
Plasma Physics

Generalized gyrokinetics
To cite this article: P J Catto et al 1981 Plasma Phys. 23 639

 

View the article online for updates and enhancements.

Related content
Linearized gyro-kinetics
P J Catto

-

Limitations of gyrokinetics on transport
time scales
Felix I Parra and Peter J Catto

-

Electrostatic turbulence in tokamaks on
transport time scales
Peter J Catto, Andrei N Simakov, Felix I
Parra et al.

-

Recent citations
Orb5: A global electromagnetic gyrokinetic
code using the PIC approach in toroidal
geometry
E. Lanti et al

-

Improved linearized model collision
operator for the highly collisional regime
H. Sugama et al

-

Practical gyrokinetics
Peter J. Catto

-

This content was downloaded from IP address 128.112.200.107 on 20/03/2020 at 22:27

https://doi.org/10.1088/0032-1028/23/7/005
http://iopscience.iop.org/article/10.1088/0032-1028/20/7/011
http://iopscience.iop.org/article/10.1088/0741-3335/50/6/065014
http://iopscience.iop.org/article/10.1088/0741-3335/50/6/065014
http://iopscience.iop.org/article/10.1088/0741-3335/50/11/115006
http://iopscience.iop.org/article/10.1088/0741-3335/50/11/115006
http://dx.doi.org/10.1016/j.cpc.2019.107072
http://dx.doi.org/10.1016/j.cpc.2019.107072
http://dx.doi.org/10.1016/j.cpc.2019.107072
http://dx.doi.org/10.1063/1.5115440
http://dx.doi.org/10.1063/1.5115440
http://dx.doi.org/10.1017/S002237781900031X


Plasma Physics, Vol. 23, No. 7, pp, 639 to 650, 1981 
Printed in Northem Ireland 

0032-102818 1/070639-12$02.00/0 
Institute of Physics and Pergamon Bms Ltd. 
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Abstract-By retaining the magnetic moment p to higher order in the gyroradius over scale length 
expansion and employing a gyrokinetic change of variables a full finite p derivation of the gyrokinetic 
equation is presented within the eikonal ansatz for arbitrary magnetic fields and I.L dependent 
unperturbed distribution functions. 

1. INTRODUCTION 
THE FETENTION of kinetic effects on tearing modes and other MHD disturbances, 
as well as the study of drift-AlfvCn fluctuations, has become an important area of 
research in both toroidal and tandem mirror geometries. For such modes the 
gyroradius p is typically smaller than the shortest unperturbed scale length Lo and 
the wave frequency o is low compared to the smallest cyclotron frequency. In 
addition, the parallel wavenumber k,, is typically small compared to the perpen- 
dicular wavenumber k,. Consequently, gyrokinetic treatments employing an 
eikonal ansatz provide the most expeditious means of obtaining the appropriate 
reduced kinetic equations while still retaining the full finite gyroradius modifica- 
tions. 

Since the classic work of RUTHERFORD and FREEMM (1968) and TAYLOR and 
HASTIE (1968), gyrokinetic derivations have usually been restricted to electrostatic 
(RUTHERFORD and FR", 1968; TAYLOR md HASTE, 1968; J m ,  1971; 
CATTO, 1978) or low beta (NEWERGER, 1976; HITCHCOCK and H A Z E L ~ Z ,  1978) 
perturbatioiis and/or axisymmetric configurations ( J m ,  197 1 ; NEWBERGER, 
1976). Only the recent work of &TONSEN and L.4h;~ (1980) gives the full finite 
beta gyrokinetic equations for arbitrary magnetic field geometry. Here we present 
an alternate derivation which we believe to be somewhat more transparent and 
algebraically less cumbersome. Unlike the technique of A\TONSEN and LSE 
(1980), our derivation is not an extension of the techniques of RL'IHERFORD and 
FR" (1968) or TAYLOR and HASTE (1968). 

