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Gyrokinetic particle simulation of ion temperature gradient drift instabilities

W.W. Leeand W. M. Tang
Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08544

(Received 30 March 1987; accepted 3 December 1987)

Ion temperature gradient drift instabilities have been investigated using gyrokinetic particle
simulation techniques for the purpose of identifying the mechanisms responsible for their
nonlinear saturation as well as the associated anomalous transport. For simplicity, the
simulation has been carried out in a shear-free slab geometry, where the background pressure
gradient is held fixed in time to represent quasistatic profiles typical of tokamak discharges. It
is found that the nonlinearly generated zero-frequency responses for the ion parallel
momentum and pressure are the dominant mechanisms giving rise to saturation. This is
supported by the excellent agreement between the simulation results and those obtained from
mode-coupling calculations, which give the saturation amplitude as |e®/T, |

=(|o, + iy,|/Q,)/(k,p,)? and the quasilinear thermal diffusivity as y, =¥,/k 1, where o,
and ¢, are the linear frequency and growth rate, respectively, for the most unstable mode of the
system. In the simulation, the time evolution of y, after saturation is characterized by its slow
relaxation to a much lower level of thermal conduction. On the other hand, a small amount of

electron—ion collisions, which has a negligible effect on the linear stability, can cause

significant enhancement of y; in the steady state.

I. INTRODUCTION

As emphasized in the early review by Kadomtsev and
Pogutse,' anomalous ion thermal losses associated with ion
temperature gradient drift instabilities>* have long been re-
garded as a potentially serious threat to efficient magnetic
confinement. These are basically electrostatic waves asso-
ciated with the ion acoustic branch, which can become de-
stabilized when the parameter 7,=d(In T;)/d(Inn;) ex-
ceeds a critical value (usually estimated to be between 1 and
2). Recent results from a variety of important tokamak ex-
periments*® have stimulated renewed interest in establish-
ing the relevance of 77, modes as the primary cause of the
observed anomalous ion conduction. The evidence generally
indicates that when plasma conditions are consistent with
larger values of 7;, the corresponding deterioration in the
ion thermal confinement properties cannot be explained by
standard neoclassical transport theory. On the other hand,
anomalous transport models based on very simple estimates
of the thermal diffusivity (y;) for ; modes have produced
results in reasonable agreement with these experimental
trends.”'° Since the level of confidence in the predictive ca-
pability of any transport model is dependent on its “first
principles” (as opposed to heuristic or empirical) physics
content, it is obviously of vital importance to understand
properly the processes responsible for the nonlinear satura-
tion of the 7, modes and for the associated steady-state
transport. To this end, a gyrokinetic particle code'" has been
developed to investigate the dynamic properties of these in-
stabilities.

As just noted, experimental data from tokamaks are at
least consistent with the possible degradation of thermal
confinement associated with 7,-driven instabilities. In par-
ticular, the saturation of the energy confinement time 7
with increasing density in Ohmically heated discharges can
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be explained by invoking standard ion neoclassical transport
for situations when the 7, parameter is not too large.'>"?
However, if (as in cases of high density plasmas fueled by gas
puffing®®) the density profiles become sufficiently flat, the
resultant enhancement of 7, correlates with the “anoma-
lous” saturation of 7 at densities well below those predicted
by the neoclassical calculations. Furthermore, in cases of
high density pellet-fueled plasmas, the observed improve-
ment of 7 (over the gas-fueled cases just described) corre-
lates well with the fact that the steepened density profiles
lead to smaller values of 7,.'* With regard to plasmas heated
by neutral beam injection (NBI), data analysis again indi-
cates that the ion thermal losses generally exceed standard
neoclassical estimates.!> Moreover, recent experimental
studies® involving direct measurement of the ion tempera-
ture profile in the D-III tokamak have indicated that the
thermal diffusivity is not only much larger in magnitude, but
also exhibits a radial dependence in strong disagreement
with the usual neoclassical model (yE°).

The idea that the well-known 7,-type instabilities could
be responsible for the thermal confinement trends observed
in pellet-fueled and gas-fueled Ohmic discharges was first
proposed by Coppi.” Using the simplest nonlinear models for
y: associated with toroidal 7, modes, Dominguez and
Waltz® and Romanelli ez al.° have demonstrated in transport
code studies that the saturation of 7, with increasing density
could indeed be correlated with the presence (or absence) of
these instabilities in numerous Ohmically heated tokamaks.
When invoked in NBI-heated discharges, 77; modes also lead
to scalings of temperatures and confinement times in reason-
able agreement with experimental trends.'°

With regard to the formal theoretical basis in support of
the relevance of the 7, modes, linear studies generally indi-
cate that they should be present under typical operating con-
ditions in tokamaks, provided 7; is sufficiently large. Al-
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though the exact value of the 7, threshold is very difficult to
calculate, '® numerical results from comprehensive fully to-
roidal linear calculations (including complete trapped-par-
ticle dynamics, wave—particle resonant interactions, and
collisions ) support the conclusion that these modes are easi-
ly destabilized in tokamaks for 7, 2 2."”

An appropriate expression for the anomalous thermal
diffusivity associated with 77, modes is, of course, much more
difficult to justify from “first principles.” At the simplest
level, heuristic strong-turbulence-based arguments' can be
made to obtain the familiar estimate for the thermal diffusiv-
ity, y: < 7,/k?, with ¥, being the linear growth rate of the
strongest mode in the unstable spectrum and k, being the
corresponding perpendicular wavenumber. More formally,
but in the same spirit as this estimate, the anomalous thermal
flux can be calculated'® using the linearized perturbed distri-
bution function together with the usual ambient gradient or
mixing length approximation for the saturated amplitude of
the perturbations. An expression quite similar to the ,/k 2
answer generally results and it is the most common form
applied in various transport studies.””'®'® Although they
lead to plausible models for the anomalous ion diffusivity,
these calculations leave open fundamental physics questions
regarding the identification of the specific mechanisms re-
sponsible for the saturation process and for the enhanced
steady-state transport.

In developing a detailed theory of 7,-driven turbulent
transport, the simplest approach is to consider the fluid limit
where the dynamics are governed by a Boltzmann response
for the electrons and by the hydrodynamic (fluid) equations
for density, parallel velocity, and pressure of the ions. This
approach is motivated by the fact that when 7, lies well
above the linear threshold [7, > (7,).~1 to 2], it is com-
monly believed?® that the fluid model reasonably approxi-
mates the relevant dynamics. However, kinetic effects (such
as those associated with ion Landau damping) are likely to
play a prominent role for conditions approaching marginal
stability. The nonlinear fluid-type analysis as applied to 7,
modes was introduced in the work of Horton et al.,*® who
carried out three-dimensional initial value simulations for a
sheared slab configuration. Their results indicated that pro-
file flattening associated with nonlinear E X B convection of
the ion pressure was primarily responsible for saturation.
This is similar to the profile-modified saturated states com-
monly observed in conventional particle code simulations of
these instabilities.2* However, this is not a realistic scenario
since the equilibrium (“steady state”) profiles in actual con-
fined plasmas are in fact maintained by continuous heating
and refueling effects. Fixed-profile 3-D fluid simulation
studies of 77, modes are currently in progress.?

