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Relativistic electron acceleration in focused laser fields after above-threshold ionization

I. Y. Dodin and N. J. Fisch
Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA

~Received 4 April 2003; revised manuscript received 19 August 2003; published 18 November 2003!

Electrons produced as a result of above-threshold ionization of high-Z atoms can be accelerated by currently
producible laser pulses up to GeV energies, as shown recently by Hu and Starace@Phys. Rev. Lett.88, 245003
~2002!#. To describe electron acceleration by general focused laser fields, we employ an analytical model based
on a Hamiltonian, fully relativistic, ponderomotive approach. Though the above-threshold ionization represents
an abrupt process compared to laser oscillations, the ponderomotive approach can still adequately predict the
resulting energy gain if the proper initial conditions are introduced for the particle drift following the ionization
event. Analytical expressions for electron energy gain are derived and the applicability conditions of the
ponderomotive formulation are studied both analytically and numerically. The theoretical predictions are sup-
ported by numerical computations.
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I. INTRODUCTION

Recent advances in high-power laser technology have
sulted in the development of petawatt laser systems@1–3#.
Those can deliver superstrong laser pulses with intensitie
focused output radiation as high as 1021 W/cm2, which
makes them especially attractive from the standpoint
studying the interaction between electromagnetic radia
and matter. One of the aspects of this interaction is the p
lem of obtaining ultrarelativistic beams of charged particl
Numerical computations@4–11# and experiments@12–15#
show that laser waves can accelerate charged particle
ultrarelativistic energies. For electrons, the energies ach
able with currently available laser systems can be as larg
several GeV@4–7,9#.

The electron energy gain can be characterized by the
mensionless parametera05eE0 /mvc, whereE0 is the am-
plitude of the laser electric field,e and m are the electron
charge and the mass, respectively,v is the frequency of the
laser field, andc stands for the speed of light. The value
a0 can be understood as the ratio of the momentum impa
by the wave field in a single oscillation tomc, meaning that
relativistic effects become important ata0*1. ~For the
wavelength of the laser radiation equal to 1mm, the inten-
sity corresponding toa0;1 is about 1018 W/cm2.! Thus, un-
der the influence of currently available laser intensitiesa0
&102), the ultrarelativistic electron oscillatory motion itse
has gamma factor (g5E/mc2) of the order ofa0, which
though large is still small compared to the experimenta
and numerically observed valuesg;a0

2 @4–15#.
Under the plane-wave approximation, the particle mot

is exactly integrable~Sec. II! and the scalingg;a0
2 follows

naturally. However, for focused laser beams used in exp
ments, the plane-wave model does not capture the impo
dynamics, because particles can escape from the intera
region in the direction perpendicular to the wave vector.
this case, the same scaling can be more adequately expla
in terms of the ponderomotive formulation~Sec. III, see also
Refs. @10,11,16#!, which can be applied to experimental
realizable conditions. However, for electrons produced a
1063-651X/2003/68~5!/056402~8!/$20.00 68 0564
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result of above-threshold ionization, the applicability of su
formulation is not obvious: the ionization event itself cann
be described directly in terms of the ponderomotive a
proach, because the electron leaves the ion on a time s
small compared to the oscillation period@9#.

What we show here is that the ponderomotive formulat
can still give good results if the ionization is accounted
properly, and the laser field, in which the acceleration ta
place changes, is smooth enough~for the nonrelativistic
problem, see Ref.@17#!. We show how ionization can be
included in a model based on the fully relativistic ponde
motive approach. For certain cases of interest, we calcu
the electron energy gain precisely. Also, we address the
plicability conditions of the model, both analytically and n
merically. These conditions turn out to be significantly mo
relaxed than those given in Ref.@11#.

