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Toroidal electron temperature gradient driven drift modes
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The electron temperature gradient in tokamak geometry is shown to drive a short wavelength
lower hybrid drift wave turbulence resulting from the unfavorable magnetic curvature on the
outside of the torus. Ballooning mode theory is used to determine the stability regimes and the
complex eigenfrequencies. At wavelengths of the order of the electron gyroradius, the
polarization is electrostatic and the growth rate is greater than the electron transit time around
the torus. At longer wavelengths of the order of the collisionless skin depth, the polarization is

electromagnetic with electromagnetic vortices producing the dominant transport. The small
scale electrostatic component of the turbulence produces a small, of order (m,/m,)"/?, drift
wave anomalous transport of both the trapped and passing electrons while the ¢/w,,, scale

turbulence produces a neo-Alcator [ Nucl. Fusion 25, 1127 (1985)] type transport from the

stochastic diffusion of the trapped electrons.

I. INTRODUCTION

The electron temperature gradient in tokamaks has long
been recognized as a source of free energy available to drive
the collective drift modes unstable while producing an
anomalous transport of particles and, in particular, the
anomalous electron thermal flux'? across the confining
magnetic field. For the low frequency electron drift wave,
the destabilization by the electron temperature gradient in
the dissipative trapped electron regime is well known and
has been developed as a model for explaining the anomalous
electron transport in tokamaks. Less theoretical attention,
however, has been given to the higher frequency lower hy-
brid drift wave, which can also be destabilized by the elec-
tron temperature gradient. Recently, Guzdar et al.®> have
proposed that it is the lower hybrid drift mode driven by the
electron temperature gradient and magnetic shear that may
be responsible for a substantial anomalous electron trans-
port. The linear theory for a sheared slab with the 7, driven
lower hybrid instability is given by Lee et al.*

In the present work we argue that it is a toroidal version
of the lower hybrid drift mode driven unstable by charge
separation as a result of the unfavorable grad B and curva-
ture electron drifts in the presence of the electron tempera-
ture gradient that may drive this form of short wavelength
drift wave turbulence in tokamaks. Ballooning mode formal-
ism is used to examine both the hydrodynamic and the kinet-
ic theory of these instabilities. The local hydrodynamic and
kinetic dispersion relations are used to derive the threshold
for instability and the parametric dependence of the growth
rates.

In the nonlinear regime we recognize that the turbu-
lence problem contains two space scales. At the short wave-
lengths, where the maximum linear growth rate pumps ener-
gy into the electrostatic turbulence, the reduced equations
have essentially the same form as those governing the elec-
trostatic 7, mode turbulence with an appropriate inter-
change of the ion and electron dynamics. Results from the 7,
studies®!° show that the fluctuation spectrum mode couples
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energy to larger scale fluctuations with spectral index of
about 3 in the appropriate range of &k space. For the 7, mode,
this inverse cascade, or mode coupling to larger space scales,
drives a coupling to 4, fluctuations at the scale c/w,,.

At the larger space scales on the order of the collision-
less skin depth, ¢/w,,, the fluctuations become neutrally sta-
ble electromagnetic vortices with small k. This driven sec-
ondary electromagnetic turbulence is expected to lead to a
large stochastic diffusion of the trapped electrons as shown
in the nonlinear transport studies of Horton e al.!" and Par-
ail and Yushmanov.'? The stochastic transport studies indi-
cate that once the turbulence level reaches the mixing length
level, the electron diffusivity is insensitive to the details of
the fluctuation spectrum and is given by the random walk of
the trapped electrons over the correlation length c/w,,, at the
rate of the decorrelation frequency, which is of the order of
the bounce frequency of the trapped electrons. The stochas-
ticity occurs because of the overlap of the vortex circulation
frequency with the parallel bounce frequency. These consid-
erations suggest the conclusions that for electron tempera-
ture gradients well above the linear threshold, 7, .;, =3, the
transport may become approximately independent of 77, and
be given by the simple stochastic diffusion formula (as stud-
ied in Ref. 11) for densities below a critical density. The
stochastic diffusion studies show that for the electron den-
sity above a critical value, the scale length c/w,, becomes too
small for this component of turbulence to compete with the
anomalous transport from the longer wavelength low fre-
quency drift wave turbulence driven principally by the ion
temperature gradient.

In Sec. II we analyze the electrostatic toroidal balloon-
ing mode equations. The electromagnetic equations are in-
vestigated in Sec. III. In Sec. IV we analyze the reduced
nonlinear hydrodynamic equations and their conservation
law(s) and discuss the expected turbulence and anomalous
transport predicted by this model. Finally, in Sec. V, we
summarize the characteristics of the toroidal 7, turbulence
and the expected scaling of the anomalous transport. The
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absence of an explicitly strong dependence of the diffusivity
on the parameter 7, is in marked contrast with the results of
Guzdar et al.,’* who found y, «< 7, (1 + 7, ). The signatures
of the processes considered are summarized for experimen-
tal identification, and we suggest directions for future linear
and nonlinear studies of the toroidal %, turbulence.

Il. HYDRODYNAMIC DESCRIPTION OF SHORT
WAVELENGTH V7, TURBULENCE

We assume that the dominant part of the toroidal VT,
driven turbulence can be taken to fall in the hydrodynamic
regime for the electron response functions since
y~v./(rrR)"*> kv, and k, p, < 1. We compute the elec-
tron density fluctuations from a continuity equation of the
form

on,
ot

+v,Vn, +nVev,+nVev,+nVy, =0,
(1)

where the hydrodynamic velocities are given by
v, = (cbXV®)/B + (cbXVp,)/(—en,B), 2)

m,c’ (3
Vo= - B> (_5;+vde 'V)vlq)’ (3)
and
| ﬂ=(i)ﬁ.vq>— b-¥p. 4)
dt m, m.n,

In the perpendicular electron momentum balance, Eq. (3),
we used the cancellation relation between the electron dia-
magnetic drift velocity v, and the finite Larmor radius
stress tensor. Their nonlinear form is given in Ref. 5. The
electron thermal balance is given by

34 (3 )
— —(n,T, Vet=—n.T,v,,+4q.})+nTV-v,
2 c?t( )+ ) e T4 1

=K"V|2|Te, (5)

where
Q. =3(p.bXVT,)/m,0,,

and xy =an.T,/m,v,, with @ = 3.16. In the thermal bal-
ance equation (5) we neglect the effects of the parallel com-
pression and V « v,. In the limit where the diamagnetic drifts
are small compared with the EXB drift and the finite Lar-
mor radius heat flux q, is neglected, the thermal balance Eq.

