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Stability of Muon Beams to Langmuir Waves during Ionization Cooling
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Fast cooling of muon beams will be needed for building either TeV muon colliders that might explore
the electroweak gauge symmetry breaking or muon storage rings that could become ultrabright neutrino
sources. Stochastic and electron cooling take longer than the muon lifetime, so attention has been
focused on the potentially faster but less explored ionization cooling. Addressing recent concerns that
excitation of Langmuir waves might be deleterious for ionization cooling techniques, we show that,
while the hydrodynamic instability indeed might be dangerous, the waves are, in fact, stabilized through
a combination of resistive and kinetic effects at a very modest emittance of the beam.

PACS numbers: 41.75.–i, 29.27.Bd
The technique of ionization cooling [1] for m1m2 col-
liders [2] or muon storage rings [3] involves passing the
muon beam through regions of dense material interposed
between accelerating rf cavities. The thought is that, in-
side the material, the beam loses both transverse and lon-
gitudinal momentum, and, in the acceleration region, the
longitudinal momentum is restored. Thus, the beam cools.
The database for ionization cooling is relatively scant, but
the process might be fast enough to produce the neces-
sary cooling effect in the short (2.2 msec) muon lifetime.
This method is now attracting much attention (see, for
instance, [4]).

It has been pointed out recently [5] that a realistic
muon beam might excite collective electrostatic fields
limiting the cooling. While there are regimes wherein
beam-medium instabilities could develop within the cool-
ing time, we show that, taking into account resistive and
kinetic effects, the excitation of Langmuir electrostatic
fields does not limit the beam cooling for parameters of
interest.

This Letter is organized as follows: First, we analyze
hydrodynamic regimes. We find that electrostatic waves
might indeed be dangerously destabilized even in a highly
resistive medium for parameters of interest. Second, we
show that even a small amount of beam emittance stabilizes
these electrostatic waves.

To describe hydrodynamic instabilities, consider that
the longitudinal dielectric permittivity of a free-electron
medium, such as a metal or plasma, traversed by a cold
beam of charged particles is
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1 2 � �k ? �yb�2�k2c2 are, respectively, the “full” and
the “longitudinal” (with respect to the wave) relativistic
factors of the beam, and v and �k are, respectively, the fre-
quency and wave vector of an electrostatic wave that may
be excited in such a system. The wave dispersion law v� �k�
is determined from the equation

e�v, �k� � 0 .

The second term on the right hand side of Eq. (1) de-
scribes the dielectric response of free electrons, taking into
account a resistivity associated with their scattering. The
third term, describing the dielectric response of the beam
particles, could be obtained from the standard collisionless
plasma response by means of appropriate Lorentz trans-
formations of the wave frequency and the beam particle
concentration (which enters into vb). This is a simple
heuristic way of writing Eq. (1) without calculations. A
formal derivation of Eq. (1) for plasmas can be found, for
instance, in the textbook [6] (p. 170). Equation (1) ne-
glects both the interbeam and the beam-medium particle
collisions, since we are looking here just for instabilities
that might develop on a faster time scale. Equation (1)
also neglects the change in the medium electron concen-
tration due to electrons expelled by the electrostatic field of
the beam, because the beam concentration is much smaller
than the electron concentration.

First, note two limiting cases: In the absence of a beam,
the equation e�v, �k� � 0 gives the medium plasma oscilla-
tions, for which the dispersion relation is v � ve 2 ın�2,
for n ø ve. In the absence of a medium, it gives the beam
collisionless plasma oscillations, for which the dispersion
relation (transformed to the laboratory reference frame) is
v � vb�gbk

p
gb 1 �k ? �yb .

When both the medium and beam are present, a
coupling of the beam and medium plasma oscillations
occurs, which leads to an instability. For small vb ø ve,
the largest growth rate is reached at �k ? �yb � ve. Con-
sider then the domain j �k ? �yb 2 vej ø ve. Writing
v � �k ? �yb 1 dv, where jdvj ø ve, the dispersion
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equation e�v, �k� � 0 simplifies to
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This equation is easily solved in two complementary
cases, namely, jdvj ¿ j �k ? �yb 2 ve 1 ın�2j and
jdvj ø j �k ? �yb 2 ve 1 ın�2j.

In the limit

jdvj ¿ j �k ? �yb 2 ve 1 ın�2j ,

Eq. (2) describes the ideal hydrodynamic beam-plasma
instability,

dv � �vev2
b�gbg

2
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p
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Note that Eq. (3) differs by the factor �me�mb�1�3 from the
formula for ideal hydrodynamic instability of relativistic
electron beam in plasma [7].

