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The collisionless nonresonant force by low frequency waves has been thought to be capable of
driving the nonresonant current. However, for a single particle, the ponderomotive force is in the
direction of the gradient of the wave field energy. For cold plasmas, the Reynolds stress acting on
the Lagrangian fluid element fully counteracts the nonresonant force offered by the quasilinear
electromagnetic force. For hot plasmas, the collisionless nonresonant force is also cancelled by the
nonlinear kinetic stress force. Therefore, in collisionless plasmas, none of the ponderomotive forces
by low frequency waves can drive the nonresonant current. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2397584�

I. INTRODUCTION

Low-frequency waves, Alfvén waves or fast waves, were
considered as an attractive mechanism of driving plasma cur-
rent because of its potential high efficiency, no density limit,
and the convenience of high power rf generating and
launching.1,2 However, electron trapping may dramatically
reduce the current drive efficiency in the subthermal resonant
regime, although possibly the momentum carried by trapped
electrons will be retained and returned by collisions or the
bootstrap current in the steady state.1,3 Alternatively, the pos-
sibility of increasing the current drive efficiency by helicity
injection has been proposed by Ohkawa.4 This idea was later
described5,6 as helicity balance between the input by the
wave and the dissipation by resistivity and viscosity, and
developed7,8 for arbitrary polarization waves. The concept of
helicity conservation during plasma relaxation has also been
demonstrated theoretically9 and applied to form and sustain
the plasma current in toroidal pinches, spheromaks and low
aspect ratio tokomaks.10–12

The scheme of helicity injection current driven by low
frequency waves has also been referred to as a “dynamo
effect” or a “ponderomotive force” of the applied waves. The
general form of the rf-induced force has been developed by
Klima,13 Elfimov et al.,14 and Tyspin et al.15 in a two-fluid
model; and by Chan and Chiu16 and Fukuyama et al.17 in the
kinetic formalism. It was found that the parallel plasma cur-
rent can be maintained by means of forces due to the radial
gradient of rf field amplitude. Moreover, this mechanism was
considered to be typically nonresonant because the pondero-
motive force acts on the bulk plasma rather than on resonant
particles. It has been argued, even in the collisionless case,
that the nonresonant force can exist due to spatial nonunifor-
mity or spatial dispersion. If this is true, this nonresonant
current drive in toroidal geometry does not depend on
trapped particle effects and the current drive efficiency is
expected to be strongly increased.

However, there is a significant disconnection between

these nonresonant rf forces13–17 and the ponderomotive force
in the single particle picture. The well-known ponderomotive
force is only in the direction of the gradient of second-order
field quantities. For pure propagating waves without any dis-
sipation, such as collisions, resonant �Landau� damping or
mode conversion, the rf field is fully symmetrical in the
propagating direction. It is thus expected that nonresonant
plasma cannot feel any force. However, previous results
nonetheless find a parallel force, which depends on the cross-
field variation of the rf field and acts on the nonresonant
plasma. Therefore, it is of great interest both in theory and in
practice to clarify the incongruity between the physical
single-particle picture and the mathematical treatment of the
nonresonant current drive.

In fact, Litwin18 found that the only single particle force
in the parallel direction is the frictional ponderomotive force
and that the steady-state collisionless dynamo effect is absent
in the double-adiabatic magnetohydrodynamics �MHD�
theory. Although Tsypin et al.15 pointed out that the Landau
damping due to viscosity is important but is omitted in Lit-
win’s model, it should be noted that the Landau damping
implies that the force relies on the resonant effect. However,
in Ref. 15, where the contributions from Reynolds stress and
nonlinear viscosity are included in the total ponderomotive
force and the first order perturbation is calculated from the
drift kinetic equation, no result is given to show the absence
of the collisionless nonresonant drive.

In this work, we resolve the apparent incongruity be-
tween the force on a single particle and that on a Lagrangian
fluid element. It is found that the force due to the movement
of a single particle along the gradient of the electric field
disappears in the fluid picture; however, another force due to
the charge accumulation by the divergence of flow appears.
This electric force, combined with the Lorentz force, consti-
tutes the so-called nonresonant force. However, the stress
tensor, which should be included in the fluid picture, is fully
or partly ignored in previous studies. Considering this term,
the nonresonant force is cancelled and the fluid picture be-
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comes consistent with the single particle picture. Also, the
kinetic formalism of the rf force is derived based on the
second-order rf kinetic theory.19 The collisionless nonreso-
nant force offered by the quasilinear electromagnetic �EM�
force is completely counteracted by the nonlinear stress pres-
sure force. Thus, in collisionless plasmas, all the ponderomo-
tive forces that can lead to net current depend on Landau
damping.

