerical integration.
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(1 +7)!/? and is given approximately by Eq. (7) for %,

€., £,q in the range of the reference values, At small
growth rates the hydrodynamic approximation for the
ion behavior fails. The condition for validity of this
approximation is obtained after a calculation of the mean
parallel wavenumber in the normal mode wavefunction,
Here, we note that the condition y> v; /gR excludes the
region y7, /¢ <€, /q=0.083 near the origin in Fig. 4.

Having established the accuracy of Eq. (7) we proceed
to analyze the parametric dependence of the wavefunc-
tion. Through the parameter variations the modes were
found to be localized to the outside of the torus. The
characteristic angle G at which the mode amplitude is
one-half its maximum value varies as 9 =(6*)!/?
= (Reo)~!/? computed from Egs. (2) and (7). In particu-
lar, we obtain for the characteristic mode width

2e)/

6= .
REV2q L+t

)

For the reference case, Eq, (10) gives 9 =0.68 = 40°,
Again the parameter dependence is verified for varia-
tions about the reference case,

The fact that & is inversely proportional to kgp =%
is a significant feature of the modes. This feature could
be useful in identifying the modes by microwave scat-
tering measurements, This proportionality also implies
that the average value of 2, for the modes is approxi-
mately independent of k;,, From the wavefunction analy-
sis in Sec. IVB of Ref. 1, we obtain that (¢#,) =0 and
that

()= kg0, (10)
which for the localized modes gives
— (2 )1/451/2
k= 77 . 11
A EA RS RA )
For the reference case with § =0.68, #=0,6, and £ =1,

we have k,=0,41, We note that £,> ¥ occurs for long
wavelengths or strong shear according to Eq. (11).

Now we consider the average parallel wavenumber
for the modes and the implied parallel phase velocity.
The variation of the mode amplitude along the magnetic
field is characterized by (k,) =0 and

Y _ G kA 4t/

T _ip\t/2_%a _
ku—‘<ku> ‘q - qi/Z(l +k2)1/2

(12)

For the reference case we have 2,7, =%,=0.12. The
effective magnitude of the parallel phase velocity
|w/kyc, |~ v/Ec, is given by

y__q' P +m)i/t

=t = >1, (13)
R = TR

where the condition y>%,c, is required for the hydro-
dynamic approximation to apply. For the reference
case the value is y/£,c,=2.9. The actual parallel phase
velocity w,/%,c, is less than y/E,c,. Due to the slow
propagation speed of the wave compared with the Alfvén
velocity and the electron thermal velocity, the electro-
magnetic and nonadiabatic electron effects are small
perturbations in the wave, The most important correc-
tion of the parallel dynamics is the neglect of the ion

1080 Phys. Fluids, Vol. 24, No. 6, June 1981

temperature fluctuations driven by the finite parallel
compression due to v, ,V,v, in the fluid equations,!!
The compressional effects substantially lower the
growth rate of the lower phase velocity modes ||

= kuvi-

IV. MODE COUPLING THEORY

Now, we consider the nonlinear hydrodynamic equa-
tions in a simple limit where only the convective non-
linearity in the ion pressure balance equation is re-
tained, Other unpublished mode coupling studies and
three-dimensional fluid simulations!! for the pressure
gradient driven mode in slab geometry, that apply to the
high shear regime in Fig, 1, suggest that convective
mixing of the pressure is the dominant nonlinear mecha-
nism,

After transforming the equations into the standard
dimensionless variables, we obtain the following mode
coupling equations:

d "
a +ki);‘;—’*=_ ikl - B2 (1 +1)] @ — ik ,0,

+2ike, K(y) @y +p1) (14)
d -
o ik, (@) 15)
dp, .
el k(1 +n)¢, +k1+§;=k (k% kz)uwk!ptz ’ (16)

where k? =k? +k2E%?, k,=- i(, /q)8/3y, and K(y)=>1
+(£~1/2)y% In obtaining Eq. (14) we assume linear,
adiabatic electrons and use quasi-neutrality to eliminate
the fluctuating density in terms of the fluctuating poten-
tial,