The technique used here is an extension of CATO'S (1978) gyrokinetic change 
of variables which permits the treatment of magneticmoment dependent unperturbed 
distribution functions Fo. The effects of such Fo are retained by employing the 
magnetic moment CL to one order higher in p/Lo than is customary. As a result, we 
are able to explicitly obtain the unperturbed distribution function to next order in 
p/Lo  and thereby show that the indefinite form (RL'IHEWORD and FR", 1968) 
must correspond to expansion of p about its lowest order value po= v,'/2B, as 
well as the diamagnetic correction from the expansion of its spatial dependence 
about the guiding center location. 

* Permanent address: Princeton University, Plasma Physics Laboratory. Princeton. NJ 08534, 
U.S.A. 
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Working with the higher order magnetic moment has other advantages as well. 
Most importantly, it allows one to write the guiding center velocity fill in a form 
containing the next order p/Lo corrections. This ability to retain the distinction 
between fill and the parallel particle velocity nil allows a proper treatment of the 
p/Lo corrections to U\(. In particular, we demonstrate that the parallel 
velocity correction found by BRAGINSKII (1956); BOGOLIUE~OV and MITROPOLSKY 
(1961); B ~ O S  (1967); HAZELTINE (1973), which is normally neglected as 
small, turns out to be automatically absorbed by the higher order expressions for 
p and energy. 

In Section 2 we determine the gyrokinetic variables having the preceding 
properties. Section 3 then uses these variables to derive the gyrokinetic equation, 
with algebraic details being relegated to the Appendix. 

2 .  GYROKINETIC VARIABLES 
Starting with the unperturbed Vlasov operator 

we desire to perform a gyrokinetic change of variables from r , v  to the guiding 
center variable R = R(r, v), the energy 

E = (v2/2) + (Ze/M)@,(r) (2) 
the magnetic moment p = p(r, v), and the gyrophase 4. We employ the notation 
B = IB/, ii = B/B, R = ZeB/Mc, U = / V I ,  and 

v = qii + u,(iil cos 4 +$ sin 4) (3) 
with q = i i  'v ,  VI= I v , ~ ,  v ,=i ix(vxi i ) ,  and the unit vectors b l ,  $, and ii 
forming an orthogonal system in which Q, x$ = ii. The quantities 2 and M are 
the species charge number and mass; e and c are the magnitude of the charge on 
an electron and the speed of light. The magnetic field B = B(r) is an arbitrary 
function of r satisfying the Maxwell equations. 

Using V,E = v, V E  = (Ze/M)V@,, and noting that Q, v = U, cos 4 and 
Q2 * v =  v1 sin 4 allows us to find 

vJ#J = u,-2ii x v 
v4 = VQ* 6, - (U,!/UL2)Vii ii x v 

so that did? becomes 

with V = a/aR (so that VR = I, the unit dyad), and 

(4) 
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When the gyroradius p is small compared to the shortest unperturbed scale 
length Lo, and the time variation is slow compared to the cyclotron motion, then 
to lowest order d/dt = -i%/a+. Consequently, the distribution function operated 
on by the unperturbed Vlasov operator is independent of 4 to lowest order. As a 
result, using the periodicity in 4 of this function, the next order expression for 
dldt may be gyroaveraged using 

(Q) = (27)-' Crd4 Q(R E, CL, 9, t )  (9) 

to obtain 

a =-+( / i ) -+(R>*V.  (5) a t  a ap 

It is important to note that the gyroaverage operation defined by equation (9) is to 
be performed holding R, E, p, and t fixed, rather than r, E, p, and t. 