The paper is organized as follows: Sec. II gives a de-
scription of the single particle ponderomotive force. The La-
grangian fluid element analysis based on the momentum
equation is given in Sec. III. Section IV is devoted to the
kinetic theory of rf force and Sec. V gives the discussion and
summary.

II. SINGLE PARTICLE PONDEROMOTIVE FORCE

We consider a constant background magnetic field B0ẑ
and a rf wave with electric and magnetic fields, E1, B1

�exp�i�k ·r−�t��. If the spatial perturbed displacement and
the average drift displacement are small compared to the
scale of the field, the ponderomotive force can be represented
as

F =
q

2
Re���1 · ��E1

� + v1 � B1
�� , �1�

where �1 and v1 is the perturbed displacement and velocity,
and B1 are the wave magnetic field. The perturbed displace-
ment �1 can be written straightforwardly as

�1 = �T−1�T�E1, �2�

where

� =
− 1

�B�
�

� − �
0 0

0
�

� + �
0

0 0
�

�

� ,

and

T =
1
�2�1 + i 0

1 − i 0

0 0 �2
� .

Using v1=−i��1 and B1= �1/ i��� �E1, we get the pon-
deromotive force

F =
q

2
Re���1 · ��E1

� + �1 � �� � E1
��� = − q � � , �3�

where � is the ponderomotive potential and is defined as20

� � −
1

4
�E1

� · T−1�T · E1� =
e

4m�
	 
Ex1 + iEy1
2

2�� − ��

+

Ex1 − iEy1
2

2�� + ��
+


Ez1
2

�
� . �4�

Therefore, for a single particle, the ẑ component force exists

only when the gradient of the second-order rf field quantities
in the ẑ direction does not vanish.

The absence of forces in the symmetry directions can be
thought of as a result of the cancellation between the electric
force and the magnetic force. For clarity, we simplify the
electric field as E1=Ey1�x�cos �ŷ+Ez1�x�sin �ẑ, where �
=�t−kzz is the phase of the wave. The perturbed displace-
ment, velocity, and magnetic field are given as follows:

�1 =
Ey1

�B

�

�2 − �2 �� sin �x̂ + � cos �ŷ� −
Ez1

�B

�

�
sin �ẑ ,

�5�

v1 =
Ey1

B

�

�2 − �2 �� cos �x̂ − � sin �ŷ� −
Ez1

B

�

�
cos �ẑ ,

�6�

and

B1 = −
kzEy1

�
cos �x̂ −

1

�

�Ez1

�x
cos �ŷ −

1

�

�Ey1

�x
sin �ẑ .

�7�

Therefore, the ẑ component of the v1�B1 force is

�Fv�B · ẑ = �q�vx1By1 − vy1Bx1�

= −
q�2

2�B��2 − �2�
Ey1

�Ez1

�x
, �8�

and the parallel force due to the movement of a single par-
ticle along the gradient of the electric field is

�F��·��E · ẑ = ��x
�

�x
Ez1 + �z

�

�z
Ez1�

=
q�2

2�B��2 − �2�
Ey1

�

�x
Ez1. �9�

Here, �  represents the time average. Thus, the two forces
counteract each other and the total ponderomotive force on a
single particle is zero in the ẑ direction. Understanding the
single particle force is this way will be important in under-
standing the fluid picture.

III. LAGRANGIAN FLUID ELEMENT ANALYSIS

In this section, we will show how previous studies give a
parallel force which depends on the cross-field variation of
the rf field and, more importantly, what is missing. For a
fluid element at a fixed spatial location �Lagrangian fluid
element�, the force due to the displacement of a single par-
ticle, �F��·��E · ẑ, disappears. However, a new force, which is
the electric field force acting on the charged fluid element,
appears. The charge accumulation is caused by the diver-
gence of flow, that is, ��n1q� /�t=−n0q� ·v1; therefore we
can get the amount of charge using the perturbed velocities
obtained in the last section,
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n1q = −
n0q�2

�B��2 − �2�
� �Ey1

�x
sin � − kzEz1 cos �� . �10�

Then, the parallel electric force on the Lagrangian fluid ele-
ment is

�FnE · ẑ = �n1qEz1 = −
n0q�2

2�B��2 − �2�
Ez1

�Ey1

�x
. �11�

Adding with the v1�B1 force on the fluid element with den-
sity n0, the total parallel force is

�FnE · ẑ + n0�Fv�B · ẑ = −
n0q�2

2�B��2 − �2�
�Ey1Ez1

�x
. �12�

This force is the so-called nonresonant force of applied
waves. The force can be described as the divergence of he-
licity flux, and can be rewritten as −�n0q /B�Re�E1 ·B1� for
low frequency waves. Therefore, the dissipation of the wave
helicity was thought to have the same effect to sustain the
plasma current as that of the dc helicity.