The coupled nonlinear equations (14)-(16) are still
rather complicated by the nonuniform toroidal geometry,
Let us introduce a further approximation that eliminates
these complications, We assume that the parallel flow
v, of the ions remains, as in linear theory, able to
balance the shear, the poloidal variation and the radial
wave propagation, Such a parallel motion would be
governed by

oy = 206, (€ - 1/2)9% (9 + 1)
+EE A+ )y o - FE Y 0y
Under conditions where such a parallel flow occurs, the

nonlinear problem reduces to the two dimensional mode
coupling equations determined by

(1 +#2) %‘— =— tku, ¢, + 21k€, Py, 17

dap )

=tk e+ > (ky % k), @y Py (18)
kitkp=k

where we defined
u,=1-k%(1 +7) - 2, and y%:Ze,,(l +7).

We define the spectral distribution of the two point po-
tential correlation functions as I(k,, %, w). Using the
linearity of Eq. (17), it is straightforward to reduce
the coupled system (17) and (18) to the standard form
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6.(0.))(0.+.1§=.€&:.2(p.1(0.2=0, 19)

where k= (k,,k,, w) and

€ (@) = w (1 +£?) — whu, +B}E,

e."‘;l’.z =%(k1x kz)n<“n2 — Uy %22' +%11> .
We assume that the nonlinear interaction produces weak
correlations among the normal modes ¢,(w)=0, and we
ask for the nonlinear dispersion relation that takes into
account the broad spectrum of linearly unstable modes
given in Sec. III,

From a truncation of the four field correlation function
in terms of the pair correlation function I(k, w) =1, we
obtain the well-known renormalized dispersion relation

M/ 2 _ Q@) I
PO B T LA NS N e
kK, ~F

27 e?_lkl

For the present calculation we shall assume that due to
the broad unstable spectrum it is adequate to approxi-
mate the response function 1/6,"_‘,1 by 1/6,,_,,1 under the
interaction integral. In the terminology of Horton and
Choi®® this is the simply renormalized theory.

In this section we are concerned with deriving from
€2'=0 the conditions imposed on the fluctuation spec-
trum to have marginally stable roots, We assume, and
verify a posteriori, that the fluctuation spectrum is
peaked in azimuthal wavenumber at k=% <k, <1 where
k, is defined by ux; =0 and is the center of the region
of linear growth. In the calculation of the interaction
integral it is sufficient to approximate the frequencies
by the linear values w (k) which are analyzed in Secs, IT
and ITI. In the region of growth the frequency is given
approximately by w(k)=1i |k |, in the region |k|<k,.
Similarly, the response function ¢,_,, is given approxi-
mately by €, = (W, - wk1)2 + (k- ky)*3. Correction
terms are higher order in |u5/y,| and §, With these
simplifications we obtain

1, for 0 <k <k,
e:i')k_nlz— '}’ok(klx k)" X (= 1, for ] <k1 <0 N
0, otherwise

(21)
1, for 2 and %, >0

eizk’l',:-yo(k— k)0, xk),x <~ 1, for kand k<0 ;,
0, otherwise

and €,_, =— 47} kky for kk;>0. With these results the
nonlinear dispersion relation (20) reduces to

lw) =w(w - kuy) + k2

tE ® (kX Ky )2k (k — ky)I(k))
+f_x dkxfk dk, g (22)

for k>0,

We model the radial wavenumber spectrum to reduce
the mode coupling to a one dimensional problem, From
the linear properties of the wavefunctions given in Sec,
I we observe that there is a well defined radial wave-
number (¥?)/2=F, given in Eq. (11) for the entire spec-
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trum of azimuthal wavenumbers 2, Thus, we are led to
investigate azimuthal mode coupling in a spec-

trum characterized by its lowest moments in %,
Taking the spectrum as symmetric in k, with Iz, k)
=I(k%, k) and peaked about (k¥%), we write that

I(k):f dk,I(kﬁ,k):.zfo dr_I(R2, k),

-

and
DI =2 [ dr B IGER),
0

with the subsequent approximation made that (k2) is
determined by the toroidal mode structure.