(5) reduces to the adiabatic equation of state,

g;pe +vVp, +IpV:v=0,
with ' =3.

For the modes of interest here, the appropriate form for
the kinetic ion response is

Sn = — n,ed [1 _ <a)—a)*,- Jg(k‘vl»] , 6)
T, W — Op; (2P

— (n,e®/T;)(1 —i6;), o))

where 8, is a small resonant contribution that occurs for
modes rotating in the wj, direction, with w,,_ being the ion

i
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grad B and curvature drift frequency. The adiabatic ion re-
sponse in Eq. (7) follows in fluid theory from the balance,
enE= —en Vo =Vp, =T,Vén,.

We now consider ballooning-type modes in the usual
circular cross-section tokamak with By = By/(1 + € cos 6)
and B, = (€¢/q)By, where e =r/R and ¢(r) =rB/RB,.
The density, temperature, and potential fluctuations are tak-
en to vary as

[=L(r) + 86f(@)elan6—dl—iwt ¢ (8)
This mode gives rise to k2 = k(1 4+5°6%) with k, = lg/r
and the parallel derivative ik, = (1/gR)d /6.

In this geometry, where V(1/B2) = 2%/B "R, the fluid
compression terms in Egs. (1) and (5) are computed to give

b & Vn,
D _vp, - (—2i + )
R n,

v'vde= -

=vDe-Vpe+v7‘f’ -VT,,

pe e (9)
Vevg= — (e/T,)vp. * VO,

V' (nvde) = (VDe/Te) 'Vp, ’
where
Vp. = (2cT,/eBR)bX% and v, = — (cbXVp,)/eBn, ,

(10)

with £ = Vx = V(7 cos ). Similarly, the divergence of q,
reduces to

Veq, =3nvp, VT, —3nv, - VT,, (11)
where the first term cancels parts of the v, contributions in
Eq. (5). With Egs. (9)-(11), the thermal balance Eq. (5)
reduces to

ap.
ot

=3« VT, .

+vg Vo, +Tp Vevy +Iv,, +Vp, +Tnv, VT,

The results from Egs. (8)—(11) are used along with the
following definitions:

c¢T, dn,
¢ eBn, dr’
Dype = (1+19.)0,.,
op. =k v, =k,(2cT./eBR)g(9) ,
and
g(0) =cos @ +s0sin 6.

We obtain from linearizing Eqs. (1) and (5) and using Eqgs.
(9)-(12):

on, ed

Cl)‘e-—_k'vde: "—k

(12)

—iw . +i(w*,—wD,)Te
. ...,
+ iwp, i +zkfp§(co—a)w,e)e;wI>
k32 5
i "_=(£‘£__£’:)=o, (13)
o \T, Pe
and
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S e
pe+iw*wi;i+ir(w -

e e ne e

Pe) S
» "f) +tFwD,(—’i"- - "')=0- (14)

n

e e

Solving Eqs. (13) and (14) for n, and 8p,, as functions of ®, gives

on, —op, +k1pi (0 —w0,,) — "vz/a)+ (0pe +kj v’/w)[a)‘,(‘r],+l—I‘)/(a) Twp,)] ( ) (15)
n, o —T(wp, +kj vz/(o)[(w wp.)/ (@ —Twp,)] T.)’
5. _ I'(o— op.) [0y — @p, + kipl(0 — 0, ) —kivi/o] + oo, (9, +1-T) (e<1>) (16)
P. (o —Twp,) —T(wp, + k [v2/w) (0 — wp,) T, ’
U
where we consider k §ky, S kv, €® in writing Eq. (16). where 0,;, = — w,./7 and d, = | + w2, /?,. For increas-

The density and temperature fluctuations (15) and
(16) reduce in the magnetohydrodynamic (MHD) limit

|o|»@,.,0p, to
on, ["’ce @ pe {l—w”e)+k2pz(l—w”")
) w o e o
TG
o’ ) T.)’

n,

%g(ﬂm _ r-‘-"i) (e‘l’) ,

D. @ @ T,

In the earlier work on the toroidal VT; modes, the ion
pressure fluctuations were taken in the incompressible con-
vective limit where 8p,/p;= — (0,,,/0)(e;®/T;). The
present work includes the fluid compressional effects from
the many terms given in Egs. (15) and (16). Recently, Jar-
mén et al.'® have also derived the 7,-mode equations with
these thermal compressional terms in a hydrodynamic de-
scription.

Weuse Egs. (7) and (15) to compute the charge density
fluctuations for Poisson’s equation in the ballooning mode
approximation. After some algebra we obtain

(v 2]
-
2 2 k2 2
wZ;;R 2 ’ ;'(26) - {(1 M _17-& +EIAD — i&,.)a)

4 [2or Loz (o0 + Lo,
T T T

[“’*‘ (m+1—1‘)+r(1+i)wm—
T T

_p kipi] ey 2 1)
T T® 3
+r{te

Equation (17) describes the propagation of the lower
hybrid drift mode in toroidal geometry. Using the local ap-
proximation and taking wp,/0,, = 2¢€, €1, the frequency
of the mode is

2

(17

W=0,[1-1+7, klpe]/(l +k2pld,/T—i5;),
(18)
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ing 7., the frequency (18) of the lower hybrid mode de-
creases until it couples with the toroidal drift frequency
@ p. (8). The coupling produces a destabilizing charge sepa-
ration on the outside of the torus where o, ,. @ p, (6) > 0. The
coupling of the lower hybrid drift to wp, 1s strongest where
the coefficient of the terms independent of w in the square
bracket in Eq. (17) vanishes. Physically, this is where the
phase velocity of the mode in Eq. (18) is vanishing. In this
range of k the local dispersion relation gives
= —’=w,0p(0)(n, +1-T)/(r+k*2d,).
(19)
We now consider the instability domain and the characteris-
tic growth rates in both the local limit and as determined by
the ballooning mode Eq. (17).

A. Local approximation

The unstable eigenmodes are localized to the outside of
the torus with ®(8) ~exp( — 0,02%/2). For Re 0, > 1 the
mode frequency and growth rate are given to the first order
by dropping the v2/»*¢*R ? term in Eq. (17) and evaluating
the toroidal drift terms at & = 0. In this limit the dispersion
relation becomes the quadratic equation

(1+k3pld,)o* + (0/7) [0y — @p (1 + 27T)
—a, klpe rwbeklpe]
+ (@p®,./7) (9. +1-T)
— (T/7) @pep, + T(1 + 1/7) 00},
+Tkipe@ypewpe =0. (20)

In Eq. (20) and the following it is useful to introduce the
natural dimensionless variables for the mode by the follow-
ing definitions:

vei = (T'i/’ne)l/2 ’ pei = Uei/wce = c(meTi)l/Z/eB ’
k=kp, .