With regard to nonlinear analytic calculations, Horton
et al*' have carried out a mode-coupling analysis of 7,
modes for a simplified system of nonlinear fluid equations
applied to a toroidal geometry. Solutions for the saturated
amplitudes are in basic agreement with the heuristic mixing
length results described earlier. In more recent work, Lee
and Diamond?? have analyzed a nonlinear system of fluid
equations applied to a sheared slab geometry and have pro-
duced a renormalized theory describing saturated #;-driven
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turbulence. Although the final results are again similar to
the mixing-length estimate, the authors emphasize the ne-
cessity of including the ion viscous term (ignored in Refs. 20,
21, and 23) to consistently ensure a finite-amplitude steady-
state solution. In particular, they note that the saturated sta-
tionary turbulence results from the energy transfer process
that nonlinearly couples the long-wavelength energy source
with the short-wavelength energy sink (which is proportion-
al to the parallel viscosity). Finally, following a very differ-
ent line of analysis, Connor®® has pointed out that the invar-
iance properties of the fluid equations (studied in Refs. 20
and 22), regardless of the details of the nonlinear calcula-
tions, can be used to determine the transport scaling of 7;-
driven turbulence for a sheared slab system. As in all the
other papers discussed,'®?? the local anomalous diffusivity
is found to scale basically as y, « T>/2/B>L, with L being a
characteristic equilibrium scale length. However, the specif-
ic magnitude of y, and the particular prescription for L are
different in the various evaluations.

As indicated by the preceding discussion, considerable
progress has indeed been made, and these efforts will even-
tually contribute to the development of a reliable “predic-
tive” model for anomalous transport. In this paper, 7,-driv-
en instabilities have been investigated using newly developed
gyrokinetic particle simulation techniques.'' Unlike pre-
vious attempts on the problem,'®->*?* the present approach
does not require prior assumptions concerning the nature of
the instability (kinetic versus fluid), nor does it need any
prejudgment as to the relative importance of the nonlinear
effects involved. As such, it affords us the ability to identify
the relevant nonlinear mechanisms on a totally unbiased ba-
sis. As described in Ref. 11, the new technique is far more
superior numerically in terms of time step, grid spacing, and
noise level than conventional particle codes for simulating
microinstabilities. Most importantly, by employing the
scheme of multiple spatial scale expansion, it becomes possi-
ble to use a “frozen” background inhomogeneity in the sim-
ulation. Thus one can study the truly steady-state problems
without the undesirable quasilinear profile modification.
For simplicity, we have chosen to carry out the simulation in
a shearless slab, where the radial widths of the unstable
modes are limited by the size of the simulation box rather
than by shear. This is an adequate approximation for ad-
dressing the present objectives, since the inclusion of shear
would further complicate the fundamental nonlinear phys-
ics issues. We again note that the work here represents an
initial fully kinetic study of 7, modes. With the knowledge
gained from these calculations, we can now proceed with the
systematic extension of such simulations to three-dimen-
sional geometry, where the questions concerning shear and
toroidal effects will be addressed.

The paper is organized as follows. In Sec. II the govern-
ing equations and the linear properties for 7, modes are pre-
sented. Simulation results from an electrostatic two-dimen-
sional gyrokinetic particle code are given in Sec. II1. The
theoretical interpretation of the simulation results based on
the mode-coupling calculations of the governing equations
and their conservation properties is described in Sec. IV. A
summary of the findings and conclusions is given in Sec. V.
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li. GOVERNING EQUATIONS AND LINEAR
PROPERTIES

Nonlinear gyrokinetic equations for the Vlasov-Pois-
son system in slab geometry have been used earlier for study-
ing drift instabilities in the presence of a density gradient.?®
The same set of equations is utilized here as the starting point
for the investigation of #; modes. In the usual gyrokinetic
units of p;, O, !, and T,/e for length, time, and potential,
the governing equations in the limit of (k,p,)*€1 can be
written as''26

Df.
Dt

+LFME—C(f)7 (1)

zf (1 + z) L.F,; + —V—2 V<I>xbexx,,FM, =0,
(2)
V:® +n, =n,, 3)
where f,(x,y,t) is the perturbed distribution,
a denotes species, FMa_(l/\/Ev,a)exp[ - (y /20,)%}s
b=B/B, Bis the ambient magnetic field, £ is the unit vector

in the inhomogeneous direction perpendicular to B,
r=T,/T;,, V=4 /dx, and

n, =J‘fa dv" (4)

is the perturbed number density. The perpendicular Lapla-
cian acting on ® accounts for the finite Larmor radius effects
for the ions and it supersedes the usual Debye shielding term
in Eq. (3). For Eqs. (1) and (2), we also have

fe _ 9

a N N afa
bVf, — VO XbVS, — o )
Dt at -+ UII j;z X fa []

dvy

(3)

OF .
U

2
+ VO X bk [x,, - 'i;-"— + (Ui) Kﬂ] Fytas

L Fy,=—s, Vb

af.

Cfr=vy 2 (v..,,
dvy \ " dy

+ U”f) )]

where s, = —m,;/m,, s, =1, k,= —dlInny/dx, and «r,
= —d In T, /dx are the zeroth-order spatial inhomogene-
ities, which give , =« /k,, and v,; is the electron—ion col-
lision frequency. (Note that, in our units, v, =/m,/m,
and v, = 1/4/7.) Equation (7), which can easily be obtained
from the Lorentz collision operator by assuming that v, re-
mains Maxwellian for the perturbed distribution, is the usual
number-density-conserving one-dimensional diffusion mod-
el.?6 Equations (1)-(7) are a simplified set of gyrokinetic
equations, which includes both EXB and velocity space
nonlinearities essential for describing steady-state microtur-
bulence. Linearly, the resulting dispersion relation for 7,
modes includes the critical wave-particle resonances and
thus predicts the correct threshold for the onset of the insta-
bility (cf. Ref. 24).