The magnetic moment is an adiabatic invariant, which enables us, in principle, 
to determine an expression for p such that / i = O  to the requisite order 
in p/Lo (KRUSKAL, 1962). In addition, we desire to choose R such that 

(R> = fiii(R, E, p)i(R) +vd (11) 

with vd the magnetic plus electric drifts 

and filii the parallel guiding center velocity, which will be defined presently. By 
employing p to one order higher in p/Lo than the lowest order form po= 
vL2/2B(r), and noting that the appropriate choice for the guiding center variable 
R (CATTO, 1978) is 

1 
R = r i - - v x i i ,  R (13) 

the desired form of equation (10) will be obtained, namely 

It is not necessary to solve for p /Lo  corrections to po in order to derive the 
gyrokinetic equation. However, when po is employed (RUTHERFORD and FREMXV, 
1968) rather than p o t  pl, one must employ essentially the same equation for the 
p/Lo correction to the lowest order unperturbed distribution function. consequently, 
using po+pl has the virtue of explicitly displaying the dependence of the 
unperturbed distribution function on po+ pI. 

Taking R to be given by equation (13) and writing 

p = CLOf CL1(r, v) (15) 
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with po(r, v) = uL2/2B and pl/po - O(p/Lo), and noting that 

v,po = B-lv, 
vpo = -(pL,/B)VB - (q/B)Vii * v 
VR = I -V(n-'ii) x v 

V,R = n-'I x ii 
gives 

(17) 
ko = -pov V In B - (ull/B)v Vii v-  (Ze/M)v, V@, 
R = ulli i+(c/B)iiXV~o-v *V(R-lfi)xv. 

Evaluating (/.io) and (R) by noting that r = R  may be employed everywhere 
except for the qii term in R, we find 

(bo) = 0(cLoP2/.nLo2) 
2 

(R>=(ull)ii(R)+vd +%iiii - V x i i .  
252 

To obtain equations (18) we employ (v) = (ull)ii(R) = vllii + O(ullp/Lo) and 

(w) = ;uL2(I- iiii) + UI,2i i f  (19) 

to determine to lowest order that 

(-[v .V(IR-'ii) x?] * (I-iiii)) = ii x 

( - [v v(52-18) x VI a) = (UL2/2R)ii v x 6 ,  (20) 

The parallel velocity correction (uL2/2~)fi  v xii in (1) arises if p = po is 
employed (BRAGINSKII, 1956; BOGOLIUBOV and M~~~OPOLSKU,  1961; BAROS, 1967; 
 HAZEL^, 1973) because of the difference between the gyroaveraged parallel 
component of the particle velocity (U$ and the parallel component of the 'guiding 
center' velocity which from equations (11) and (18) is 

( pov . V In B + (q/B)v * Vii v) = (ullpO/B)V B = 0. 

a,,=(U/I)+(ui2/2R)8 a v x i i .  (21) 
The distinction between Ell, ( U I I )  and ull need not be made in higher order terms. A 
discussion of the need to distinguish (q) from Ell when the parallel current is 
non-zero (so that the magnetic field shears) is given in Appendix B of NORTHROP 
and ROME (1978). 

In order to determine the leading p/Lo correction to po we must evaluate p1 
by demanding CC. = 0 to the appropriate order. Solving ri. = 0 iteratively in p/Lo, 
the gyrophase dependent portion of p1 is found from 

v - Vpo - (Ze/M)V@, V,po + Rv x ii V,pl = 0. (22) 
Using V p o  from equation (16) 

V , ~ O = B - ' V ~ ,  l n v x i  'Vup ls  -- JPl 
ad 
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and integrating in 4 yields 

p1=-B-lVd ' v,-(u,,/4aB)(v,xf.Vf.v,+v,'V8 *v,x8)+(p1) (23) 

where a(pl)/d4 = 0. The gyrophase independent piece of pl, (pl), can then be 
determined by the constraint that the gyroaverage of the next order correction to 
C; vanish, namely 

(24) 
Equation (24) is a rather complicated constraint equation, however. Fortunately, 
and quite remarkably, (pl) can be easily determined by demanding that Cll also 
satisfy 

(v ' vpl- (Ze/M)VCP, * Vpl) = 0. 