We measure frequencies in units of v,;/r, so that
Ope = (Thpyv,./1,) o7k, @L,= —k (v, /r,)—> —k
and

®p, —»2€,7k ,

@ype~>Tk(1 +17,), (21)

where
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dinT, 7,
dinn, _rTe '

and 7, =

€, =

b |

In these units the dispersion relation becomes
Ao’ +Bo+ C=0,
with
A=1+k’d, —is,,
B=rku,=k{1—2¢,(142I'7)
—k*[7(1+n,) +2I7€,]},
C=2¢,7k*[y,—3-T
+k*r(1+9,)T +2T€, (1 +7)] .

(22)

The local modes are given by

o® = [k/2(1 + k%d, —i8;)|( — uy + {u — 87e,
X[7 —3—-T+Trk*(1+7,)
+ 2T, (1+7)] (1 + k%d, — i5,)}'/?) (23)

in units of v,,/r,. The maximum growth rate y,, occurs at
k = k,,, where u2 -0, which gives

k,={[1-2¢,(14+2I'r)]/[7(1+7,) +2I'7¢, ]}
<1. (24)
For k~ k,, the growth rate is

Ym =k, (26,7)'[, —3—T + 2, (1 + 7)
+Tk2r(1417,)]"?

=k, (26,7)"*(n, + 1 =T)"2, (25)

giving
Ne,crit ’23

as the critical temperature-to-density gradient ratio for in-
stability. A more precise condition follows from examining
B? = 4A4C using coefficients (22). This condition gives the
approximate critical value

Neert =5+ —2I'e, (1 +7) —T'(1 +7,)
x{[1—2€,(1+2I7)])/(1 + 7. +2T¢,)}.
(26)
For 7,7, .., the maximum growth rate varies as

= (26,)* (/1) , (27)

valid for e, < 1.

For flat density profiles where €, ® 1 it is important to
redefine the dimensionless frequencies with v, /7, »v,,/71,.
Then the instability exists for 7, — o with the frequencies

o, =[k/2(1+k%d,)(up + {(u7)* — 87y

X [1+Tk?r +2Te,(1+ 7)) (1 + k%d,)}'?)
(28)

(in units of v,,/r), where
up =2 (1 + 27+ 7k ?) + k3r.
Examining B? = 44C leads to the unstable domain
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e e A U R o

, (29
R <rTe R (29)

where
x, = (4/k*r)(1 + k%d,)(1 + T'7k?)
— (2/k*r)(14 2T 7+ Tk ?),
X, = (4/k*7?)(1 4 2’7 + 'tk ?)?

— (16T (1 + 7)/k*71(1 + k%d,) . (30)

The condition (29) is similar to that given by Jarmén et al.'°
for the 7, mode where, however, the study is restricted to
€, < }. The stabilizing effect of compressibility is also studied
by Dominguez and Moore.'?

In Fig. 1 we show the domain of instability in the 7,,-r,
parameter space at fixed k. There are onset thresholds re-
quired by Eq. (29) for finite bad curvature and cutoff values
at large e, because of compressional stabilization. The
threshold at 75, = 3 is clearly shown for the system without
the finite Larmor radius (FLR) heat flux, but the threshold
is moved to 77, <1 when the FLR heat flux is included.

The stability conditions for 7, > 74, are relevant to auxil-
iary-heated divertor tokamak discharges which exhibit im-
proved (“H-mode type”) confinement properties.!* With
the exception of the edge region, the characteristic density
profiles tend to be relatively flat. Even though there can be a
factor of 2 to 4 improvement in the energy confinement time
for such plasmas, the electron thermal transport neverthe-
less remains anomalously large by at least two orders of mag-

{0) kpei=o-316
=0.5 A
05 us ’/,,/
L7 ety
o]
Stable
-0.5f US
'n
R 1
(b}
Stable
us _ =
0.5 -7
/,’/1’752/3
o Z
ko= 0.316
S us 0.5
- i ] e 1
"% 0.5 1.0

" 1o /R
FIG. 1. Stable (S) and unstable (US) domains in the r,,-r, parameter

space at two values of k = k, p,;. The dispersion relation in part (a) neglects
the FLR electron heat flux and part (b) includes the FLR heat flux.
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nitude over neoclassical estimates. Previous studies have
demonstrated that even in the limit of zero density gradient,
low frequency microinstabilities can persist because of the
nonzero temperature gradient.'® The unstable 7,-mode do-
main for flat density profiles is given by Dominguez and
Waltz for hydrodynamic equations neglecting the FLR heat
flux.'® The weaker overall pressure gradients in the interior
region of the H-mode plasmas do lead to correspondingly
smaller values of the electron thermal diffusivity, which is in
turn consistent with the observed improvement in the energy
confinement time. With respect to the relatively high fre-
quency toroidal electron temperature gradient driven drift
modes analyzed in the present work, the fastest growing
mode for the flat density gradient limit, 1, — 0, occurs for

ko=Qer/7)V?, (31
with
ye =k, (26,72 =2€, (v, /rr) =2w,/R,  (32)

which is greater than k v, =v,/gR for (T,/T,)'*> 1/24.
Atfixed k > 7e/*/q as required by ¥, > kv, , the growth rate
scales as y = kuv,,/(r, R)/2

For local theory we can compare the results of the hy-
drodynamic dispersion relation with the Vlasov kinetic theo-
ry dispersion relation using the guiding center dispersion
function

P(a,k,7, ¢ )=<[w—a),e(v2)]1(2,(klul/wu)> -
MB

W—C‘)De(ivi +vﬁ)/v§
(33)
The electrostatic dispersion relation is
D=1+4+k%% + /7[1 =P (0kn.€,)] . (34)
Using Nyquist stability diagrams we find that for small

k<0.5, the condition for instability 7, > 7, .;, obtained from
Im D(@) = Ois that

172>77e,crit =§ (35)
When the condition given by Eq. (35) is satisfied, the wave—
particle resonance produces an unstable sign of Im D <0 for
> 0 for positive energy modes. The condition for accessi-
bility of the temperature gradient free energy to the wave
requires that ReD(w,,)<0, where w,=~2¢€,k
X(1—=39./2)/(2¢, —7,.) is the frequency where
Im D, (®,,) = 0. Evaluating Re D(®,, ) leads to the condi-
tion

€r =rn/R<07/(1 +74+k%13%), (36)

when 7, > for unstable modes. The Nyquist diagrams are
shown in Fig. 2. At marginal stability the mode frequency is
near zero for k0.5. Resonant thermal electrons are in-
volved in the kinetic dispersion relation. The wave phase
velocity w, /2ke, ~ (3 — 7. ') determines the resonant el-
lipse in velocity space through
W} + v) /2 = w/2ke, . 37

The strength of the resonance vanishes as Im P,
=~ (w/2ke,)"? as w/2ke, -0™.