In the limit

jdvj ø j �k ? �yb 2 ve 1 ın�2j ,

Eq. (2) describes the resistive hydrodynamic beam-plasma
instability of a kind considered, for instance, in [8],
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(provided the unstable branch of the square root is se-
lected). The largest growth rate in Eq. (4),

G � Imdv �
q

vev
2
b�2gbn , (5)

occurs for �k ? �yb � ve, and gbk � 1, which corresponds,
for a relativistic beam, to nearly transverse waves �k ?
�yb�k ø c. The transverse waves, however, might be sta-
bilized convectively if the beam radius is sufficiently small.

Consider, instead, the slower but less easily stabilized
longitudinal wave instability, for which the largest growth
rate in (4), reached at �k ? �yb � ve, is

G � Imdv �
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2
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3
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The condition for this regime occurring may be written as
�vev

2
b�1�3 ø gbn, i.e.,

nb ø ne�gbn�ve�3mb�me . (7)

The ideal regime of the instability to longitudinal waves
with kyb � ve, described by Eq. (3), takes place in the
opposite case.

Typical parameters of Li, a possible medium for the
muon ionization cooling, are as follows: the electron con-
centration is ne � 1.4 3 1023 cm23, so that the electron
5576
plasma frequency is ve � 2.1 3 1016 sec21; the conduc-
tivity in solid state at room temperature is s � 9.57 3

1016 sec21, so that the electron scattering frequency,

n � v2
e�4ps ,

is n � 3.7 3 1014 sec21. The scattering frequency n be-
comes higher when Li is heated and melted. However,
if the Li is heated to Te � 30 eV, the ideal plasma ap-
proximation becomes reasonable, which gives n � 2 3

1016 � ve. Then, for even higher Te, n decreases roughly
as T

23�2
e . This is mentioned here just for a general de-

scription of the Li resistivity as a function of tempera-
ture, while temperatures to which Li would be heated by a
realistic muon beam are in fact much smaller.

Plugging in Eq. (7) mb � 207me, ne � 1.4 3

1023 cm23, and n � 3.7 3 1014 sec21, we find the
condition nb ø 1020g

3
b . Thus, the ideal hydrodynamic

instability, Eq. (3), is not limiting for regimes of interest
in the muon ionization cooling project. On the other hand,
the growth rate of the longitudinal resistive instability,
Eq. (6), for the parameters above, is
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For nb � 1012 cm23 and gb � 2 (i.e., yb � 2.6 3

1010 cm�sec), we find G � 7 3 109 sec21. Thus, this
instability would make about 50 exponentiations within a
2-m-long muon beam.

Although the instability appears virulent, it is actually
easily stabilized by kinetic effects. The kinetic instability
is quite different from the hydrodynamic instability. The
kinetic effects become important at a sufficient spread of
muon longitudinal velocities Dy,

Dy . ybG�ve . (9)

Since the ratio G�ve is very small (3 3 1027 in the above
numerical example), the condition (9) does not appear to
be particularly restrictive for applications of interest within
the muon ionization cooling project.

The mechanism of the instability suppression by the
velocity spread Dy is associated with the correspond-
ing Doppler spread of Cherenkov resonance frequencies
kDy � veDy�yb . The phase mixing causes wave damp-
ing with the rate �kDy, which overbalances the wave
excitation with the growth rate G when the condition (9)
is satisfied.

This crude estimate can be refined based on the ki-
netic theory of beam-medium interaction, combining the
macroscopic hydrodynamic description of a resistive free-
electron medium with the kinetic description of a collision-
less warm beam. Using the standard Vlasov formula for
the beam dielectric response [described by the last term in
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the longitudinal dielectric permittivity, Eq. (1)], one can
generalize Eq. (1) as follows:
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where fb is the beam particle momentum distribution func-
tion normalized to one,

R
d3p fb � 1, and �u � v �k�k2 is

the wave phase velocity.
The function e�v, �k� is defined in the upper half-plane,

Imv . 0, and may be analytically extended to the whole
complex plane v. For stable waves, the dispersion sur-
face v� �k�, determined from the equation e�v, �k� � 0, is
entirely located in the lower half-space Imv , 0. When
some of the waves are unstable, the surface v� �k� crosses
the real hyperplane Imv � 0 in � �k, v� space. For real v,
the imaginary part of equation e�v, �k� � 0 takes the form
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Near the resonance considered above, v � ve ¿ n,
Eq. (11) takes the form

ImG� �u� � ven�v2
b . (12)

When ImG� �u� is smaller than ven�v
2
b for all �u, Eq. (12)

has no solutions, so that the dispersion surface v� �k�, de-
termined from the equation e�v, �k� � 0, does not cross
the hyperplane Imv � 0 and is entirely located in the
stable half-space Imv , 0. Thus we arrive at the stability
condition,

ImG� �u� , ven�v2
b , (13)

which can be considered as a quantitative definition of Dy

in Eq. (9). The fact that a very modest beam spread stabi-
lizes the electrostatic plasma waves in regimes of interest,
as expressed by the stability criteria, Eq. (13) or Eq. (9),
is the major result of this Letter.