$GI,' = E - (Ze/M)@o(R) - pB(R) 

is,' = E - (a/M)Qob) - poB(r) 

(25) 
with E defined by equation (2). Expanding CPo(r) and B(r) about R 

may then be written as 

~U,,'=~G~~~+~~B(R)+(CLO/~)VX~ *VB + ( c / B ) v x ~  .V@o. (26) 
Gyroaveraging equation (26), noting that ull and Cl, are equal to lowest order in 
p/Lo, and using equation (21) gives 

(27) 

The full expression for pl, equations (23) and (27), is in agreement with the 
Vlasov result of HASTE, TAYLOR and HAAS (1967) and the single particle result of 
NORTHROP (1963) and by direct substitution can be verified as being the solution 
of equation (24) (an extremely tedious calculation!). It is not obvious why 
demanding that the two definitions of Cl,, equations (21) and (25), be the same is 
equivalent to the constraint equation, equation (24) ; however, the same remarka- 
ble simplification has also been observed in single particle descriptions by NORTH- 
ROP and ROME (1978). Because Cl, rather than (q) enters in equation (25), the 
'pardel velocity correction' is property accounted for without explicitly 
appearing. 

(PI) = ($- G1I2>/2B(R) = ( U , ! / m b , , )  - a,,) 
= -(u!Ipo/a)8 v x 8. 

3. DERIVATION OF GYROKINETIC EQUATION 

Employing the vector and scalar potentials A and CP to write the perturbed 
magnetic and electric fields, the linearized Vlasov equation becomes 

with d/dt the unperturbed Vlasov operation defined in equation (l), and f and F 
the perturbed and unperturbed distribution functions. We note that F satisfies the 
unperturbed Vlasov equation (alar = 0) when 8 * TF = 0 and 

F = FE, F, R) (29) 
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with E defined by equation (2), p the solution of equation (7) satisfying @ = 0 to 
the appropriate order, and R the solution of f xR = 0 to the desired order with R 
defined by equation (8). In the next paragraphs we show that the expressions for 
R and p as given by equations (13), (15), (23) and (27) are of suflicient accuracy 
to describe F and derive the linearized gyrokinetic equation. 

When R and p are known to sufficient accuracy, then we may employ the 
operator of equation (1) and 

to obtain 

J -(@- ullAll/c)v V In B + (Ze/Mc)Allf 

and 

A x f - V F  =L a (Axf )+v .V(Axf ) -AxP(v .VInB)  ) B k  

where All=f  - A. Defining h via 

t )  - ullAil(r, t ) / c ]  A(r, t )  x f VF. (31) 

Equation (28) may be rewritten as 

1 1 
RC R C  

+- v * Vi xA +- (v * V In B)A x i }  * V F  

where we have employed 

R-'I x ii = V" (R-b  x i). 
In order to retain the full finite p modifications we treat (v * A( - c l@l. Then 
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taking la/atJ= U, lii . VI = kll<< (U x VI = k,, IvI - 21, = (2T/M)1’2, and (V, I - l/vt, we 
consider the most general ordering 

0 - kiutdLo - kllut 
where Lo is the shortest unperturbed scale length and k,Lo >> 1. Because the next 
order corrections to equations (13), (15), (23) and (27) are smaller by p/Lo, we see 
that these equations give R and p to the desired accuracy. In addition, the 
A XP . T F  term may be neglected in equation (31). As a result, equation (32) may 
be simplified to 

where from equations (23) and (27) we may determine BVUpl to be 

1 
4R BVvpl = -vd - - &(a x vii - vii x ii) : V,VL 

(34) VI1 
4R 

-- [(ii xvii -vi xii) * VI +v, - (ii xvii -vi  xii)] 

1 
R -- [v,v, a x  V In B +$$iv, V x ii + gul2ii + qv,)ii - Vn]. 

Our double dot convention is ab : cd = a * d b c. 
Performing the gyrokinetic change of variables on the dldt on the Ieft side of 

equation (33), taking -i?dh/a4 = 0 to lowest order, and gyroaveraghg the next 
order equation yields 

-(B/c)(v * VA * V,pI)-(UII/C)(V * V1 A)-((AlI/c)v Vh V) 

- ((a - ul,AiI/c)v v In B )  + ( ~ e / ~ c ) ( ~ , ~ > i i  v@,] 
where O(p/Lo) corrections to gyroaveraged quantities may be neglected. 