Thus in toroidal geometry the resonant electrons deter-

2975 Phys. Fluids, Vol. 31, No. 10, October 1988

(a) wj
A/B wm \C
Wwr
(b) Te < 2/3 Marginal LH mode wy;
Dj
C
Or
B W A Wye
{c) Mg >2/3 5 Unstable for D{wm)<O
i.

Or

FIG. 2. Nyquist diagram of the kinetic dispersion relation above and below
the critical 7, value.

mining stability and the anomalous transport are the ther-
mal electrons. Only for €, -0, where w,/2ke, — 1/€/*> 1,
is the resonance limited to high energy electrons. In slab
geometry the resonance occurs for v, ~v, but only for a giv-
en v, = w/k\ »v,, which substantially reduces the number
of resonant electrons.

In Figs. 3 and 4 local electrostatic kinetic theory para-
metric dependence of the toroidal 7, instability is given. In
Fig. 2 the growth rate is shown to onset at 77, = § for small &
and closer to 77, = 1 for k = 0.5. Above the threshold in 7,
the growth rate increases as y~0.1v,,/r, =0.19, (v,;/r,)
for k2 0.3. The frequency of the mode changes from rotation
in the ion diamagnetic direction for 7 < to rotation in the

qu LI T T L]
Ne* 23
o3
0.2
Ytn
Vei
O.lF
(o]
-0.1 1 1 1 A
-t (o} | 2 3 4
e

FIG. 3. Kinetic mode growth rate from the local (€ = 0) dispersion rela-
tion versus the temperature gradient parameter.
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0.4 T

0.2F
wrn |
Vei
O -
-0.2 - -
1 l A L
-1 0 | 2 3 4

Me

FIG. 4. Kinetic mode frequency corresponding to the growth rate in Fig. 2.
Positive frequencies rotate in the electron diamagnetic direction.

electron direction for 7, > 3. Well above threshold there is
less than one oscillation (@/y <2) in each e-folding. In
Fig. 5 the toroidicity parameter is varied at fixed
1. = r,/rz.. The instability requires fixed 7, = 7, /77,. The
instability requires finite toroidicity and then is stabilized by
compression for €, > €= (7,) as described in Fig. 1 with
fluid theory. There is good agreement between fluid theory
and kinetic theory with the FLR heat flux required to ex-
plain the kinetic theory results for k2 0.3. [The y(k),0(k)
curves not given here are similar to those obtained from Eq.
(22) with the usual kinetic theory reduction of ¥,,,, and
broadening in wavenumber range.] Since thermal electrons
are resonant at marginal stability, the hydrodynamic disper-
sion relations do not predict accurately the conditions for
marginal instability as is well known for 7; modes. Now we
consider the effect of magnetic shear and the averaging of
@p, (8) over the eigenmode wavefunction.

B. Ballooning mode dispersion relation

The analysis of the 7, ballooning problem is similar to
that in Refs. 6-8 for the 7, mode. We look for modes local-
ized to along the magnetic field to the outside of the torus,

®(0) = Oy exp( —0,6%/2), (38)
with complex o, . From Eq. (17) we obtain
— i ' k(1
o(wk) = —94 [ k 232‘0(‘19 _ fi"’_".).)
€, @
+ 2ke,,(i——s)[1 + 21"7—1(77,_, _2_ I‘)
2 @ 3
J

2

.12+

0.081
77'\

Vei

0.04}F

1
04 0.6
€= 1y /R

FIG. 5. Kinetic theory growth rate as a function of ¢, for fixed 7, and k,p.,;
=0.3.

—(1+7)

172
+ 2I‘e,,k3r(s2 +s_-21_)(_’k“ + 1) _ 1)]

@

4T 7%ke, ]

X{[(1+Tna—kr(y, +1-T)]"}"".
(39)
Since o(w,k) is complicated, we consider here the limiting
form for || €w, 1, and ks> (2¢,)"/? leading to
o=~ — iwgs|k |/€,(1 + T'7)" 2 ~gs|k |y /€, (1 + TT)V2,
(40)
For modes with 7, > and k < 1 the hydrodynamic growth
rate is ¥, |k | (26,7, )"/? for s < 2q, giving o, ~k 2gs(27,/
€,)''?, requiring k> k, ~ (gs) ~/%(e,/29,)"/* for localiza-
tion.
The ballooning mode dispersion relation is
(1+ k%, —ib,)0* + ok [1 — k*7(1 +19,)
—2¢,(207 + 1) — 2T€,k*r] + 26,7k *[n, —3—T
+2Te, (1 +7) +Trk*(1 +17,)]
= (&€70/¢0)[(T + V/No —k(n, +1-T)].
(41)
From Eq. (41) the lower hybrid drift frequency again
vanishes at k= k,, given in Eq. (24), giving the maximum
growth rate y,, modified by shear and toroidal mode cou-
pling through o.
Near k,, the ballooning mode dispersion relation be-
comes

3 2re,k*[n, —3—T +2le, (1 +7) + T7k*(1 +9,)] +i[(1 + T1)o — kr(y, + 1 —T)]e, |k |s/q

" =

1+k2d¢ _i8,

~ — 216,,k2[17, +1—T —isg(k)(n, +1— r)(é)] ,
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(42)
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for k2, €1 and neglecting §,.

Equation (42) describes the transition from the sheared
slab regime to the toroidal regime according to s> 2g and
s < 24, respectively. In the toroidal regime s < 2g, the growth
rate is

Vi=|k|[26,7(q, + 1 =T)]"2u/r,) ,

and in the slab regime s> 24, the complex frequency is

7€,5\"? v,
o, + iV =1_+_’_|k |( p ) (7, +1— r)”z(—r—).

(43)

The formulain Eq. (43) is comparable to Eq. (7) of Ref. 6 at
k2 p2(1+7,.)~1, except for the absence of the threshold
7.>T — lin Ref. 4.

With these results for the toroidal slab eigenmodes we
compute the (k2) and (ki) according to Eqs. (10) and
(12) of Ref. 6.