The paper is organized as follows. In Sec. II, we form
late the actual model studied in the paper and introduce
basic notation through revising the known problem of p
ticle acceleration by a plane wave. In Sec. III, we give t
ponderomotive treatment of nonadiabatic particle accele
tion in spatially nonuniform laser fields. In Sec. IV, we com
pare our analytical results with those obtained from num
cal computations of particle motion. Sec. V summarizes
main ideas.

II. IONIZATION EVENT AND ADIABATICITY VIOLATION

In a smooth laser field, with a characteristic spatial sc
of the wave envelopeL, large compared to the wavelengthl,
a charged particle experiences oscillatory ‘‘figure-eight’’ m
tion ~in a linearly polarized wave! or circular motion~in a
wave with circular polarization! @18,19#. Its guiding center
drifts as a quasiparticle with an effective massmeff

5mA11a2, where the bar abovea(h)5eE(h)/mvc
stands for averaging over the phaseh5vt2k•r @20–25#.
Slow variations of the laser intensity ‘‘seen’’ by the partic
result in variations of its effective mass and produce a p
deromotive force, proportional to the intensity gradient. B
cause of the conservative nature of this force, as the p
passes over the particle, the particle is decelerated alm
©2003 The American Physical Society02-1
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I. Y. DODIN AND N. J. FISCH PHYSICAL REVIEW E68, 056402 ~2003!
precisely down to its initial energy. In this case, the net
celeration appears to be exponentially small with respec
the parameterl/L. In order to prevent adiabatic deceleratio
and extract the energy from the laser fieldirreversibly, one
needs to violate the adiabatic approximation for particle dr
~See also the discussion on the so-called Lawson-Woodw
theorem in Ref.@26#, and references cited therein.!

Laser fields with sufficiently large transverse gradients
average intensity, which can lead to the loss of adiabatic
can be obtained by focusing laser radiation onto a small s
whose size is only limited by diffraction spreading. The foc
waist w5Nl ~where the factorN is often of the order of
several units! is usually small compared to the longitudin
scale of the focal regionb5kw2. Thus, nonadiabatic acce
eration in a focal spot can occur primarily due to partic
escape in the transverse direction atN;1 @4–7#. ~For more
precise condition, see Sec. III.! However, in this case
charged particles must be delivered to the interaction reg
after the laser field has been turned on. Otherwise, as
laser intensity seen by a charged particle grows slowly,
particle is swept away by the very front of the pulse ev
before the intensity reaches its maximal value, which res
in inefficient acceleration@9#.

It is advantageous to keep charged particles in the fo
region until the field reaches its maximal amplitude. In R
@9# ~see also Refs.@10,13,27#!, it was proposed to keep th
electron trapped by the Coulomb field of a high-Z ion for the
time needed for the laser field to reach its maximal intens
During this time, the bounded electron remains practically
rest but, after the laser field intensity becomes large eno
it is swept off by the wave. After the electron has left the io
the Coulomb field does not influence the electron dynam
significantly. Thus, the electron can be considered as ac
erated in free space, assuming for the initial conditions t
effectively, it starts seeing the intense laser field instan
neously, immediately after ionization. The actual value of
ionization potential does not influence the acceleration
rather determines the amplitude of the laser field, at wh
ionization occurs~see also Sec. III!.

Once the adiabaticity is violated by an abrupt ionizati
event, the ponderomotive force generally does not bring
particle to rest after the interaction is over, even if the la
intensity seen by the particle decreases adiabatically to
at t→`. Therefore, in this case, the particle can retain
significant part of its energy even if leaving adiabatically t
region of interaction with the laser field. In this paper, w
will consider precisely this case below. Namely, we will a
sume that after ionization, which we model as an instan
neous jump of the laser intensity seen by the electron,
particle moves in smooth laser field~see Secs. III, IV! and
leaves the interaction region adiabatically. We will develo
ponderomotive formulation to study electron acceleration
ter ionization and show that, though the above-threshold
ization represents an abrupt process compared to laser o
lations, the ponderomotive approach can still adequa
predict the resulting energy gain if the proper initial con
tions are introduced for the particle drift following the ion
ization event.