But, it is not exact. If we consider a Lagrangian fluid
element, we must include the stress in the momentum equa-
tion. For cold plasma, the stress reduces to the Reynolds
stress −n0� ·v1v1=−n0�� ·v1�v1−n0�v1 ·��v1. It is easy to
verify

�FRe · ẑ = ��− n0 � · v1v1� · ẑ =
n0q�2

2�B��2 − �2�
�Ey1Ez1

�x
.

�13�

Therefore, the parallel component of the total force acting on
a fluid element reduces to zero, i.e.,

�Ftotal · ẑ = �FnE · ẑ + n0�Fv�B · ẑ + �FRe · ẑ = 0. �14�

Thus, the fluid picture becomes consistent with the single
particle picture. In the view of helicity conservation, the
stress can be considered as the fluid helicity of the
fluctuations,21 which fully compensates the dissipation of the
EM helicity.

For hot plasmas, the thermal pressure and viscosity
should be included in the fluid picture. A model for the equa-
tion of state or a closure scheme needs to be given. For
example, the CGL model was used by Litwin.18 However,
different closure schemes may give different conclusions. In-
stead of adopting a particular closure scheme, we will carry
out a nonlinear kinetic analysis in the next section for hot
plasmas.

IV. NONLINEAR RF FORCE IN THE KINETIC
FORMALISM

Expanding the distribution function in powers of the
electric field as f = f0+ f1+ f2, where f0 is the equilibrium
distribution function, f1 is the linear response to the rf field,
and f2 is the second-order response slowly varying in time,
the second-order, time-averaged Vlasov equation can be
written as

�

�t
f2 + v · �f2 +

q

m
�v � B0�

·
�

�v
f2 = − � q

m
�E1 + v � B1� ·

�

�v
f1� . �15�

Integrating Eq. �15� along unperturbed orbits and choosing
f2
t=0
=0, we can get19

f2 = − �
0

t

dt�� q

m
�E1�r�,v�,t�� + v� � B1� ·

�

�v�
f1�r�,v�,t��� .

�16�

The time-averaged parallel momentum equation is

m
�

�t
� dvvzf2 = �� dvq�E1z + �v � B1�z�f1�

− m � ·� dvvvzf2, �17�

where the zero-order momentum balance has been used. The
total parallel force is the sum of the EM force

FEMz = �� dvq�E1z + �v � B1�z�f1� �18�

and the kinetic stress gradient

FKSz = − m � ·� dvvvzf2. �19�

Obviously, the nonlinear kinetic stress term is the same order
as the quasilinear EM term.

For a magnetic field B0ẑ and a rf wave with electric and
magnetic fields, E1�r , t�, B1�r , t��exp�i�k ·r−�t��, the first-
order perturbed distribution function f1 is given as22

f1�r,v,t� =
qfM

T
�
k

exp�i�k · r − �t���
m,n

Jm�	�

�exp�i�m − n��� − 
��
1

i�n
H · E1, �20�

where fM is Maxwellian for a temperature T, Jm�	� is the
Bessel function of order m for 	=k�v� /�, H ·E1

= �v�E+ /2�Jn−1�	�e−i
+ �v�E− /2�Jn+1�	�ei
+vzEzJn�	� with
E±=Ex1± iEy1, kx=k� cos 
 and ky =k� sin 
, �n=−��−kzvz

+n��, � is the gyrofrequency and � is the gyroangle. The
second-order, time-averaged distribution function f2 can be
solved from Eq. �16�. When a single wave is traveling in the
symmetry directions, ŷ and ẑ, the expression of f2 is derived
as Eqs. �34� and �35� in Ref. 19. Substituting f1 and f2 into
Eqs. �18� and �19�, we get

FEMz =
�q2

T
Re �

kR,kL

exp�i�kRx − kLx�x�

�� dvz� v�dv��
l,k

1

i�l
H · E1R exp�il�
R − 
L��

� Jl−k�	L��Ez
*Jk��	x� + C+

*Jk−1��	x�

+ C−
*Jk+1��	x��exp�ik
L� , �21�
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FKSz =
�q2