In the turbulent state the linearly unstable part of
the spectrum is balanced by the interaction integral
when the one-dimensional spectrum I{%) satisfies the
equation

W (W ~ kuy) + k22— (k) fm %’il (Ry— k) (RE+EDI(k) =0,
1] 1
(23)

The shorter scale length turbulence I(k) at &y >k re-
acts on the fluctuation at a given k& as shown by a less
formal calculation in the Appendix, As the magnitude
of I(k,) increases the growth rate from Eq, (23) de-
creases until marginal stability is reached with w

= s ku, and

B 1) =) [ BL - 0)0F +EDIR) ()
1] kl

that follows from Eq. (23) in the unstable domain |u, ]
<2%,. From another point of view we may solve the
quadratic equation (23) for w =w(k, ) and find that when
the spectrum satisfies Eq, (24) the oscillations have
neutral stability with w ~ $ku,,

The principal features of the spectrum I(k) satisfying
Eq, (24) are readily determined. The broadest spec-
trum that leaves the interaction integral well defined,
to within logarithmic terms, varies as I(¢)=1,/k for
k<1 and as [ /E® for large k. Examining the equation
for power law distributions shows that the distribution
Iy /k down to a cutoff wavenumber k, allows the interac-
tion term to balance the driving term, We now simplify
Eq. (24) by dropping the term uf /4 compared with yﬁ
which is a good approximation in the strongest growing
part of the unstable spectrum, An integral constraint
follows by acting on Eq. (24) with [;°dk I(k). Recognizing
that # << 1 the constraint can be solved approximately
for the result that

® 2
2 :f I(k)dk =2 | 25
(=] Hae=5ls 25)
From Eq. (25) it follows that the constant I is
Iy=v2/%RkEYA 26)

where A=1n(k, /k,) and the continuity of /() implies the
constant I; =k%I,, The result Eq. (26) also follows from
substituting I(¢) =1, /% for k, <k <k, into Eq. (25). The
limit on the width of the spectrum for the existence of
(E?) is the same, in this model as the existence of the
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interaction integral in Eq, (24) since
(EZy= f dk, e L Ity k) =2 f dk R2I(k)
0

~ 20 In (max ),
for the I, /#° spectrum.

From these features we arrive at the conclusion that
the azimuthal wavenumber spectrum is as shown in Fig.
5. The precise value of the cutoff wavenumber %, re-
mains to be determined. Here, we assume that it oc-
curs where Iw, l~v,~/qR at which point the kinetic phe-
nomena in the ion dynamics becomes important. This
limitation to the hydrodynamic regime is discussed in
Sec. IIl,

Finally, it is important to observe that the original
mode coupling equations (17) and (18) have an exact
constant of the motion

(&%) —ll%—ﬁ(ép2>:const. 27)
Neglecting the initial fluctuation level, the integral of
the motion relates the amplitude of the potential and
pressure fluctuations, From the root-mean-square po-
tential fluctuation @,=(¢®Y?=y,/v2 (¥:)*/? given by Eq.
(25), we obtain that the amplitude of the pressure fluc-
tuation 6p,= (6pY? is given by

1)dp

ke 00y = 75| (28)

to within a logarithmic factor. The relationship in (28)
is the well-known mixing-length result commonly in-
voked to estimate the amplitude of drift-wave turbu-
lence. The result is derived here from the reduced
mode coupling equations and the assumption of a well
defined average wavenumber in the k, spectrum,

In regard to the present modeling of the two-dimen-
sional spectrum, we note that even in the simpler prob-
lem of ion acoustic turbulence no two dimensional
analytic solutions are known.!? As to justification of the
present model, we note that the assumptions of the
dominant nonlinear process and the k. spectrum peaked
about the linear (2)!/? are motivated by the three-di-
mensional sheared slab simulations of Ref, 11. Basical-

Imax I~

i
LOW k BREAKDOWN

FIG. 5. The approximate form of the azimuthal mode number
spectrum that takes the renormalized dispersion relation