For certain instances, simplified fluid responses are ade-
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quate for describing the instability, such as collisional drift
waves and ion temperature gradient modes for ;> 1. The
governing equations in those cases can be obtained by taking
velocity moments of Eqs. (1) and (2). Using the definitions

f”n Jo dvy=u,, (8)
J. (U" — U, )2f¢; dU" = vtzapa’ (9)

and neglecting higher-order nonlinearities and velocity mo-
ments, we arrive at

dn, OHu, P

—k, =0, 10
dt dx, + dy * {0
du, m; d(p, —®)

= —v,u, 11
dt m, Ix, Verlle (1
and
” <+ He 19 (e in) = (12)
K, K =
%, ) “

These are, respectively, the continuity, momentum, and
pressure balance equations for the electrons, where

4 _9 _voxbv,
at

dt (13)

and the EXB convection term is the only nonlinearity re-
tained in the formulation. The corresponding equations for
the ions can be written as

dn,~ aui Bd)( Vi )
- — " n - n 13 =0’ 14
dt +¢9x" dy ot T U + ) (1
du; p; vi
i+i_€'_+(1+_l)£=o, (15)
dt 1 9x Ix;
and
d, Au; vi

Ix dy T

(16)

which differ slightly from the electron fluid equations be-
cause of the finite Larmor radius effects. Equations (10)-
(16) together with Eq. (3) can adequately describe a wide
range of microturbulence problems. For example, for «,
= 0, they can be reduced to the well-known equations stud-
ied by Hasegawa and Mima,?” and Hasegawa and Waka-
tani.”® Compared with the equations used by Horton et al.,®
Lee and Diamond,?? and Connor,?? the major difference is in
the nonlinear EXB term in the continuity equation, Eqgs.
(10) and (14), where n, has been replaced by p,,.

These two sets of equations (kinetic and fluid) are the
basis for the investigation of %; modes. Since we are mainly
interested in the cases of 7, > 1, for which v, €|w/k) | <v,.,
the linear dispersion relation, based on the fluid ions and
adiabatic electrons (n, = ®), and with the ansatz of
exp(k-x — iwt), becomes
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14+7b—[1—-b(1+7)]o,/0

— (kv /o) [r(1 = b) + (1 + ), /o

—b(1+29)0, /0] =0, (17
where b= (k,p;)* accounts for the gyroradius effects, k2
=k2 + k2, and 0, =k,p.k,p 0, is the electron diamag-
netic drift frequency. Equation (17) can also be obtained
directly from Eqs. (2) and (3) by taking the fluid limit for
the ion parallel motion (see, for example, Ref. 24). By let-
ting b= — p} d%/9x* + (k,p;)* and k; = k,x/L,, where
L, is the shear scale length, one then recovers the linear
eigenmode equation used by Connor (although, with some
minor differences).”® For b=0 and o, =0, ie., 7, = ,
Eq. (17) reduces to'

(7 + 0, pn/0) (kv /0)? =1, (18)
where o, =Kk, p k70,8, For |w,;/w|» 7, there exists an
unstable mode with

(19)

o _o+ iy (ku vn’)z’ﬂ —1443
@y 1i @Dyri Dyri 2
Since the real frequency is negative, the mode propagates in
the ion diamagnetic direction. For w, 5, = 0, Eq. (18) pre-
dicts stable ion acoustic oscillations.

When the electron temperature gradient is also present,
i.e., 7, #0, the linear electron density response given by Eq.

(1) takes the form of

n, (k) =®X)[1 — 7/2(0, —@,7./2 — 0,) kv, ],
(20)

where w7, =k,pk7.p, ;. Since |w/kyv, | <1, the correc-
tion to the dispersion relations, Eqgs. (17) and (18), due to
the nonadiabatic part of the response is negligible. The effect
of weak collisions, |v,;/k v,.| €1, on the linear stability of 5,
modes is also small, which can be easily verified by following
the procedures described in Ref. 26 for solving Eqgs. (1) and
(7) in the Fourier-transformed velocity space. Nevertheless,
both finite 77, and collisions are believed to have some influ-
ence on particle and energy transport.

When the collisions are strong, i.e., |v,,/k;v,.|>1 and
lov,/(kyv,,)?| €1, the electron response can be described
by Egs. (10)~(12). For «,, = k5, = 0, we have

n (k) = ®K)[1+iov,/(kp,)*]. 2n

Again, the net influence on Eqs. (17) and (18) is insignifi-
cant. Although this limit of collisionality is beyond the re-
gime of interest for our simulation, we will later take advan-
tage of the simplicity of these equations in formulating
steady-state transport properties for 77, modes. Since Eqs.
(10)-(16) are not energy conserving for v,; #£0, they are not
suitable for studying the effect caused by x,, %0 on 7,
modes.

From Egs. (8)—(16), with the Klimentovich represen-
tation for f,, , we obtain the particle and thermal fluxes for the
gyrokinetic system as'!
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(rax) = (navEx>

~In 3k, [1,(0]*00) = 3 2%

=1

(22)
and

(Qun) = Pave) =Im 3 k, [, (k) ]*®(K)
k

= i (f_lli)z Ve (X))
~—j=1 Vig N ’

respectively, where vy, = — d®/dy is the EX B driftin the x
direction, { ) ={ dx/V denotes spatial average, x; is the po-
sition of the jth particle, and N is the total number of parti-
cles in the simulation. [ The generalization of Egs. (22) and
(23) to general geometry can be achieved by simply includ-
ing the toroidal drift vy, (in addition tov,,,if one desires) in
the formulation. In doing so, trapped-particle contributions

(23)

.for the flux can then be taken into account. These effects are

believed by many to be important for tokamak transport.]

Upon invoking the scheme of multiple spatial scale expan-

sion,'"?® one can then express the corresponding particle

diffusion coefficient and the thermal diffusivity as
D, = (T ) /K,

and

Xa = <an>/(KTa +K”).

(24)

(25)

ill. GYROKINETIC PARTICLE SIMULATION

Simulation techniques for gyrokinetic plasmas have
been reported in detail in Ref. 11. Briefly, both the electrons
and the ions are treated as guiding center particles. The only
difference between the two species comes from the fact that
the ions are advanced in time with a gyrophase-averaged
potential, whereas the electrons are under the influence of a
bare potential. Density responses due to ion polarization ef-
fects are then accounted for in the field (Poisson) equation.
The instability is driven by an external source in the form of a
time-independent background inhomogeneity. Thus the un-
desirable effect of profile modification is eliminated. To sim-
ulate the energy-conserving Lorentzian collisional pro-
cesses, a pitch-angle scattering model for the drift-kinetic
electrons is used,’® where the velocity v[ = (v} + v})"/?] is
time invariant for each particle at each time step. For
(k,p;)? <1, the behavior of the simulation plasma can ade-
quately be described by Egs. (1)-(3). The actual equations
used in the simulation are given in the Appendix.