The stability condition can be put more usefully in sev-
eral regimes of interest. It takes an especially simple form
in the case of a nonrelativistic beam when

ImG� �u� � pu2 dF
dy

Ç
y�u

, (14)

where F is the normalized (
R

dy F � 1) one-dimensional
distribution function of the beam particles over the veloc-
ity component y in the direction of the wave propaga-
tion �u�u � �k�k. For a beam with relative energy spread
DE ø 1 and angular spread Du ø 1, it follows that

max
�u

ImG� �u� �
p

Du4 1 DE 2 . (15)

For the general relativistic case, a more complicated
calculation leads to the estimate

max
�u

ImG� �u� � pgb
1 1 3�gbDu�2

�gbDu�4 1 DE 2 . (16)

Note that the stability condition, Eq. (13), can be put in
the form Gkin , n, where Gkin is the collisionless growth
rate formally evaluated as if in the kinetic regime (even
though, for certain parameters, the kinetic regime formula
might be actually not applicable in the collisionless case).
This approach is valid because the effective growth rate
tends to zero near the threshold of the instability. Hence,
the kinetic regime growth rate applies near the threshold
(Gkin � n) regardless of how small the beam momenta
spread is. The estimate Gkin , n agrees (up to the factors
me�mb , 3, and p) with the kinetic regime estimate for the
collisionless growth rate of ultrarelativistic electron beam
instability in plasma [9].

Note that Eq. (16) reduces to Eq. (15) in the nonrela-
tivistic limit gb 2 1 ø 1. In the relativistic case, Eq. (16)
can be justified similar to Eq. (14) as follows: The reso-
nance condition �u ? �y � u2 in (11) defines a hyperboloid
of rotation around axis �u�u in �p space, namely,

p2
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To get the largest ImG, this hyperboloid should cross sub-
stantially the domain populated by the beam particles in
�p space. For the most dangerous waves that propagate at
small angles u & Du to the beam mean velocity

�yb �
Z

d3p fb �p�
q

m2
b 1 p2�c2 ,

it implies that the wave phase velocity �u is close to the
beam velocity �yb . Small variations of momentum compo-
nents inside the hyperboloid satisfy the relation pkdpk �
q2p�dp�, so that typically dpk�pk � q2Du2dp��p�.

If

q2Du2 ø Dpk�pk � DE 1 Du2,

the hyperboloid crosses the beam momenta distribution at
nearly fixed

pk � mbugu � pu ,

and
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ImG� �u� � pgup2
u
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Z
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This formula is a direct generalization of Eq. (14). In
the relativistic case, the ImG� �u� maximum is reached at
q � gb , so that the applicability condition implies that

g2
bDu2 ø DE .

A crude estimate of the ImG� �u� maximum in Eq. (18)
confirms Eq. (16):
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If

q2Du2 ¿ Dpk�pk � DE 1 Du2

(which implies automatically an ultrarelativistic case q ¿
1), the hyperboloid crosses the beam momenta distribution
at nearly fixed
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This ImG� �u� has its maximum at Pu � pbDu, which cor-
responds to q22 � Du2 1 g

22
b . The applicability condi-

tion then takes the form

g2
bDu2 ¿ DE .

A crude estimate of the maximum confirms Eq. (16):
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Note also, that the integral in Eq. (11) can be calcu-
lated analytically for a Gaussian axisymmetric beam
fb ~ exp�2�p 2 pb�2�Dp2 2 u2�Du2� (see [10]), and
the result supports the above crude estimates.

To summarize, the stability condition Eq. (13) shows
that excitation of electrostatic Langmuir waves, which is
potentially one of the fastest possible instabilities, is not
an important limiting factor for the presently anticipated
applications of ionization cooling of muon beams. It
should be understood, however, that there are other col-
lective excitations not considered here (for instance, those
of [11]), which might be pretty numerous in more compli-
cated medium environments and in the presence of mag-
netic fields. To be sure that the ionization cooling for muon
collider applications can take place unhindered by collec-
5578
tive effects, it remains to analyze also other wave excita-
tions particularly in a highly resistive (large n) medium.
In any event, muon beam scattering by even stable plasma
waves should generally be taken into account for a precise
quantitative description of the beam ionization cooling.
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