For the toroidal regime s < 2g, we obtain

e =(2) s ()
T\, ) g 2/ ¢

(kﬁ e> (7'6,, )1/25_ (TE‘T )1/2i
1 \29./) q 2/ q

giving the condition for validity of the hydrodynamic treat-
ment as s/q < (1,/2¢,)"? = 1/(2¢;)"/2 For the slab re-
gime we obtain

(k2 p?)=(1s€,/qn.)""? = (se;/q)"?,
(k v ) (rse,,) _ (rseT)Vz
¥ [ \agn. g/

For strong turbulence we may estimate the anomalous trans-
port by y/(k2). In the toroidal regime we obtain

(44)

(45)

12 T
X = ('—"~) (e, (46)
m, s r, eB
for €, <1 and in the limit %, > 1,
172 cT.
Xes =( ) (2")(2 LAy (47)
m; s ry eB

We note that even in the sheared slab regime our formula
(46) differs from that of Lee et al,* where
Yree <7.(1 +7,). The factor 1+ %, apparently results
when compressional terms are neglected in the thermal bal-
ance equation, and the extra unexplained factor of 7, seems
to be used as a fit to the specific numerical results from their
analysis of the sheared slab eigenvalue equation.

Il. ELECTROMAGNETIC FLUCTUATIONS

The long wavelength part of the spectrum derived in
Sec. I develops an electromagnetic component described by
the parallel vector potential 4, . In this section we first esti-
mate the wavenumber for the change of E, from its electro-
static value, and then we derive the electromagnetic balloon-
ing mode equation ignoring magnetic compressibility 5.

For fluctuations with @ > k, v, the parallel conductivity
is
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of = (in,€/m,w)(1 — w,,/0) . (48)

Using j, = o} E, with b-VXB= 4j, /c for the electro-
magnetic fields
E= —V® 4 (iw/c)4b and B=VA4 Xxb, (49)
one obtains for 4
[V2 _w_‘z’i( w*”‘)] A = — é(l - &"!’i)c_kng
s @ ! c? o/ o
(50)
Using (50) to calculate 4, and then E; we obtain
E = —ik®k}/[k} +k2(wk)], &3]
with
w2 @ imZ ] 1/2
kf:l(l__!ﬁ)z_.ﬂ( ) , 52
c? » ? \2, (32)

where we use @ =iy, given in Eq. (25) for the last estimate.
From Egs. (51) and (52) we find that the electromagnetic
shielding of — ik, ® is strong for k<k,, where

Be)l/z( 7].; )1/2 (Be )|/2
k = (k = (2 -
s = (Kupe)s (2 2, 4e,

The shielding at k = k; is in the regime o, > v,/4R, pro-
vided (B,/4¢;)'*>€,/q or ¢°B./€é:>4e;. For e,
~e=r/R the quantity ¢°B,/¢. is the beta poloidal
B, = 87p,/B?. Wenow consider the full set of electromag-
netic equations for these fluctuations in the hydrodynamic
approximation for the electrons and the adiabatic approxi-
mation for the ions.

(53)

A. Nonlinear electromagnetic equations

For the electron dynamics we write the density and
pressureas i, + i, andp, + p, and the velocity as v, = 9,
where the equilibrium current and its gradient are neglected.
Here we define the y,z average of f(x, y, z,¢) by

fixt) = f dy dz f(x, »zt) = j dod¢

For completeness we wnte the nonlinear equatlons here and
reduce them further in Sec. IV.
The electron continuity equation is

5 f(x,0,4:1) .

P
;’t‘ VA, 45 VA, 41V Vg + V(1)
+ neV . vpe + neV" U“e =0. (54)
The parallel momentum balance equation is
v,
m.n, E +m.n.vg - Vy,
1 94, )
=en,b- V<l>+—°V<I>+
( B c at
—b.vﬁe—i.v(ﬁe"'pe)’ (55)
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where b is the unperturbed unit magnetic field vector. The
electron thermal balance equation is

. -
2¢+v5 VB, + Vg VB, +Tp.V -¥s + Tvp, - Vp,

+Tn,vp, + VT, +v,,bVp, + Tp, Vv, =0. (56)
For the ions we take

A= — (ne/T))P
and rewrite Poisson’s equation

ki® =dme(n, — n,),

(1+k21%)e®/T, =h,/n, .
The parallel component of Ampére’s law is
ViA" = - kiA" = (4‘ﬂ’n,e/c)v“e .

(57)

(58)

B. Linear electromagnetic fluctuations

Substituting Eqs. (49) into Egs. (54)-(57) and reduc-
ing with formulas (8)-(12), yields the following relations

between the ballooning mode fluctuations with
co&—(co — )(eq))—w -1:,1
ne * De Te De e
ed
kip¥ (o —o, )(T )+k||U||e=0: (59)

- ed
(01)"3 = - Uﬁk"(?) + Uzk"(p ) + (Cl) a)*pe)(—’n—‘ll) ,

(60)

(61)
where T./T, =p./p. — R./n,.

Eliminating v, and p, in Eq. (59) using Egs. (60) and
(61) yields

[_Hr(w L R 2
(-2=))

+[a),, b, g2 (1_ *p,) v2k2
®
+(a)De + v2k|[ \m*e(ﬂe + 1-—-

© o )] wo-Top

(62)

Expressing p./p, in Eq. (60) in terms of ® and 4,
yields the generalized Ohm’s law and parallel conductivity.
The resulting expression for v, leads to a fourth-order sys-
tem of equations. In the remainder of this section we consid-
er the simplified limit where only the first two terms of Eq.
(61) are used to determine the pressure fluctuation
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P./p. = (0,,./0)(e®/T,) in Eq. (60). The resulting oj is
given in Eq. (48) and gives the 4,-® relation in Eq. (50)
valid for 7, » 3.

Finally, using Eq. (50) to eliminate A4, in Eq. (62)
yields the ballooning mode equation

v (l_a)”,)_d__( k?
PR\ o ) dI\k? + (0%/A) (1 - w,,/0)
dq)) [ s 2492 Dye
x &2 1—i8,) + k%A
40 7( i6;) + De + P
+(1 _wi)(kfpi @ e )]d> 0. (63)
® ®
For
kl/w;, = (Col /W0l )k (1 +5°60%) > |1 —w,,. /0|,

the ballooning mode equation (63) reduces to the electro-
static ballooning mode Eq. (17). For c?*ki/w?,
<|1 - @, /0|, Eq. (63) reduces to

c,,,k2

R de(( 1+56%) )

+ [1 __*'+(1 ——ﬂ)(kz(l +£6%)
) @
_a’m(e))]q):()’ (64)
T0
where ¢, = 0l /o], .