T
Re �

kR,kL

exp�i�kRx − kLx�x�

�� dvz� v�dv��
l

1

i�l
H · E1R exp�il�
R − 
L��

��− �
n�0

Jn��	x�exp�in
L��Ez
*Jl−n�	L�

+ C+
*Jl−n−1�	L�exp�i
L� + C−

*Jl−n+1�	L�exp�− i
L��

+ vz
�	x

v�

� �A+
*

2
�J0��	x�Jl�	L�

− J1��	x�Jl−1�	L�exp�i
L�� −
A−

*

2
�J0��	x�Jl�	L�

+ J1��	x�Jl+1�	L�exp�− i
L�� +
iB*

2
J0��	x�

��Jl−1�	L�exp�i
L� + Jl+1�	L�exp�− i
L���� , �22�

where A±=E±�1−kzvz /��+Ez1k±vz /�, B=Ey1kxv� /�
−Ex1kyv� /�, C±=E±kzv� /2�−Ez1k±v� /2� with k±=kx± iky,
�	x=	Rx−	Lx and the R and L are used to distinguish the two
electric fields in the quadratic form. It can be seen that, ex-
cept for the J0��	x� terms, all the components in the quasi-
linear EM force are cancelled by the kinetic stress gradient
force. Also, the kinetic stress gradient force provides an ad-
ditional contribution due to the divergence in real space �pro-
portional to �	x�.

For clarity, we give the explicit form under the assump-
tion of low frequency ��. Retaining the first order of
��=vt /��, we get

FEMz��q2n0

2T
� = Re�1 + �0Z0

ikz

Ez1
2 + i�

kyvt

�

��1 + �0Z0�Im�Ex1Ez1
* �

+ i�
kzvt

�
Im�Ey1Ex1

* � +
�

2

�1 + �0Z0�
ikz�0

��Ez1� Ey1
* − Ey1� Ez1

* � +
�

2

vt

i�

�Ey1Ez1
*

�x

−
�

2

ky

kz

vt

i�
�1 + �0Z0�

�
Ez1
2

�x
� , �23�

where Z0 is the plasma dispersion function and its argument
is �0=� /kzvt. When ky and kz are real, Eq. �23� reduces to the
same expression derived by Chan and Chiu,16

FEMz��q2n0

2T
� = Re� �0Z0

ikz

Ez1
2 + i

ky�

kz
Z0 Im�Ex1Ez1

* �

+
�

2

Z0

ikz
Re�Ey1

�Ez1
*

�x
− Ez

�Ey1
*

�x
�

+
�

2

Z0

kz
Im

��Ez1Ey1
* �

�x
−

�

2

ky

kz

Z0

ikz

�
Ez1
2

�x
� .

�24�

Here, the first three terms, which depend on Im�Z0�, drive the
current by Landau damping. The fourth term, which depends
on Re�Z0� and the spatial variation of the quadratic field, was
believed to be the collisionless nonresonant ponderomotive
force.16 Combined with the fifth term, it can be rewritten as
the form with the divergence of the wave helicity flux.16,17

However, the kinetic stress force is the same order as the
quasilinear force, that is,

FKSz��nq2

2T
� = Re	�−

�

2

Z0

ikz
� �

�x
Ez1Ey1

*

+
�

2

kyvt

�

1 + �0Z0

ikz

�

�x

Ez1
2 − �

kyvt

�
� 1

i2kz

+
�0

2�1 + �0Z�
ikz

� �

�x

Ez1
2� . �25�

It is clear that the terms related to the divergence of the wave
helicity in the EM force are fully cancelled. All the other
additional terms depend on the Im�Z0� as well as the spatial
variation of second-order field quantities. Finally, we can
write the total parallel ponderomotive force as

Fz��nq2

2T
� = Re	1 + �0Z0

ikz

Ez1
2 + i�

kyvt

�

��1 + �0Z0�Im�Ex1Ez1
* � + i�

kzvt

�
Im�Ey1Ex1

* �

− �
ky

ikz

vt

�
	1

2
+ �0

2�1 + �0Z0�� �

�x

Ez1
2

− �
Z0

ikz
Re�Ez1

�Ey1
*

�x
� +

�vt

i�
Re�Ey1

* �Ez1

�x
�� .