Under the plane-wave approximation, the problem of p
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ticle motion yields an exact solution for arbitrary polariz
tion and longitudinal profile of the pulse@8,18,28#: Consider
a particle moving under the action of a plane laser wa
propagating in vacuum with vector potential given by

A~r,t !5~mc2/e!A~h!, ~1!

where h5vt2kz stands for the phase of the wave andk
5v/c represents the wave vector. Several exact integral
particle motion under the action of such a wave can be
ured out readily. First, the canonical momentumP'5p'

1(e/c)A is conserved because of the symmetry of the la
field with respect to the transverse displacement (“'Ax,y
50). Assuming zero field att→2` @A(2`)50#, one
gets thatP' equals the initial kinetic momentum of the pa
ticle before the interactionp',0 . This yields a solution for the
kinetic momentum

p~h!5p02~e/c!A~h!. ~2!

Also, because of the fact that the wave field depends on
phase~that is, on the combinationz2ct, rather thanz and t
separately!, there exists an additional integral of motio
given by

u5g2pz /mc5g02pz,0 /mc5const, ~3!

where g05A11(p0 /mc)2 is the initial normalized energy
of the particle.~Note that the obtained formula is valid onl
in the case when the laser pulse is propagating in vacuum
the refractive index of the medium differs from unity, theu
conservation law needs to be modified, and further anal
becomes more complicated@24#.! The equations for the par
ticle energyg and the phaseh,

dg

dt
5

e

mc2
~y•E!,

dh

dt
5v2kyz , ~4!

whereE52(1/c)(]A/]t), with Eqs.~2! and ~3! taken into
account, can be put in the dimensionless form

dg

dt
5

1

2g

dÂ2

dh
,

dh

dt
5

u

g
, ~5!

where we introduce the dimensionless timet5vt and the
quantityÂ55A2p',0/mc. Solving those, one readily get
the functiong(h) for arbitrary initial conditions and arbi-
trary shape of the laser pulse:

g~h!5g01
@A~h!2p',0 /mc#22~p',0 /mc!2

2~g02pz,0 /mc!
. ~6!

Let us now precisely point out the connection betweenA
that enters the above formula and the actual laser ele
field E. From Eq.~1!, it follows that

A~h!52
e

mvcE2`

h
E~h8! dh8. ~7!
2-2
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RELATIVISTIC ELECTRON ACCELERATION IN . . . PHYSICAL REVIEW E68, 056402 ~2003!
In the case when the field seen by the charged particl
smooth enough (l/L!1), one has

A'a5ReS 2 i
eEc

mvcD , Ec5E0~h!e2 ih, ~8!

with E0(h) being a slow function ofh; E5ReEc . For such
a pulse,A(1`) is exponentially small~with respect to the
parameterl/L), since it represents the average of a rapi
oscillating function. Thus, after such a smooth laser pu
has passed over the particle, the particle energyg reverts to
its initial valueg0. This regime corresponds to the adiaba
motion, when no substantial acceleration takes place. As
cussed above, in order to provide significant accelerat
one needs to make the laser field amplitudeE0(h) an abrupt
function.

Consider the case when the particle initially rests, wh
will be the case of our further primary interest. Equation~6!
now simplifies to

g~h!511A 2~h!/2. ~9!

Suppose that the laser field seen by the particle grows ins
taneously at some phaseh0 from zero value up to a finite
amplitude. If, later, the pulse amplitude decreases to z
slowly, the value of integral~7! at h→` is determined by
the intensity only ath5h0. Precisely, for field~8!, Eq. ~9!
can be written as

g~`!511a2~h0!/2511a0
2sin2~h0!/2. ~10!