Analysis of Eq. (64) shows modes similar to those in
Sec. II, except that the wavefunctions are not as well local-
ized to the outside of the torus, and thus the growth rate v, is
weak or marginally stable in this longer wavelength regime.
We now consider the mode coupling between the two & re-
gions. These marginal stable longer wavelength modes, how-
ever, can be driven by mode coupling, k, = k — k,, of the
shorter wavelength unstable modes.

IV. NONLINEAR EQUATION (MODE COUPLING,
SATURATION, AND TRANSPORT)

In this section we give the reduced nonlinear equations
that describe the coupling of the short wavelength electro-
static fluctuations to the longer wavelength electromagnetic
fluctuations. The long wavelength k, ~®,,./c regime is ex-
pected to produce the dominant transport. Here we investi-
gate the nonlinear equations analytically reserving for future
studies their numerical solution.

First we discuss the magnitudes of the nonlinear terms
and the mixing length level of saturation. We note that in the
electrostatic limit the equations are the same structure as the
toroidal 7, equations where the mixing length level of satu-
ration was shown in Ref. 7.

A. Mixing of the electron pressure

In the nonlinear regime there are two mixing rates: (1)
the E X B mixing frequency € determined by the time for
convection around the vortex given by @, (x, y); and (2) the
spatial rate of mixing k ;' determined by the distance along
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B, required for going around the magnetic vortex (or is-
land) given by A, (x, y). The EXB mixing rate is given by

Qp = (ck.k,/B)®, = (k,r,e®,/T,)o,, , (65)

stochastic EXB transport at the satura-
.- The magnetic mixing rate is given by

(66)

which produces13
tion level Oz ~

k= (k.k /B)Ak,

which causes stochastic transport when k '~k . For elec-
tromagnetic fluctuations with E, ~0 the mixing rates are
related by

|] = (QE/w) >

and the saturation levels o ~Q; and k §
tuation amplitudes
(]

e 1 ]o —X =L (67)
T, k,r,l@ Bk
Studies of test electron orbits in tokamaks with such levels of
electromagnetic drift wave fluctuations show global stochas-
ticity with transport well described by the diffusion approxi-
mation.

For 7,, €, well past their threshold values, the linear
instability may continue to grow until the mixing rates are
sufficiently rapid to eliminate the mean electron pressure
gradient over the width #/k, of the fluctuation. Thus we
estimate for the saturated state that

vE'v(ﬁe +pe)=0! B.v(ﬁe +ﬁe)=0’ (68)

in the strongly turbulent state. Both conditions in Eq. (68)
determine the same mixing length level of the pressure fluc-
tuation,

< )1/2 ~e

~ki yleld the fluc-

8B, Kk

R
k.| | dx
If we assume that the rate of mixing () saturates when
~ @y | ~¥, (consistent with Ref. 11) and the rate of
magnetlc mixing when & '~k {, then the nonlinear fluctu-
ations are consistent with the quasilinear fluctuation equa-
tions (59)—(61). For example, using the first two terms in
Eq. (61) and Eq. (69) yields
- 1 / 2 )1/2, (70)
k.| \ Rry

ed — (2] p e _ Yk 1
consistent with ¢ ~ 7, . Using level (70) for ® and the rela-
tion (50) gives for 4,

(69)

Te *pe P. WDye ern

eA“ - 1-— w*pe/a) Ck" 1
Te 1—- a),”,,/w + Czki/a)f,e @D ye ern
kD 1
. [ il + UA (71)

Oye ko1, [(7./26,)"% + Pk} /02, ] ’

which is consistent with & | Ry -

Thus we argue that in the strongly unstable regime the
fields saturate to within numerical constants at the level
where Qp = 7, and k '~k ), with p, ~p./|k,|. In this re-
gime the actual electron motion is a stochastic diffusion
since the conditions found in Refs. 11, 12, and 17 are satis-
fied.
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B. Nonlinear model equations

To test the scaling arguments given in Sec. IV A and to
determine the fluctuation spectrum quantitatively, we pro-
pose further theory and simulations of the dimensionless
nonlinear equations derived in this section.

We define the dimensionless space-time variables by

x_)pei'x’ y—’peiy’ z_’rnz, t—)rnt/vei' (72)
We scale the amplitude of the fields as follows:
&:E—e‘—ﬁ’ U"e=pei v,
pe Tn vei rn
(73)
e® pei ev,; A" ﬂ Pei
= ¢ » A s
T, r, cT; 2 r,

where B, = 8wn; T,/ B?. The equations are simplified by con-
sidering the high density limit »,, » @, and using quasineu-
trality, where

ﬁe ﬁi TP el

n n;

H

é. (74)

r

e n

With these scalings Ampeére’s law reduces to
v=V%4. (75)

Using (74) and (75) to eliminate 7, and v, in Eqs. (54)-
(56), we obtain the following three coupled field equations:

9¢
1-v2
( at

d¢
=[1-2¢, +7(14+17,)V}] =
[ €, + 7( +")l]ay

+2e, %+ [4,V24]

+% ('aa_z vid *Ei [4.V3 4 ]) +d.Vig, (76)

B)aA Y b B
Vv — —X —r—[4 —— 4 —
(l o az [‘” "o T AF]
1
LR S )
_nva, (17)
%: — [7(1 +7,.) —2I7¢, ] 21"1'6,,3—5
—~ 7[¢,P] —2T'7e, ——(7’+ )
dy
avid B, )
-T — Zir4,v4
( oz 21'[ * ]
+K1V17’+K"Vﬁf’. (78)

In Egs. (76)~(78) we include electron cross-field diffusion,
resistivity, and electron thermal conductivity to absorb ener-
gy transformed to |k |— o, which is outside the range of
validity of the fluid equations. Using the classical transport
coefficients, the dimensionless coefficients are
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. T .
i e (v")( ! ) | p=051 (L) ,
Uei T'l vzi

«, =311 (v,r,/v,) (T,/T)),
and

Ky = 2.11 (v, /vr,) (T,/T;) .

In reducing Eqs. (54)-(57) to (76)—(78) we assumed
that the dominant nonlinearities are the EXB convective
derivative and the B - V bending of the magnetic field lines
resulting from the perturbations in the magnetic field lines.