In this paper, we will present the results from a two-
dimensional gyrokinetic electrostatic code
[ X0 4£(=0/2) ] in a shearless slab. For simplicity, peri-
odic boundary conditions for both the waves and the parti-
cles are assumed. The ambient magnetic field is given by
B = B,(% + 6¥), with @ being a small constant ( <€ 1), which
gives ky = 6k, and the plasma inhomogeneity is in the x
direction. In the code we have also set $(k, #0,k, =0) =0
and ®(k, = 0,k, #0) = 0. The latter is necessitated by the
requirement of |« | or [« | < |k, | for a system with a “fro-
zen” zeroth-order gradient.!’
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When the adiabatic electron response is assumed, we
can totally ignore the electron dynamics by letting

on, (x) =(1+<5n¢(x)> ) ed(x) +<6ne(X)>
y y

ng n, T, ng

e

(26)
in the field equation, where { ), denotes a spatial average in
»,and 8n,, and n, are the perturbed and the averaged number
densities, respectively. The condition of ®(k, #0, k, =0)

= 0 makes Eq. (26) number conserving and also calls for
the use of the high electron mobility model,?* which assumes
that

(6n.(x)), = (67,;(x)),, (27)
where 67, is the gyrophase-averaged ion number density'’
and 87, =6n; for (k,p;)*<€1. (Note that 6n,/n,—»n, and
ed/T, > ® in Sec. IL.)

The simulation parameters in units of grid size A and ion
cyclotron frequency }; are L, XL, = 16AX 164, N(total
number of simulation particles per species) = 128X 128,
ps/A =1, a(particle size)/A=15, T,/T, =1, m;/m,

= 1837, (k.ps,k,p;) = (0.393m, 0.393n), (m,n) =0,
+1,+2,..,0=k/k, =001, kpp, =02, Kpp, =0 or
0.2, x,p, =0o0r 0.05 (i.e., @, ;/Q; =0.08n, @, 7./Q; =0
or 0.087, ,/Q; =0 or 0.02n), and Q,At(time step)
= 2.722. The number of time steps ranges from ¢, /At
= 1000 to 4000. :

The time step and the number of particles used for the
simulation are determined from numerical stability and
noise considerations. This requires that w,A¢f S 1 and

| __ 1 _led| _ps
Te t=0 Wkps Te t= oo LT

(see Ref. 11), where wy/Q,=(k,/k)(m;/m,)'"* is the
electrostatic version of the shear-Alfvén wave and N is the
total number of particles in one wavelength of the mode.
Thus, for the (m = 1,n = 1) mode, we have w,Ar = 0.82
and |e®/T,| = 1.38%, which are well within these numeri-
cal limits. It should be pointed out here that the time step and
grid size used here are equivalent to w,.A¢ = 5000 and
Ap./A =1/42.86for Q,/w,, = 1.Inthecaseof an adiabatic
response for the electrons, we can afford to use an even long-
er time step with less simulation particles, i.e., Q,Ar = 10.89
and N = 64 X 64. This is because the restrictions imposed by
wy are now replaced by those from the ion acoustic modes
(or 77; modes).

Let us first examine the case for 77, = « and 7, =0
(kmps = 0.2, K7, =k, =0), using the adiabatic electron
model of Eqs. (26) and (27). The complex linear frequen-
cies for the (m = 1,n = + 1) modes given by Eq. (19) are

(+ @, +i7,)/Q; = — 0.0054 + i0.0094. (28)

Since |w,/kyv,;| = 1.35, the fluid approximation used here
for the ions is not totally adequate. A more elaborate calcula-
tion based on the kinetic description for the parallel ion mo-
tion?* indeed gives slightly different answers. More impor-
tantly, the calculation has shown that these modes are the
fastest growing ones in the simulation, with the rest being
either weakly unstable or damped modes. This linear predic-
tion agrees with the simulation results as indicated by the
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fluctuating k spectrum for the potential, in which the most
unstable modes of the system indeed dominate. The reason is
that the fastest growing modes in our system also have the
longest wavelengths and, as such, inverse energy cascade is
prohibited. The time history (£}, = 0-2700) and the fre-
quency spectra for ®(m = 1,n = + 1) are shown in Fig. 1.
These are rather coherent oscillations that roughly follow
the prescribed linear properties of the 7, instability. Al-
though the two modes do not exponentiate and saturate at
the same time, they do reach the same saturation amplitude
of |e®/T,| = 5%, accompanied by a slight increase in ampli-
tude to 6% and a frequency shift to w/Q; = + 0.012 after
saturation. The corresponding density fluctuations are
on;(1,1)/ng=bn; (1, — 1)/ny=10%-12%. In addition,
density perturbations of én, (2,0)/ny=10% with » =0 and
én;(0,2)/ny=10% with w/; = 4 0.024 have also been ob-
served in the steady state after saturation. One unique fea-~
ture shown in Fig. 1 is the process of energy exchange
between the two dominant modes in the nonlinear stage of
the development. These nonlinear properties of the instabil-
ity will be examined in detail in Sec. IV.

To verify the results based on the adiabatic electrons
(Fig. 1), we have also carried out the simulation with the
drift-kinetic treatment of electrons for 7, =7, = « (K0,
=krp, =02, k, =0). The time evolution for the domi-
nant potentials is shown in Fig. 2, where a bandpass filter
with the width of @, has been used to eliminate the high
frequency noise generated by the w, modes. As we can see,
the two results are nearly identical for both the linear and
nonlinear stages of development. (The slight phase differ-
ence is caused by the difference in the initial noise level.) The
amplitude for the accompanied ion density fluctuations also
remains the same. The dominant electron density responses
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FIG. 1. The time evolution and frequency spectra for e®(1, + 1)/7, with
7, = « and 77, = 0 based on adiabatic electrons and gyrokinetic ions.
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after saturation assume the level of &n,.(1,1)/n,

=6n,(1, — 1)/n,=5%~7% and én, (2,0)/n,=4%. Inter-
estingly, unlike its ion counterpart, &n,(0,2)/n, stays
around the thermal level of 1.49 throughout the simulation.
These results also confirm the prediction of Eq. (20) that %,
50 has a negligible effect on the linear stability of the mode.
However, its presence can give rise to inward particle trans-
port for the electrons as indicated by Eqgs. (20) and (22)."°
The results shown in Fig. 2 clearly illustrate this property in
the linear stage of the instability. However, the flux reverses
its direction after saturation for the apparent reason that the
electron behavior ceases to be linear at this point in time.
Since particle flux is ambipolar in the simulation, i.e., (T',, )
= (I';.),!" the ions have the same behavior. The calculation
for the particle flux in the code was based on Eq. (22).

The message from the simulation thus far is that one can
probably describe the saturation of the instability with the
adiabatic electron model, since all the necessary nonlineari-
ties are provided by the ions. However, is such a model ade-
quate for representing steady-state phenomena? To answer
this question, we now study the long-time behavior of the
instability (£, = 0~22 000) again with the adiabatic elec-
trons for 17, =9, =4 (xpp, = K7.p, = 0.2, k,p, = 0.05).
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FIG. 3. The time evolution for the fluctuating potential and the ion thermal
flux with 7, = 77, = 4 based on adiabatic electrons and gyrokinetic ions.