The model of instantaneous increase of the field seen
the particle can adequately describe the acceleration foll
ing an ionization event@9,13# and, generally, represents
good qualitative model describing any nonadiabatic effe
during acceleration. As mentioned above, the scalingg;a0

2

predicted by Eq.~10! matches well with the values ofg
actually measured in experiments@12–15#. However, for fo-
cused laser beams used in experiments, the plane-w
model does not capture the important transverse dynamic
particles, which can be more adequately approached in te
of the ponderomotive formulation discussed in the followi
section.

III. PONDEROMOTIVE TREATMENT

Treating the acceleration process under the approxima
of a plane laser pulse gives a simple estimate for the en
gained by a particle during the interaction with a laser wa
In reality, however, to get the most efficient acceleration
a given fluence, the radiation is usually focused into a t
spot, where the field gradients become essential for par
dynamics. As discussed in Sec. II, the particle energy g
depends on the transverse structure of the field because
ticles primarily escape from the focal region in the directi
transverse to the wave propagation. In addition, in focu
fields, the longitudinal component of the laser electric fie
appears, which, though small, can influence the accelera
process substantially@11,29#. Therefore, a more accurat
model~rather than the one assuming the plane-wave appr
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mation for a laser pulse! is needed to describe electron a
celeration in real experiments.

In this section, we employ a ponderomotive formulati
of acceleration of an electron produced as a result of abo
threshold ionization in a smooth~though arbitrarily nonuni-
form! laser field. Again, below we will assume that the fie
seen by the particle is switched on instantaneously att5t0
~or h5h0), when the particle remains at rest. Note that,
the spatial scale of the field is large enough~the exact con-
ditions are discussed below!, the particle dynamics is adia
batic at any timet.t0. The nonadiabatic ‘‘jump’’ of the laser
field intensity att5t0 can be attributed to proper initial con
ditions for thedrift motion, which is superimposed on th
known laser-driven oscillations and is considered only at
>t0. The requirement on these proper initial conditions
that they must provide the particletotal velocity to be zero at
t5t0 ~similar approach for the case of nonrelativistic partic
energies is discussed, e.g, in Ref.@17#!.

At t.t0, the particle average motion is determined by t
effective ponderomotive force@11,20,21,23–25# caused by
inhomogeneity of a smooth laser field with the vector pote
tial satisfying Eq.~8!. As shown in Refs.@20,24#, the particle
drift is described by the Hamiltonian function

H~rd ,pd ;t !5Ameff
2 c21pd

2c2, ~11!

where rd5^r& stands for the guiding center location,pd

5meffgdyd equals the particlephase-averagedmomentump̄,

meff(rd ,t)5mA11a2 is the slowly variable effective mass
and gd51/A12yd

2/c2 is the gamma-factor associated wi
the drift velocityyd , which coincides with thetime-averaged
particle velocity^y&. ~The bar denotes averaging over th
phaseh, and the angular brackets stand for the time aver
ing @20#.! As follows from the definition, the transverse dri
momentumpd,' at t5t0 equals the canonical momentu
P'5(e/c)A(h0). The value ofpd,z(t5t0) can be readily
obtained from Refs.@20,24#,

H5meffgdc
25mḡc2, ḡ5gd

A11a2, ~12!

considered together with the expressionsḡ5u1 p̄z,0 and
u(t5t0)51. ~Note that, in nonuniform fields, which are no
only phase dependent but may also vary in time and sp
independently, the quantitiesu andP' are subject to slow bu
substantial variations as the particle travels across the l
field.! Finally, one gets the expressions for the drift mome
tum and the normalized energy:

pd,'~ t5t0!5mca,

pd,z~ t5t0!5mc~a21a2!/2, ~13!

ḡ~ t5t0!511~a21a2!/2,

where the right-hand side is assumed to be evaluatedt
5t0 ~or h5h0), and the quantitya is defined according to
Eq. ~8!.