In writing these two nonlinearities it is convenient to intro-
duce the Poisson bracket operator defined as follows:

B-Vf= —%-VA XVf= —[4,f], (79)
vy Vg=2-VéxXVg=[dg], (80)

with the property [/fgl, = —3d, [(df/dy)(g)]
=4, [ f(dg/dy)]. We define the volume average by

(F)= V_‘fd3xF(x,y,z,t) =L;1J.dx7'(x,t)

and note the properties (4[ f,g1) = ( f[gh]) = (glh, f]).

The nonlinear model in Eqs. (76)-(78) reduces further
for the case of flat density gradients 7, — oo . The reduction is
given in the Appendix.

C. Anomalous fluxes and energy conservation

The essential cross-field correlation functions, such as

9. (x) = (v,p.), determine both the quasilinear evolution
of _15,, (x,t) and the flow of fluctuation energy between the
three field components of the total fluctuation energy
E=E, + E, + E,, where

E =E, =} + (V$)?),
E,=E, =1((V’4)> + B,/27(V4)*) ,
E,=E,=K({P)).
The four cross-field correlation functions required for d,E,
and d,P, (x,t) are

(81)

dy
=7 (2) 7. (%),
_ B y (82)
Q(x) = (VET) = — (vhy- V) ,
W(x) = (P,by*Vv) =(T>@),
az

where f)o =B/ |B| = $ + (€,/9)0=2. In Egs. (82), q., is
the EXB flow of electron thermal heat and ¢, is a magnetic
flutter thermal flow. The work done by the parallel electric
field on the electron fluid is Q and the work done by the
parallel compression of the electron pressure is W. The fluc-
tuation modified collisional transport flux is

dP, B, (A4 ~)
5 = — K} K —|—V,P).
ga (x) L o + K 2 (ay I

The net thermal balance equation follows from averag-
ing over y,z and yields the transport equation
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aa}:e = - a—i(Pev,, +P, A ")~3 AR
_2 P,by- Wy, — 2 P, 9 B
3 3 “ax B
= —0,(4e +qu) —%qes —% w
i) w

where P2 is the externally injected electron heating. Sub-
tracting 9P, /3¢ from the total pressure balance leads to Eq.
(78) for 4,P,.

The energy balance equation can be written in several
forms (Refs. 5-7). In terms of E,, ; in Eq. (81) we have
from Egs. (76)—(78) that

Do e, (gu) +-H0) —d (V.Y
dt T

E, , :

ddt = — Q) + (W) — (V. 4)%),

dE
dt" = (14+9,){ge) — 2I'7€, (g ) + 2T 7%€,(ge )

— (W) —k, (V. P)?) — i ((VyP)2) . (84)
From which it follows that
Er=E, + (I/)E, + (1/T7)E, (85)
satisfies
5: = (1 4+ 7.){(qes) + 27€,(ges)
—d . ((V,6)*) —n{(Vi4)?)
— K, (V. P)?) — i, ((V, P)?) . (86)

Further studies of the saturated nonlinear states pre-
dicted by Eqgs. (76)—(78) are in progress to determine the
dominant space scales and relative importance of the electro-
magnetic and electrostatic transport mechanisms.

D. Electron orbits and stochastic diffusion

Although the anomalous fluxes given in Eqgs. (82) are
straightforward to evaluate in the quasilinear approximation
by using the linear fluctuations given in Egs. (15), (16), and
(50), the quasilinear approximation breaks down at the mix-
inglength level of saturation (69). At the mixing length level
the circulation time 1/Q around the electric vortex is com-
parable to the linear mode frequency. Renormalized elec-
tron-wave propagators gi(v) = ((® —wp, — k |’,"v — Qg

+ iv) ™!) describe this regime for R, = Q7. 1. The de-
velopment of the anomalous flux formulas in the regime
Rz = 1is a complex procedure which is perhaps less useful
than the alternate approach advanced by Horton et al.'"""’

For the toroidal transport problem the cross-field (x,y)
electron motion is given by Eqs. (10) and (11) of Ref. 11:
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by d4

—_ = - 32 4y, sind,

dt B 6y+B ay+ ° (87)
dy cod vy 4

L= — — L —(A4,+A4) +vpcosb,.

dt - Bax B ox )t

with 4, (x) = (By/2R)sx* vy, = (cT,/eBR) (W} + v})/v3,
and 6(¢) =z(t)/gR. In this model the parallel motion
(z,vy ) along b, is given by the elliptic functions for trapped
and circulating electrons.

For a ballooning mode fluctuation with k, = k,56 the
characteristic frequency shift resulting from the x,y motion
in the mode is

kv, = Q"+ wp, (v},07) (cos 6 +s6sin 6) ,
with
Q"=k-%z +v,(k, +B,/B)=Qg + k], .

For R 2 1 the stochastic diffusion from the resonance
Qg ~ |w,| gives the anomalous transport

A, (T, T,
Yo s/ (k) ~ (c )~ c (¢

e\ eB ) w,rp \ eB

using Dz ~p,v.:/?7. and the correlation length A, ~c/ @, -
For the longer wavelength part of the spectrum, the motion
is stochastic from the resonance overlap Q; ~k v, for cir-
culating electrons and from Q,~w,, =€'%,/qR for
trapped electrons. In this regime the stochastic diffusion is
dominated by trapped electrons and the net thermal diffusiv-
ity given by

(88)

), (89)

2

Xem = €70y, /0, = rc*v, /qR %02, , (90)

for QO X w,,, implying the confinement time 75 = a°/4Y
= gaR *w?,/4c’v,. The condition on the turbulence level
can be expressed in terms of r;, by using Oz ~k, bz, and
V8P, = D p. = e k,6p, to write Qp~%, >€",/qR.
Note that Ref. 11 finds that Eq. (90) is independent of r,
when the turbulence level satisfies the condition Q5 R @,,.

The test particle transport simulations in Ref. 11 show
that once the fluctuation levels are sufficient to produce glo-
bal stochasticity, the deviations of the diffusion coefficient
from Eq. (90) are rather weakly dependent on the details of
the fluctuation spectrum used in the test particle Hamilto-
nian. This hypothesis was tested by using a 5X § isotropic k,
space with ¢(k, ) = ¢,/k ', where m = 1,2,3, and comput-
ing the stochastic diffusion coefficient for variable ¢, s, v,
and u = w,/k,. Once the electrons are globally stochastic
the diffusion is essentially determined by the correlation
scale length /. =1/Ak, and the decorrelation rate
17 '= Oy ~w,,. The diffusion does increase with increasing
¢,, but less rapidly than linearly.

The formula given in Eq. (90) differs from the results of
Eq. (6) of Ref. 3 and Eq. (32) of Ref. 4,

Xe =0.13¢%, (1 + 1,) /0% qR .