�26�

This is the kinetic formalism of the ponderomotive force by
low frequency rf waves. Although there are terms depending
on the gradient of the quadratic field, all the driving terms
are multiplied by Im�Z0�, unless the wave number kz or ky is
complex. However, for steady state using rf driven current in
toroidal systems, the frequency and the toroidal and poloidal
wave numbers are real. Therefore, the collisionless nonreso-
nant force is overestimated in the previous studies, where the
stress contribution was fully or partial neglected. In fact, this
force vanishes.

V. DISCUSSION AND SUMMARY

We have found cancelling terms that negate the apparent
ponderomotive current drive effect in cases in which there is
no gradient in the ponderomotive potential in the current-
drive direction. In fact, the cancellation between the qv1

�B1 force and −n0�v1 ·��v1 in cold plasma had been verified
earlier.8 There, the author tried to use the anisotropic pres-
sure to reduce v1z, and then to make the qv1�B1 drive ef-
fective again. However, the second-order modification from
the pressure tensor has not been described in detail. Litwin18

verified that the anisotropic CGL model, which corresponds
to the collisionless, low frequency, small Larmor radius
limit, gives a zero flux surface average nonresonant force.
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However, it is shown in Litwin’s work, when the fluid theory
is applied, that many nonlinear modifications make things
complicated. The fact that the kinetic definitions of the aver-
age fluid variables are different form the conventional “fluid”
definition was clarified in regulating the neoclassical and tur-
bulent transport theory by Sugama and Horton.23 All the fluid
variables are defined from the total distribution function and
divided into the averaged and fluctuating parts. Although the
entire stress tensor has the same definition in the kinetic and
fluid model, the thermal pressure part, �f�v−u��v−u�dv,
where the fluid velocity u contains both the averaged �zero
order and second order� and fluctuating parts �first order�, is
different for cases with and without waves. This is why even
though the MHD theory13–15 has included the Reynolds
stress term, the related terms in the EM force are not fully
cancelled. We can evaluate the ponderomotive force in the
MHD theory, where the expression of the Reynolds stress
term FRez= �m /2nq2�Re�� · �j1j1z�� can be given as

FRe z��nq2

2T
� = Re	��0

1 + �0Z0
*

ikz

�

�x
Ey1Ez1

*

−
ky

kz
��0


1 + �0Z0
2

ikz

�

�x

Ez1
2� . �27�

It is clear that, although the Reynolds stress in fluid theory
gives a similar trend as that of the kinetic stress force shown
in Eq. �25�, it cannot cancel all the terms related to the EM
force. Even when the nonlinear viscosity is considered, no
clear cancellation is reported.15 Moreover, the Reynolds
stress contribution was even considered as another mecha-
nism of driving or rearranging plasma current. However, in
the kinetic theory, the modifications from the thermal pres-
sure stress and the Reynolds stress are all included in the
generalized nonlinear stress term. As a result, the EM force is
cancelled by the nonlinear stress tensor forces, and the col-
lisionless nonresonant current drive does not exist.

The above cancellations notwithstanding, ponderomo-
tive forces can drive the current in the toroidal plasma
through asymmetry effects24–28 not discussed here. As op-
posed to the effects here, these current drive effects entail
resonant damping or other similar mechanisms, and they re-
quire an asymmetry such as a gradient in the potential in the
direction of the current. The current drive then arises from
rearranging under energy absorption particle phase space
through Hamiltonian forces. These ratchet-type effects pro-
duced through ponderomotive potentials can be quite effi-
cient compared to the traditional current-drive resonant
mechanisms.29 However, the physics of these effects is also
consistent with a single-particle model in which the rear-
rangement of particle phase space by the waves is immedi-
ately apparent.

In summary, in collisionless plasmas, the rf force by low
frequency waves, in the picture of a single particle, is shown
to be consistent with that in the fluid and kinetic theory. For
a single particle, the parallel component of the Lorentz force
is fully compensated by the force due to the movement of a
single particle along the gradient direction of the electric
field. The ponderomotive force has only the directions where
the second rf field quantities are asymmetric. For a Lagrang-

ian fluid element, the force due to the displacement of a
single particle is replaced by a force due to the charge accu-
mulation by the divergence of the flow. This electric force,
combined with the Lorentz force, constitutes the so-called
nonresonant force. However, the stress tensor fully counter-
acts the nonresonant force. Furthermore, using the second-
order rf kinetic theory, we have derived the parallel force by
low frequency waves and found that the collisionless non-
resonant force offered by the quasilinear EM force is com-
pletely cancelled by the nonlinear kinetic stress force. There-
fore, in collisionless plasmas, only the Landau resonant
forces survive, and the nonresonant ponderomotive forces by
low frequency waves cannot drive the toroidal current.
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