The results indicate that the general feature of the instability
is very similar to the cases shown in Figs. 1 and 2. The fluctu-
ation spectra are also dominated by the same modes. Figure
3 gives the time history of the potential ®(1, — 1) and the
resulting ion thermal flux. [ The flux calculation in the code
used the total v in Eq. (23) instead of v . Consult Eq. (41) in
Ref. 11 for details.] The linear frequency and the growth
rate are nearly identical to the previous results and reflect the
fact that the linear properties are rather insensitive to the
magnitude of 7, when 7; > 1. The nonlinear frequency shift
also remains the same. The amplitude for e®/7, increases
from about 5% at saturation to 9% at the end of the run.
This may indicate that the system has yet to evolve to a
steady state because of the simplified electron dynamics. The
most interesting aspect of the results is the time plot for the
ion thermal flux (Q,, ) in Fig. 3, for which a bandpass filter
has been applied to eliminate the shot noise. The salient fea-
tures are (1) the time-averaged flux is always in the outward
direction; (2) Q.. )/c, reaches its maximum value of 0.0032
(0.0043 before filtering) around the time of saturation; (3) a
precipitous (tenfold) drop in its magnitude follows shortly
after saturation; and (4) the thermal flux eventually attains
a steady-state value that corresponds to y;
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=8X107%T,/eB as given by Eq. (25). The results here
bring into question the validity of using the quasilinear flux
to predict the steady-state transport.
We now proceed to examine the same case (7, =17,

= 4) but with the drift kinetic treatment for the electrons.
The comparison of the two results should help us gain a
better understanding of the nonlinear behavior of the elec-
trons. The length of the run is shorter than before with ;¢

= 0-11 000. Again, the overall characteristics of the insta-
bility during the linear as well as the nonlinear phase of the
evolution are very similar to the previous run. Figure 4 ex-
hibits the time history of the potential for the (1, + 1)
modes, in which the thermal (numerical) noise caused by
the high frequency (@, ) oscillations are evident. (Note that
le®/T,|=1.2% at t = 0 as predicted.) Here, the time-aver-
aged fluctuation amplitude after saturation is about 5% and
the nonlinear frequencies are around w/Q; = + 0.01. The
slight drop in amplitude toward the end of the run is believed
to be the result of the slow amplitude modulation, which will
become more evident later. The thermal flux versus time
plots for both species are given in Fig. 5, in which a filter with
the width of w; has been applied to smooth the data for the
electrons but not for the ions. These results indicate (1) the
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electron thermal flux reaches its steady-state value shortly
after saturation and the corresponding thermal diffusivity is
. =1.2X 10~%T, /eB; (2) the relaxation of the quasilinear
ion flux after saturation is much more gradual than the pre-
vious run; (3) however, the magnitude of the steady-state
thermal diffusivity remains unchanged, ie., Y,
=8X 10~%T,/eB. In addition, the time-averaged particle
flux is found to be outward and D=10"*cT,/eB is the mag-
nitude of the diffusion coefficient in the steady state. (Note
that D = O for the case with the adiabatic electrons.) Since
y: is the same for the two cases and y; >y, =D, one can
reasonably conclude that the nonadiabatic response of the
electrons is not essential for 77; modes. Unfortunately (from
the theoretical point of view), this is true only when the
plasma is collisionless.
To ascertain the collisional effects on 77, modes, we have
carried out the same simulation (5, = 7, = 4) with v,/
=0.005. Since @ X v,; and v,,/kv,. €1, this is a weakly
collisional case and the linear properties of the mode under
investigation are not expected to change. [As indicated by
Eq. (21), even strong collisions have negligible effects on the
linear stability.] Thus our focus here is on the nonlinear
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stage of development. The time evolution of ®(1, 4 1) for
the collisional case is shown in Fig. 6. Although the ampli-
tude at saturation increases slightly, the mean amplitude in
the steady state stays around 5%, which is the same as the
collisionless value. The major differences between the two
runs are the energy exchange processes of the two dominant
modes and the amplitude modulation of the total potential,
[P(L,1)]? + |®(1, — 1)|% both of which are significantly
enhanced by the collisions. Consequently, the resulting os-
cillations in the nonlinear stage become less coherent with
|Aw/®|~1, @(1,1)/Q;= —001, and ww(1,—1)/9;
= — 0.0075. The net result is an increase in thermal trans-
port for both the electrons and the ions as shown in Fig. 7. A
closer examination of the results reveals that (1) the elec-
tron thermal flux, for which a filter has been applied, follows
the amplitude modulation of the potential with y,
=4.8X 107 *T,/eB as the mean value in the steady state;
(2) the ion thermal flux also follows the amplitude modula-
tion, and the steady-state thermal diffusivity is y;
=6.4X 1073¢T,/eB; and (3) the time history for the parti-
cle flux (not shown) closely resembles that of the electron
thermal flux with D=2.4X10"%cT,/eB for t = . All in
all, there is a fourfold to 24-fold increase in plasma transport,
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in which ion thermal conduction still dominates, i.e., y;
>D3» y. (although D exhibits the largest increase). Hence
in steady-state situations the electron—ion collisions are here
found to significantly enhance the transport associated with
7, modes. This feature, which emphasizes the indispensible
role played by the nonadiabatic electrons, has usually been
ignored in previous nonlinear studies of these instabilities.

IV. THEORETICAL ANALYSIS OF SATURATION AND
TRANSPORT

In this section, we intend to provide some theoretical
understanding of the nonlinear behavior of the %, modes
observed in the simulation. The main areas of investigation
are (1) the identification of the mechanisms responsible for
the saturation; (2) the scaling of the resulting quasilinear
transport; (3) the nature of steady-state transport as pre-
scribed by the conservation properties of the governing
equations; and (4) the transport scaling based on the invar-
iance properties of these equations.

We will first consider the issue of saturation. Since the
potential fluctuation spectrum in the simulation is dominat-
ed by only a small number of Fourier k modes, i.e.,
®(1, + 1) + c.c., and since using the adiabatic approxima-
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tion for the electrons leads to correct results for the saturated
amplitudes, a set of simplified equations can be used in this
analysis. It can be shown that the primary nonlinear conse-
quence arising from the excitation of ®(1, 4 1) is the gener-
ation of f;( 4+ 2,0) through the EXB convection. More-
over, the ExXB convection together with the velocity space
nonlinearity for the ions gives rise to the enhancement of
fi(0, +2). If one assumes that ®(1,1) =d*(1,—-1),
Si(LD) =[fi(1,—1)]* and ignores the velocity space
nonlinearity, f;(0,2) vanishes, and the reduced equations
describe a three-mode coupling process. (Interested readers
should consult Refs. 26 and 29 for details.) These approxi-
mations not only make the problem analytically tractable
but also yield useful results.