€ (¢, 1) =0 to marginal stability. The constants Iy, 7; and

k,, %y are discussed in Sec. IV.
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ly, the model reflects the observations from the initial
value problem starting with small amplitude linear
eigenfunctions that the azimuthal wavenumber spectrum
deforms more rapidly than the radial wavenumber spec-
trum during saturation of the growth of the pressure
fluctuations, Here, we determine the deformation of
the azimuthal wavenumber spectrum required for non-
linear stability. The one-dimensional equation (24),
based on a weak turbulence approximation in evaluating
1/€gL,, with 1/€,.y, under the &, integral in Eq. (20), does
not adequately describe some features of the turbulent
spectrum as pointed out by the referees and discussed
in more detail in Appendix B,

V. QUASI-LINEAR TRANSPORT

The normal mode equation (1), is consistent with the
following linearized hydrodynamic equations for the
normalized ion density #;, fluctuation, the parallel ion
velocity v, fluctuation, and the ion pressure p, fluctua-
tion:

k
= Ga= kL (9, 90)(@ + 1)

—%"K(y,yo)(cpﬁpkwé‘f‘ ’ 29)
Vg :};u(% +P.)/w » (30)
b=k +n)/w]e,, (31)

where k% (y,yo) =k +£2E2(y - yo)*, K(y,¥,)=cosy
+E(y - yo)siny, and k,=-ile,/q)8/2y.

For nondissipative, adiabatic electron response, n,,
= ¢,, the condition of quasi-neutrality n,,=n,, yields
the normal mode equation (1), From the space-time
average of the hydrodynamic equations we find the
anomalous particle flux

cT .
T=(wg,)=7- 55 2 #Gm=0, 32)

since ¢, and n, are in phase in the absence of electron
dissipation,

The anomalous ion thermal flux is

p cT )
‘I:<PUEx>=,7"_ 2B ik @y by
__p¢cT Kyl db __p cT o db
~ v, eB k wityi dx 7, eB Xi gy ®3)

where )‘(,- is a function of ¢,, £, 1, and ¢. In obtaining
Eq. (33) the linear approximation for the pressure-
potential phase relationship, namely (31), is used under
the spectral integral, Since the peak of the spectrum
occurs where this linear frequency w (k) relation is given
by 7.~ |k |7 > w,, the dimensionless thermal conduc-
tivity reduces to

-~ 1 bd
. kI(RYdER 34
% Yoj; (k)dk (34)

where I(%) is the one-dimensional azimuthal spectrum
analyzed in Sec, IV,

From formula (34) we see that all components of the
1/k part of the wavenumber spectrum shown in Fig. 5
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contribute equally to the thermal conductivity ;. The

contribution to ¥; from the I, /¢ component of the spec-
trum is Iy(k, - ,) and that from the 7, /%% component is

I, /ky which equals Ik, For k, <k the total contribu-
tion to the integral is thus

Xi=2Lky /7
which, upon substituting for I, from Eq. (26), yields
Xi=koyy /AN, (35)

where k), is essentially the maximum linear growth
rate ya,. Thus, we find that the spectral distribution ob-
tained in Sec. IV together with the quasi-linear formula
for the thermal flux reproduces, to within a logarithmic
factor A for this problem, the familiar Kadomtsev esti-
mate for the anomalous diffusion,

Now, we compare the anomalous ion thermal conduc-
tivity given by Egs, (33) and (35) with the neoclassical
plateau formula

£ cT
Va eB I+

Using Eq. (11) for (k?) =%%, we obtain from Eq. (33) the
result that )

. v
xi°=2.6(p,q)* (‘I“Rf‘ =2.6

_pcT gl +pt/?