In order to explicitly evaluate the gyroaverage we consider the high mode 
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number ballooning limit in which eikonal forms are appropriate for @ and A 

[@(r, t), A(r, t)] = [&I, exp [iS(r) - iwt] (36) 
with f.VS=O, VS=jk,=ik,(r) and 6 and A slow functions of r. Because 
kll<< k,, we may then employ V@= ik,@ and VA=ik,A everywhere on the 
right-hand side of equation (35) except in the ullf V(@-v A/c) term. Expand- 
ing S(r) about R, and defining 

and 
- iVS = k, = k,(e, cos CY + & sin a) (37) 

L =a-’k, * f x v = ( k , u , / ~ ) s i n ( ~ ~ - ~ )  (38) 
we may then write 

The gyroaverages may then be performed by employing 

where a prime denotes a derivative with respect to argument. The gyroaverage of 
equation (35) then yields 

ZeaF a ic 
MaEat +-k,xf-oF) B 

X [(a -9 Ail)J0 + 5 BllJl] 

ah 
--S(filif+vd) * o h =  
a t  

with 

and where @, All, and Bll are all functions of R, r. Equation (41) is obtained 
without recourse to a gauge for A. The algebraic details necessary to obtain 
equation (41) from (35) are presented in the Appendix. 

Because kll << k,, the distinction between ull and fill becomes unnecessary so that 
we define g as 
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Equation (41) then becomes 

(44) 

(45) 

Seeking an eikonal solution form for g 

g = g'(R, E, P )  exp [-iot + iS(R)] 
with VS(R) = kL; and inserting equation (36) and writing P 
(44) becomes 

= a/aS, equation 

where i, 6, AI, and Bl, are all slow functions of R. Equation (46) is the final form 
of the linearized gyrokinetic equation and is to solved for g(R, E, g) which is then 
inserted into equations (31) and (43) to obtain f. In order to form moments of f, 
however, it must be written in terms of r rather than R by using equation (39) and 
expanding (45) about r to obtain 

g(R, E, P, t )  = g(r, E, P, t) exp (+-I. (47) 

As a result, writing f = f(r, E, p )  exp [iS(r) - iot] and using equation (31) (with the 
A xP * V F  term neglected as being down by p/Lo), (43), (45) and (47) gives 

+ exp (-iL) (48) 

where the distinction between r and R need not be retained in the slow eikonal 
amplitudes 2, 6, A,,, and B,,. Note that the gyrophase integration implied by 
du3 = 2B dE d k  d$/luliJ will result in additional Bessel functions. AU gyrokinetic 
techniques discriminate between particle r and guiding center R locations perpen- 
dicular to field lines. The distinction between R and r is a feature of a particle's 
trajectory and independent of whether an eikonal or ballooning formalism is 
employed. Equations (46) and (48) are in agreement with the recent results of 
ANTONSEN and LANE (1980). 

In equation (46) we observe that S is the guiding center location along a field 
line (and is related to the particle location by S = s + R-'v X n Vs). In performing 
the trajectory integral solution of equation (46) it may be necessary to retain the S 
dependence of Jo(k,uL/R) in some limits (BELLEW and BAKSHI, 1976; and h s -  
KER, 1980), although it is often neglected. 

A closed system of three equations in the three unknowns &, All, and Bll can 
then be obtained from quasi-neutrality 
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and the two non-zero components of Ampere’s law 

(50) 

where 1 is used to denote a sum over all charge species. In writing Ampere’s law 
it has not been necessary to specify a gauge, since within the eikonal formalism, 
the neglect of displacement current allows the final form of equation (50) to be 
obtained by writing A as in equation (A8) with the definition (42) for Bit inserted. 
In order to obtain k, j, where f = Ze d3v vf, one employs V * f = 0 to obtain 

As a result, it is often convenient to employ 

in place of the parallel component of equation (50). 