Letting n, = ®, 0, = @,1. =0, and (k,p,)?*«1, and
denoting (1,1) and (2,0) by the subscripts of + and 0,
respectively, we can write Egs. (2) and (3) as ‘

w*Ti

2

af; . ,
‘ji?"*’kuﬁhﬂ+-4"[TkuW|“

V) zw*Ti 2
LY = 2ik? Tm(d*
> m(®* £, ), (30)
", =, (31)

where ®, = 0 is assumed, n,, = §f;, dv is the ion den-
sity, k3 =7b =2k, k,, and k, ,k, are the wavenumbers for
the (1,1) mode. Equations (29)-(31) can be solved by treat-
ing the nonlinear EXB terms as perturbations. With
d/0t= —iwand |k" U /0| €1, a nonlinear dispersion rela-
tion can then be obtained. A simpler and more transparent
procedure is to use the equivalent fluid equations from Egs.
(14)-(16), i.e.,

iy =0, (32)
a’;* + ik ®, 2t k""* L RO, up =0,  (33)
P40 _2ik? Im(@*% 4, ), (34)
a;;: +ikyu, +iogn®, + k3P, po=0, (35)
agf = 2ik? Im(®* p, ., ). (36)

Equation (32) is linear, because n,, = ®_, which gives
Ony/dt =0.Ford/dt = — iw and |k v,;/w| €1, we obtain

Diy E(")mTi/“))(I>+’ 37
which, together with the linear responses from Egs. (31)-
(33), gives us the linear dispersion relation of Eq. (18). The
nonlinearly excited parallel fluid velocity and pressure are
proportional to the amplitude of the potential and can be
expressed as

Up = i(kl'q)+|)2/k||

and

(38)
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Do = 2iw, (k, | D | )2/(k|| vy)?
= —ilk, |¢+l)2(0*n/|f01 +inl (39)

where @, + iy, is the linear (complex) frequency given by
Eg. (19). The nonlinear dispersion relation for 77; modes can
then be written as

(¢+ *T.) (k“v,,> +(1 +_2a£) kilq;+|2 _1
@ @ @ w

which remains a cubic equation in . An alternative form for
Eq. (40) can be obtained by using the second expression for
Po in Eq. (39). To satisfy the stability requirement,
Im w = 0, Eq. (40) yields that

o, | =B lortinl B [Uquo’owm]™
* 2 k? 2 k?

(40)

(41)
This is the appropriate saturation amplitude of the instabil-
ity. The nonlinear frequency now becomes

Ou 2o, + iy, _ _z(k"u‘,)m, )

Dyt @i Dyt

which yields an upward frequency shift. Equation (40) can
also be derived from Eqgs. (29)—(31) by keeping the first two
nonvanishing terms from the expansion of the resonant de-
nominator; the other terms in the expansion are negligible.
We now compare these theoretical predictions with the sim-
ulation results shown in Fig. 1. Substituting Eq. (28) into
Egs. (41) and (42), we find that |®,| =3% and w,,/9,
= 0.022, whereas the measured values are 5% and 0.012,
respectively. The cause for the small discrepancy is the ab-
sence of the ion kinetic (velocity space) effects in the mode-
coupling equations, which would nonlinearly generate
£;(0,+2) and, in turn, render ®(1,1) £#P*(1, — 1).262°
Nonetheless, the calculation presented here veritably cap-
tures the primary features of the saturation process in the
simulation.
The quasilinear particle and thermal transport can be
calculated as follows. Substituting Eq. (20) into Eq. (22),
we have

(0y — @ — @yr./2)
I)=_|Z Sk |®k)|—* *
{Te) \/;; | @ ()] kv,

(43)

for the quasilinear particle flux of the %, instability. For 7,
>2(1 — w,/w, ), the flux is negative and the particle trans-
port is directed inward.'® Based on the results from Eq. (28)
for o, and Eq. (41) for |®(k)|, we obtain (I, )/c,
= —3.5X107* as the particle flux due to ®_, and their
complex conjugates at saturation for 7, = 77, = . This is
much greater thanthe results shown in Fig. 2, indicating that
the nonadiabatic response of the electrons deviates consider-
ably from Eq. (20) even in the linear stage of the instability.
Equation (43) is also not applicable to the results associated
with those given in Figs. 4-7 for 5, = 7, = 4, where the par-
ticle flux is outwardly directed even before saturation, with
or without collisions. (Note that quasilinear estimates
would indicate that collisions should actually enhance in-
ward transport. )
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The ion thermal diffusivity, which can be obtained by
substituting Eq. (37) into Egs. (23) and (25), takes the
form

_ kf,|d>(k)|2y,
& o+ i)
This expression is also valid for x, #0. From Eq. (41),

which gives the saturation level for the ¢, and their com-
plex conjugates, the quasilinear coefficient then becomes

X =w/ki. (45)

Using the linear growth rate from Eq. (28), we have y;

= 0.044¢T,/eB and {Q, )/c, = 0.011. The latter is quite a
bit higher than the peak values shown in Figs. 3, 5, and 7.
However, if one uses the time-averaged growth rate of y,/(Q;
= 0.0035 taken from Figs. 14 and 6, the quasilinear flux
then reduces to (Q,. }/c. = 0.0041, which agrees well with
the simulation results. Unfortunately, quasilinear diffusion
is primarily a linear concept and, as such, there is no appar-
ent reason why it should be related to the steady-state diffu-
sion. In fact, in our three-mode coupling model, y, actually
vanishes after saturation. One can verify this by using both
Eq. (37) and Eq. (39) in the perturbation analysis in calcu-
lating y,.

The quasilinear electron thermal flux, as defined in Eq.
(23), is usually small for |w/k) v,,| €1, because the contribu-
tion for the flux mainly comes from the perpendicular pres-
sure perturbation instead of p, as defined in Eq. (9). Starting
with the original drift-kinetic equation in (x,u,v,?),"" we
obtain

(44)

i

— + a’:;Te/2
kv

Q) = [Z 23 k[0 2
2 3%

(46)

The expression is very similar to (T,.) in Eq. (43). The

main difference is the sign of o, 7. Thus, the direction of the

flux is always outward. Again, Egs. (28) and (41) give

Q.. )/c, = 0.000 37, which is much greater than the results

shown in Fig. 5. Thus the linear wave—particle interaction

for the electrons becomes inoperative long before the satura-
tion of the instability.