X:'_,rn eB § (36)

to within a numerical factor of order unity, The
anomalous transport exceeds the neoclassical plateau
transport by the factor (1 +n)!/?/%€, which is typically
a factor of order five to ten,

Evidently, the toroidal curvature ion pressure gradi-
ent driven drift mode is capable of producing an
anomalous ion thermal conductivity which scales with
density, temperature and safety factor as the plateau
neoclassical formula, The rate of the anomalous trans-
port is at least several times faster than the collisional
rate. We recall that there is experimental evidence for
an anomalous ion thermal conductivity in the ion power
balance studies for the neutral beam heated plasmas in
the TFR'® and, possibly, the PLT!* experiments, The
TFR Group reports that x; is an increasing function of
ion temperature within their experimental range, in
contrast with the neoclassical eonductivity x;° which
decreases with temperature. In the power balance
scheme that gives the most consistent interpretation of
the radial plasma profiles, the TFR Group reports in
Figs. 36-38 of Ref. 13 that both the hydrogen and deu-
terium plasma show an anomaly factor range from 5 to
15 and centered around 10, Such an enhancement in X;
would appear consistent with the drift-wave turbulent
ion conductivity derived in this work,

For a multiple ion species plasma it is the fotal ion
pressure gradient that drives the instability. The
cross-field scale length p of the fluctuations is deter-
mined by the ion mass density or (m;) = Zn,m, /n,
where the electron density is n, = Zn,2,.

VI. CONCLUSIONS

In the presence of vigorous auxiliary ion heating,
such as in neutral beam injection'®!4 or for the quasi-
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steady fusion burn profiles, e.g., Fig. 3 of Ref, 15,
found in reactor studies, it is typical to have the ion
temperature gradient greater than the density gradient,
Such peaked ion temperature profiles are unstable to
ballooning drift waves, In Sec, II we analyze the toroidal
normal mode equation for these ion pressure gradient
driven drift waves, We show that in the hydrodynamic
regime |w|>uv,/qR the characteristics of the instability,
such as its poloidal localization and mean parallel and
radial wavenumbers, are given by simple formulae, By
numerical integrations in Sec, II, the parametric varia-
tion of the growth rate with shear, aspect ratio, and

the ion temperature-to-density gradient ratio is shown
to agree with the growth rate formula,

The localization of drift waves by ion curvature drifts
has been pointed out in earlier work on shearless multi-
poles,® It should also be mentioned that the linear char-
acteristics of the ion pressure gradient driven modes
are analyzed at low shear with quadratic forms in the
radially local approximation in Ref. 8 and in a recent
nonlocal analysis in Ref, 16, The primary emphasis in
Secs. II and III of the present work is (i) on developing
an appropriate toroidal normal mode analysis of this
instability which can be extended to a nonlinear mode-
coupling theory and (ii) to establish the essential par-
ametric dependences of such eigenmodes and the as-
sociated fluctuations,

Drawing from the fact that the basic mode charac-
teristics given in Sec. II and III are explained by fluid
equations containing the local unfavorable ion drift and
drawing from the three-dimensional fluid simulations!!
for the analogous slab problem, we develop a simple
set of two-dimensional mode coupling equations in Sec.
IV for the nonlinear regime, In Sec. IV we apply simply
renormalized turbulence theory to the reduced problem
to obtain a nonlinear dispersion relation. After intro-
ducing a model for the radial wavenumber spectrum,
it is shown that for the azimuthal wavenumber spectrum
given in Fig, 5 the renormalized dispersion relation
&' w, ) =0 describes marginally stable oscillations,

For the spectral distribution obtained in Sec, IV we
evaluate the quasi-linear formulae for the anomalous
ion thermal conductivity x; in Sec. V. In the evaluation
of the thermal conductivity y; it is assumed adeqaute to
use the linear phase relationship between the pressure
and the potential fluctuations, As shown by simulation
studies,!' a well-defined steady state of transport is
produced by the drift-wave instability, Within this
framework, a final formula is obtained for the anoma-
lous ion thermal conductivity, The anomalous conduc-
tivity scales with dengity, temperature and safety fac-
tor as the neoclassical plateau formula, The anomalous
transport rate exceeds the neoclassical rate by a fac-
tor of the order of the aspect ratio,
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APPENDIX A