4.  DISCUSSION 
In the preceding sections we have presented a derivation of the gyrokinetic 

equation which employs a gyrokinetic change of variables incorporating both the 
higher order expression for the magnetic moment as well as the distinction 
between the particle and guiding center location. Equations (46) and (48) repres- 
ent our principle results, which when solved and inserted in quasi-neutrality and 
Ampere’s law give a closed system of equations. In dealing with equations (46) 
and (48) it should be kept in mind that the distinction between R and r in the slow 
eikonal amplitude 6, A and g of equations (36) and (45) need not be retained, 
and that F is taken to be of the form F(E, p ,  R) with P OF = aF/aS = 0. 
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APPENDIX 
In order to obtain equation (41) from (35) by inserting (40), some vector manipulations are 

required in the terms multiplied by aF/ap. For simplicity we fmt consider only the terms in @ in order 
to illustrate the method. This restriction will be removed shortly. 

i((Bk, .V,p,)@)+(@v-Vln B)=-ik, *vd(@) 

Inserting equation (34) into the @ terms of equation (35) and using (40) yields 

iUll -- (i x V i  -Vi x i )  :((k,v, +v,k,)@) 
4R 

-iR-'(kL v,v,@) * i x V  In B (AI) 
-iR-'u,,(i .Vxi)(k, .v,@)+(*)-Vln B 

= -ik, ~vd@Jo+(u,ull/2k,R)J,@(k,xi -Vi .k,xi-k, -Vi .k,) 
+@Joull i  * V In B. 

Using 

and noting that 

k, x i  -Vi - k, x i + k ,  *Vi - k, = kL2V - i = -k,% .V In B 

k, . V I  * k,= -k, Vk, * I = -i Vk, - k, = - k , i  .Vk, 

since VxkLXO, we may write 

k, x i  .VI * k, xi -k, - Vi * k, = -k,*i .V In B + 2 k , i  .Vk, .  

As a result, the desired equation is obtained, namely 

Next we consider the terms in A. In order to simplify this portion of the calculation we first gather 
up the ulIAIIJ,JB term that enters in a manner similar to the @JJB term. Employing equations ('42) 
and (A4), we find using equation (40) that 

-ik, * v,ull(All)+ (i /4n)(i  x V i  -Vi x i )  : (v,v,k, v,Al) 
-(i~,2/4R)(i  X V i  -Vi XI): ((v,k- + k,V,)A,l)-V% :(~-~,.41> 
+$I .V In B(A,)+(Ze/M)(i *V@,)(A,)+u~Al,v-)~ v In B 
-(iul/R)(Al$, - V ~ V , )  i x V  In B 

= -ik * vdu,iJo + 
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Finally, we evaluate the remaining A terms in the aF/ap coefficient. In order to perform this task we 
first note that we may write A as 

A = k,-’k,k, * A + k,-’k, x bk, X fi A + i f  * A (A81 

in order to gather up terms in k, * A and .el1. In addition we use d * V I  = -i x (v X a) and d X 
[ ( V x i ) x i ] = V x i - i 8  - V x i i = - ( i  . V i ) x i  to obtain the useful expression 

k, - V x ir = A * Vi - k, x 1. 

Using Vxk,  = O  and equations (40) again, we then may gather up the Bll terms from 

- ulIh O(A v,)- ik, * v,(v, * A)+(i~, , / f fn)( i  ~ V i - V i i  xi) :((v,A+Av,)k, * v,) 

+ (i7v,I/ffn)(Ar&, * v,v,) . V X i  - u~\VVB : (AV) 
-(iull/~)(PxVi-VixI):((v,k,+k,v,)v, *A) -u l l i  -Vi * (v,A,) 

Consequently, by employing equations (A6), (A7) and (A9), (41) may be obtained from (35). 