Evidently, quasilinear analysis correlates quite well
with the simulation for the ion thermal flux at saturation.
However, it is not adequate for describing the quasilinear
particle and electron thermal transport. Most of all, the
three-mode coupling model totally fails to predict any flux at

allin the steady state. The four-mode coupling model, which -

accounts for the nonlinearly generated f; (0, 4+ 2) and is ana-
lytically intractable, would provide better agreement with
the simulation in terms of saturation level and nonlinear fre-
quency shift. However, even if one carries out the numerical
solutions for the four-mode coupling model, past experience
has shown that the issue of steady-state transport still cannot
be resolved unless one also includes the background fluctu-
ations in the calculation—a rather formidable task.2®
Instead of the mode-coupling approach, we will now
proceed to address the problem in a totally different manner
by studying the conservation properties of the governing
equations. In doing so, we hope to gain some understanding
of the physical processes involved in the steady-state trans-
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port. We begin by considering a simple periodic system with
Kn = KTe = 0, KTi #0, and (klps)2< 1- FI'OIn Eqs. (3),
(10), and (14), we have

3 (V.2 _ < oP
which is the field energy equation, where { ) denotes spatial
average. For the adiabatic electrons with n, = &, it becomes

9 (V. PP+ < 30 u.>

ot 2 ax, I’
where |V, ®|><®* Multiplying Eq. (2) by f;/F,;, inte-
grating the resulting equation in v, taking the spatial aver-
age, and, finally, making use of Eq. (48), we arrive at

(47)

(4, —ue)>,

(48)

2
£ emereo
Mi
ae : k1 {Qix)
g d = ——— 49
+ <3x" Fyy, I v"> T “9

In the derivation, the condition (T",,} = (I',,) = Ohas been
used. This can be verified by multiplying Eq. (3) by d®/dy
and taking its spatial average. Equation (49) is the conserva-
tion law for the ion thermal flux in the case of adiabatic
electrons, where the second term on the left-hand side comes
from the nonlinear velocity space term in Eq. (2). Thus, in
the true steady state when d /dt = 0, the ion thermal flux
may remain finite even in the absence of ion dissipation be-
cause of the nonlinear wave—particle interactions. This im-
portant insight can help us to explain the simulation results
in Figs. 3 and 5, where {(Q,, )/c, =2 X 10~* for large Q.

We now proceed to derive the same conservation law
based on the fluid equations. After multiplying Eqs. (15)
and (16) by u, and p,, respectively, and taking their spatial
averages, we combine the sum of the resulting equations
with Eq. (48) for the adiabatic electrons to obtain

i (P?/”"*‘ uf+ |Vl<I>|2+(I>2) _ K {Qu)
ot 2 - T )

Thus the steady-state ion thermal flux vanishes in a dissipa-
tionless system. This is obvious since the crucial nonlinear
velocity space effects, as given by Eq. (49), are now absent in
Eq. (50). To understand the influence of electron—ion colli-
sions on the conservation properties in the fluid limit, we can
modify Eq. (50) by including Egs. (10) and (11) to account
for the electron responses and by using Eq. (47) for the ener-
gy balance. This leads to

(50)

8 PU/T+ui + |V, P + nc)
at 2
+ Ve {4, /0,.)?) = k(@) /7,

(31

with the assumption of v,; > in Eq. (11). Therefore, colli-
sions can indeed enhance (Q,, ) in the steady state for finite
u,. (A similar equation has been obtained in Ref. 22, which
relates (Q,. ) with ion viscosity.) Although our simulation
parameters lie outside the regime of its validity, Eq. (51) still
provides us with a trend that is in agreement with the results
shown in Fig. 7. A more appropriate conservation law in-
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volving Egs. (1), (2}, and (47) can also be constructed,
which, in the steady state, gives

2
v, _— b7
e U Fae (a(v,,/v,» Tt

o S fe _ kn(Qy)
+(6x“ f(Fw —FME)”" d”")“ a_

(52)

for |{Q.}|>|(T}|- The importance of collisions and ve-
locity space nonlinearities in determining the magnitude of
steady-state transport is therefore evident. Since none of
these effects are relevant to the nonlinear saturation of the
instability, it is not surprising that the relationship is rather
tenuous between the quasilinear y, given by Eq. (46) and the
steady-state y; from Eq. (52).

Unfortunately, based on our current understanding, we
cannot realistically estimate the steady-state {Q,,) of the #;
modes. However, if the trend observed in the simulation is
assumed to be accurate, one can argue that the quasilinear
flux can reasonably be construed as an upper bound for the
steady-state flux. Thus, from Eqgs. (19) and (45), the scaling
law for the ion thermal diffusivity can be written as

ps 273 ( p’ )1/3 Y cTe T:/z
LV (L) 3l ,
x‘“(kq) L) T g

(53)

where Rg=1/k; and L;; =1/kp,. Likewise, from Egs. (19)
and (41), the scaling for the saturation amplitude can be
obtained as

b E(_pi)z/s( P )1/3 * ) )__5/3.
T, Ryg 7L s

As for the appropriate k,p, in these equations, one should
use the corresponding wavenumber for the fastest growing
mode in the system. A review of various scalings for y;, in-
cluding Eq. (53), has been given by Connor.?

As the final topic of this section, let us examine the scal-
ing laws from a different point of view, i.e., using the invar-
iance properties of the fluid ion equations [Egs. (14)-
(16)].* For simplicity, we have made the following as-
sumptions: k, =0, (k,p,)*<1, n, = ® (i.e., adiabatic elec-
trons). [These are the same equations that are the basis for
Eq. (50) as well as for the three-mode coupling analysis. ]
The resulting equations have only two invariant transforma-
tions that are consistent with the original ordering of the
equations. They are

(54)

Pl:t—t/a, x, -x,, x“—»x“/a, b ad,

u,—-au;, p;—ap, Xi—=aY,
P2:t-pt, x, -Px, x"—»ﬂx", Q-P, u,-fu,

KTi —‘aKTi,

pi—Bpis Kpi—Bry, Xi—~Bx:
The ion thermal diffusivity can be expressed as

Xi< (KTips/T)s(kllps )q(klps)rpscs’ (55)
where p,c, =cT./eB. We then have
Pl:s+g=1 and P2: g+r= —1. (56)

which give no unique solutions for s, g, and r. However, the

622 Phys. Fluids, Vol. 31, No. 3, March 1988

solutions of ¢ =4, s =}, and r = — § satisfy Eq. (56) and
give the same scaling in Eq. (55) as the mode-coupling result
in Eq. (53). If we neglect 3®/dx, in Eq. (15) and du,/dx,
in Eq. (16),%® the number of allowable transformations in-
creases to three. As such, the coefficients in Eq. (55) can
then be uniquely determined and lead again to the results
given by Eq. (53). [The fact that the invariance properties
studied here are slightly different from those in Ref. 23 is a
result of the discrepancy in Eq. (14) that was mentioned
earlier. ]

The dropping of the terms d®/dx, and du;/dx, from
the governing equations can be justified by noting that they
areirrelevant to the linear stability and to the nonlinear satu-
ration for the three-mode case. However, the energylike con-
servation law, Eq. (50), cannot be satisfied without them.
Thus, the scaling of Eq. (53) is valid only for the transient
period before the steady state sets in. In the steady state, the
flux vanishes as predicted by Eq. (50) and the y, scaling
under the present assumption becomes meaningless. The
derivation of a valid scaling law should therefore include
kinetic as well as collisional effects. Their influence on the
ion thermal flux is underscored by Eq. (52). However, such
an attempt, which needs a more complete understanding of
the steady-state physics, is beyond the scope of the present
paper and will be pursued in due course.