This result was derived from a quasilinear formulation and
the use of linear sheared eigenvalue mode characteristics.
The factor 77, (1 + 7, ) was reported to come from fitting the
numerically computed result for @, . The value of k, R w,,./c
is found using the amplitude limit ¢¢, /B~2nw,/k? and
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carrying out the kX, summation in the quasilinear transport
formula for the resonant electrons. As noted in Sec. I, our
result for the electron diffusivity differs significantly from
that in Refs. 3 and 4 in that Eq. (90) does not show the
strong, explicit dependence on 7,. Experimental evidence
from H-mode plasmas suggests that y, should not contain a
strong 77, dependence. Specifically, %, is large in the bulk
region of the H-mode discharges, but confinement is ob-
served to be improved.

-V. CONCLUSIONS

Using toroidal ballooning mode theory we show that the
electron temperature gradient 7, drives the lower hybrid
drift mode unstable because of charge separation from the
unfavorable grad B and curvature drifts. We analyze the
nonlocal hydrodynamic regime keeping the electron fluid
compressibility and the FLR heat flux to obtain the stability
threshold and characteristic unstable fluctuations. We com-
pare these results with local kinetic theory where the wave
electron resonance g; = [@ — wp, (2,0} ) -+ iv] ™' is kept
along with Jj(k,v,/w,) and the driving force
7.(v*/2 —3) to obtain the kinetic theory threshold and
spectrum of linearly unstable fluctuations.

Including magnetic perturbations from 4, in the hydro-
dynamic analysis we show that the short wavelength regime
k, =w, /v, is electrostatic with substantial growth rate
Vi~ |oi >k v,, while the long wavelength regime
k, ~w,./cis neutrally stable with E, €|k, ®|.

We introduce a nonlinear hydrodynamic model with
the fields ¢, 4, and 8p, that is closely related to earlier 7;-
mode models®>” and the electromagnetic edge turbulence
equations of Bekki and Kaneda.'® For the nonlinear model
we find only the energy integral of the motion for the isolat-
ed, dissipationless system. For the unstable, dissipative sys-
tem we may thus expect a result between the two-dimension-
al (2-D) inverse cascade and the 3-D cascade, since the
system is only weakly 3-D with V, >V, . We suggest that it is
important to perform a complete analysis of this nonlinear
model system for the amplitude and fluctuation spectrum of
this drift wavelike system. Here we give the mixing length
formulas for the expected saturation level with & |'=k { and
Qp ~op ~Ys.

We note here that similar equations without magnetic
shear are solved by Bekki and Kaneda'® for electromagnetic
edge turbulence. In that work with a 3232 16 grid the
buildup of large amplitude low k£, modes is reported. That
simulation shows that the transport is dominated by k, = 0.
In the present problem we expect nonlinear magnetic vorti-
ces with & |'|" + k‘”’ =0 may arise for not too strong a magnet-
ic shear s < 2g.

For saturated mode spectra of the form ¢,/k ", with
m = 1,2,3, the associated vortex circulation frequencies are
oftheform Qp ~ ¢,k 2, withp = — 1,0, + 1, with the evolu-
tion of distributions of test electrons given in tokamak geom-
etry by Horton er al.'" For the long wavelength k, ~w,./c
part of the spectrum, the stochasticity arises from the over-
lapping of the z,»; resonance with the Q, wp,, and k |'|"v"
motions producing a strong diffusion of the trapped elec-
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trons and a weak diffusion of the passing electrons. In this
regime we predict the neo-Alcator or Merezhkin-Mukhova-
tov formula (90) for the thermal diffusivity.'*

In summary, the present work shows that the toroidal
electron temperature gradient driven lower hybrid turbu-
lence leads to an injection of small scale p,; turbulence at or
just above the transit electron frequency, as shown in Fig. 6.
The small scale electrostatic turbulence directly produces
the anomalous y, given in Eqs. (46) and (47), which is
larger than the electron neoclassical plateau value, but small
compared with the electron diffusivity obtained from ¢/w,,
and p, scale drift turbulence. The importance of the p,; tur-
bulence, however, is the injection of a drift wave turbulence
near the electron transit and bounce frequencies, together
with the known property of the quasi-2-D (V, > V) drift
turbulence to mode couple energy to both larger and smaller
spatial scales.

The theory presented has direct implications for the y,
formulas given by Horton et al.!' and Parail and Yush-
manov.'? In Ref. 11 the transition from c/w,, to p,-scale
turbulent transport was reported from test electron diffusion
theory and simulations. Recent transport studies by Parail
and Yushmanov'® based on the transitional formulas de-
rived in Ref. 11 for ¢/w,, and p,-scale drift turbulence ex-
plain well the power balance y, in both Ohmic and auxiliary
heated tokamak discharges. The present work presents a
mechanism in toroidal geometry that may explain the source
of this turbulence and the associated anomalous electron
transport. In particular, we suggest here a subregime in the
transition from the low density neo-Alcator and Merezhkin—
Mukhovatov scaling given in Eq. (90) to a modified c/w,,,
scaling given by Eq. (89) at higher density or beta poloidal.
At still higher values of beta poloidal, the transport is given
by the p,-scale turbulence in Ref. 11 and compared with
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FIG. 6. Qualitative diagram of the k, - fluctuation spectrum. (a) Charac-
teristic frequencies and resonances versus inverse scale length k, and (b)
the associated mixing length level of the fluctuation or vortex amplitude as a
function scale size.
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experimental power balance studies by Parail and Yush-
manov.'?

From the theoretical point of view, further work using
nonlinear simulations and transport theory will be required
to determine the conditions for the transitions between the
regimes and to estimate the numerical coefficients in the
transport formulas. Nevertheless, from an experimental
point of view the existence of such electron instabilities
which appear as the direct analog of the toroidal 7;-mode
turbulence® may be sufficient reason for adopting the asso-
ciated anomalous y, formulas for empirical studies of power
balance in tokamaks.
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APPENDIX: REDUCED NONLINEAR MODEL
EQUATIONS IN H-MODE PLASMA

For flat density profiles, it is important to redefine the
dimensionless space-time variables by

x—)peix’ y_'peiy’ Z_’rTz9 t_’th/vei' (Al)
We rescale the amplitude of the fields as follows:
P. —Peip Pl _Pei,
Pe rT ’ Ve; rr ’
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Then, Egs. (76) and (77) reduce to
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where d,=9.'d,, nj=n."n, & =79;'x, and
Kk =1. ',;. For r, > R /2, Eqs. (A3)-(AS) reduce to
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