The nonlinear dispersion relation €’(w) given in Eq,
(23) of Sec. IV shows that the reaction of the fluctuation
spectrum is on the long azimuthal wavelength com-
ponents of the spectrum. This effect, which is given
by Eg. (21) in turbulence theory, can be seen less
formally by calculating the nonlinear interaction term
for two modes k; and k;, In the region of low azimuthal
phase velocities, we may write the eigenfunctions as

l:‘ﬂ(r, t):l \: sin(gx) cos (ky)
=¢() ] , (a1)
plx,t) sg () (1 +1)/2¢,]1/ ? sin(gx) sin(ky)

where sg(x)=z1 for x=0, respectively. Consider the
interaction k, +k,=k by calculating z* V, ¢x V, &p
=[@;+ @y, b, +0by) =01, 8P, + [0, 601]. After a
straightforward calculation we obtain

@1 ()0, (O +1)/2€,] H(grky + qofey)
X sin(qx)cos[(}kll— Ikzi)y]. (A2)

Due to the phase relationship between ¢ and 6p only the
difference wavenumber |k, |- |k,| is generated. Ap-
plying this result to the interaction of 2> 0 and k, >0
we obtain the first interaction at cos[(k - &,)y] and the
second interaction at k= |k, |- [k —k,| only when &, > k.

APPENDIX B

In this appendix it is shown that the reduced mode
coupling equation can be solved to obtain a model azi-
muthal wavenumber spectrum. The model spectrum
is singular at the modes of marginal stability,

In the reduced one-dimensional equation (24) the azi-
muthal spectrum is determined by
2 2
(kf>’ for v;= 0,

* d
[ s o= R +RDIR)

(B1)

0 , for v%<0,

where the fluid theory growth rate is given by ¥}
=Ry~ Lul) with u,=1 - 2¢, - k(1 +7). The growth
rate is factored according to

vi =kAE HED (]~ KD (L+n)°, for 0<kP<kj,

with
g 2y~ (1 —26)
ki= 1+9n !
vt (1-26)
2 1+77 ’

with both %% and k} positive for typical parameters.
Due to the positive definite kernel Eq, (B1) implies that
I{) =0 for k> k,.

We now scale the wavenumber distribution to the
marginal mode k; and the amplitude of the distribution
by writing

k B, 2y -1+2¢
S R e T

" (B2)
IRy = [0 +m)*/ KD 2 (&, o).
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With these scalings {B2) the spectral equation (B1) be-
comes

1 -~
/ % (£,- £)(E2+EDM(Ey = A€ + @)1 - £, (B3)
¢

for £ <1. Considering the derivatives of }'i‘.q (B3) evalu-
ated at £=1-0", it becomes evident that I(£) must con-~
tain a singularity at £¢=1. Thus, we write

gy =Ad(E~ 1) +1®), (B4)

and obtain an equation for i(&) by computing the first
four derivatives of Eq. (B3). Substituting (B4) into (B3)
and computing the derivatives yields

1 ~

S B se,- 0= shile) vaRE-38-1)

¢
—2a§ +4(L- 08~ BE7, (85)
1 qd - -

B - sni) 280 + - 694

PR

=20 +12(1 — a)£* - 30&¢, (B6)

1 ~ - d -
“"fg 5%4 (60 +4(5)+2 77 [61(0)] - 64

=24(1 - a)t - 120¢°, (B7)
6 - di & 2 2
EI€)+4712 +2E£—2[g1]:24(1—a)—3605 . (B8)

The solutions of the homogeneous part of Eq, (B8) are
£* with A= (- 3 ©v3)/2, and the general solution of
(B8) is

(&) =Bt~¥2cos[ (v /2) Ing - C]
+ R - -, (B9)

The constants A, B, and C are determined by evalu-
ating Eqs. (B5), (B6), and (B7) with (B9) at £=1. Car-
rying out the algebra gives

A=1+a, B=2(1+60 +21a8y1/2,
tanC=v3 (1 +a)/(1 +9a).

The dominant features of the model spectrum are
singularities at the marginal modes k=0 and k=k,
and the £~3/? variation in the linearly unstable domain
between £ =0 and k,. The unphysical features of this
model spectrum, namely the singularities and the nega-
tive values of the spectrum at small tE=Fk/k,, suggest
the need to reconsider the use of the weak turbulence
approximation and the ansatz used to decouple the radial
and azimuthal spectral distributions in future work,
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