The scaling for the saturation amplitude can be derived
by following the same procedure. For the same parameter
dependence as y, in Eq. (55), the exponents (s, ¢, 7) are
again determined by Eq. (56). Thus a unique scaling identi-
cal to the quasilinear result in Eq. (54) can be obtained when
we neglect the same two terms in the ion equations. How-
ever, unlike the case for y;, Eq. (54) can be a valid subset of
the general solution given by Eq. (56). This is borne out by
the simulation, in which the saturation amplitude stays
roughly at the same level in the steady state. Thus Eq. (54) is
not only valid for the quasilinear saturation, it is applicable
for the fluctuation amplitude in the steady state as well.

V. SUMMARY AND CONCLUSION

The investigation of the nonlinear behavior of 77; modes
in a simple shearless slab using gyrokinetic particle simula-
tion techniques has provided us with considerable insight
into the saturation of the instability and the resulting ther-
mal transport. It is found that the zero-frequency parallel
momentum and pressure responses for the ions, generated
by the EXB convection, are responsible for the nonlinear
saturation. The saturation amplitude and the quasilinear ion
thermal diffusivity are |e®/T, | = (|@, + iv;|/Q;)/ (k.p,)?
and y,=y,/k?, respectively [see Egs. (41) and (45)].
These analytical results are in reasonable agreement with the
simulation. The corresponding scaling laws are given by
Egs. (53) and (54). However, the simulation results also
indicate that there is more than an order of magnitude reduc-
tion for the ion thermal diffusivity in the steady state, where-
as the amplitude for the fluctuation potential remains rough-
ly constant. On the other hand, if a small amount of
electron—ion collisions in the simulation is introduced, a dra-
matic increase in the steady-state y; without any significant
change in |e®/7, | has been observed. Through the conser-
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vation properties of the gyrokinetic equations, we have
found that both the collisions and theion velocity space non-
linearities are related to the steady-state ion thermal flux as
indicated by Eq. (52). However, the exact physical process
that contributes to the phase difference between the poten-
tial and pressure response and, in turn, gives rise to the
steady-state flux is still unknown. A recent study has shown
that particle “bunching” in the configuration space, due to
EXB and phase space trapping, is responsible for the elec-
tron-drift-wave-induced particle flux.>® This mechanism
may have some bearing on the present 7, mode problem as
well.

An important and rather surprising lesson learned from
the present work is that even for a seemingly straightforward
situation involving a few nearly coherent modes in the sim-
plest conceivable geometry, the nonlinear physics issues as-
sociated with the final steady state remain a very difficult
problem that has yet to be completely resolved. This also
serves to highlight the rather weak “first principles” basis for
the common use of ¥/k 2 scaling and other phenomenologi-
cal-type models for diffusivities in current transport studies.
On the computational front, our work here represents a ma-
jor step forward for simulating an instability with a very low
frequency and a very slow growth rate. The new computa-
tional techniques have also enabled us to probe deeper into
the nonlinear behavior of this very important type of mi-
croinstability.
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APPENDIX: BASIC EQUATIONS FOR PARTICLE
SIMULATION

The basic formulation of the gyrokinetic Vlasov-Pois-
son equations and the numerical schemes for solving them
have been given in great detail in Ref. 11. For the benefit of
those readers who are not familiar with the subject, let us
briefly describe the actual orbit equations and the field equa-
tion used in the simulation.

For the jth particle, the equations of motion are

= b~ (Fph o+ xxiv)
— =y ;b — ——[—Xb + KXb¥V Al
dt U[Ij m} aRx + x Ry ( )
and '
@, _ g% 4 (A2)
dt mdR Ryu;
where
—_ 2 dP(R) |2
W(R)=3(R —i(ﬂ) , A3
(R) (R) 2T \Q IR, (A3)
K=[x, — G—v/2))k.]. (A4)

Here, the guiding center position R is related to the actual
particle position x through R=x—p, p=bXv,/Q,
pu=v’/2, v=(v} +v})"? is the total particle velocity,
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and v, are the particle velocities parallel and perpendicular
to the unit vector b (=B/B), respectively, ¢ is the signed
charge, ) is the gyrofrequency, v, =VT /m is the thermal
velocity, and k, and k; are the (time-invariant) inverse
scale lengths for the background density and temperature,
respectively. Moreover,

®(R)) = (P(x))), = > (k) (——-%f’—-) exp(ikR))
k

(A3)

is the gyrophase-averaged potential, ®(R,) is the potential
for p—0, and J, is the ordinary Bessel function. The numeri-
cal scheme for calculating (®(x;)), is given by Ref. 11.
Both the electrons and the ions are pushed according to Egs.
(Al) and (A2). However, we let p—0 for the electrons so
that they see only “bare” potentials.

The gyrokinetic Poisson equation in particle coordi-
nates x can be expressed as

V2 — 7(P — &5) + (Ps )2V . ((ni - no)vlq))
VAN Ap ' Ry

= —dge(n; —n,),

(A6)

where 7=T,/T;, AL =T,/4wns? p,=\1p;, p;=0,/Q;,

V=4 /dx, subscripts ¢ and / denote species,

N
a(x) =Y (6(x—x))),
j=1
N oexp(—kR)J(kv,./Q)
-3(3 ale

k V=1
X exp(ikx),

(A7)

is the gyrophase-averaged number density, N is the total
number of particles, V is the total volume, n=7(p-0),
ny=(7), is the average number density,
®(x) = T ®(k)To(b)exp(ikx), (A8)
k
To(b)=I,(b)exp( — b), b=(k,p;)? and I, is the modi-
fied Bessel function. The numerical scheme for evaluating
(6(x —x;)),, can be found in Ref. 11. A predictor—correc-
tor scheme is used in the simulation, for which Eqs. (A1)-
(A8) are calculated at every time step.
To simulate the Lorentzian collisional process, we cal-
culate at each time step the scattering angle in the velocity

space for the jth drift-kinetic electron against the stationary
ion background by?*®

AG; = [ —2v,Atln(1 —r,)]'?, (A9)

where At is the time step and ; is a random number between
(0,1). The new velocities (3,0, ) can then be evaluated from
the old velocities (vy,0,) by

By =y {1 — (86,)*]2 —v,;(AG))sin ¢,

~ ~ (A10)
by = (vj; + v}, = H Y2

where ¢ is a random number between (0,27). The scheme is
energy conserving for each particle at each time step. This is
the drift-kinetic version of the method first proposed by
Shanny, Dawson, and Greene.>! '
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