Equations~13! represent the initial conditions for the pa
ticle drift motion, which, att.t0, can be solved for in the
2-3
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I. Y. DODIN AND N. J. FISCH PHYSICAL REVIEW E68, 056402 ~2003!
framework of the ponderomotive canonical description w
the Hamiltonian function given by Eq.~11!. Using those, one
can finally formulate the limitations of the ponderomoti
treatment.~For the problem of free electron scattering off
laser pulse, those were addressed in Ref.@11#.! In addition to
the restriction that the amplitude of oscillations must rem
small compared to the characteristic scale of the laser fi
the particle needs to undergo at least several oscillations
fore it leaves the interaction region. The number of osci
tions can be calculated as the ratio of the timeTint spent by
the particle within the interaction region to the Dopple
modified period of oscillationsT;2pa0

2/v. Denoting the
transverse and the longitudinal scales of the laser fi
with L' and L uu respectively, one getsTint5min$L' /yd,' ;
L uu /yd,uu%. For a0@1, from Eqs.~13!, it follows that yd,'
;c/a0 andyd,uu'c. Thus, finally, the condition for the pon
deromotive approach to be valid can be written as

L'@la0 , L uu@l a0
2 ~14!

~see also Sec. IV!. The condition of small amplitude of par
ticle oscillations~compared toL' andL uu) can also be shown
to coincide with Eqs.~14!.

It is important to emphasize that, for the ponderomot
approach to stay valid, the laser pulse may not satisfy
plane-wave approximation on the global scale. Note that
the potential of the field that enters the drift motion equatio
rather than the field itself. Thus, the possible inhomogen
of the laser intensity is automatically taken into account
the proposed treatment, and so is the particle acceleratio
a small longitudinal field component, which is hard to ta
into consideration in the conventional plane-wave mo
@29#.

In the framework of the ponderomotive approach utilizi
the concept of a quasiparticle~that is, a guiding center drift-
ing with the effective massmeff), the scaling for the retained
energyg;a0

2 of an electron produced as a result of ioniz
tion becomes apparent. Indeed, consider the initial zero t
velocity as a superposition of a drift velocityyd in the labo-
ratory frame of referenceK and the quiver velocityy8 in the
frameK8 moving relatively toK at the speedyd . From Lor-
entz addition of velocities, one finds fort5t0 that yd5
2y8. Since the magnitude ofa is relativistically invariant
@20,21#, it follows that gd5g8;a0, where g8
51/A12y82/c2 stands for the relativistic factor of quive
motion. Recall that it is the guiding center with an effecti
massmeff;ma0 ~rather than the true particle with massm)
that is accelerated up to the velocityy8. Thus, immediately
after the laser field is switched on, the guiding center ene
meffgdc

2 increases up to the value of the order ofmc2a0
2. On

the other hand, as follows from Eq.~12!, the guiding center
energy coincides with the average energy of the true part
which yields the predicted scalingg;a0

2.
The results obtained in the preceding section for char

particles acceleration by a plane wave witha5a(h) can be
readily derived from the proposed ponderomotive formu
tion. Indeed, consider a particle instantaneously injected
a plane laser wave, whose amplitude decreases adiabat
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at h→` @a(`)50#. Using dH/dt5]H/]t and ](a2)/]t

5v $d(a2)/dh%, one gets equations similar to Eqs.~5!:

dḡ

dt
5

1

2ḡ

d~a2!

d^h&
,

d^h&
dt

5
1

ḡ
. ~15!

Here ^h&5vt2kzd is the time-averaged phase, which w
can be approximately used as the argument of a slow fu
tion a2(h), that stands for the normalized average intens
From Eqs.~15!, the previously obtained formula for the pa
ticle net energy gain~10! follows immediately: As follows
from Eqs.~15!, one hasḡ2a2/25const, which yields

ḡ~`!5ḡ~h0!1
a2~`!2a2~h0!

2
511

a2~h0!

2
, ~16!

where we substituted Eq.~13! for ḡ(h0) and used that
a2(`)50.

On the other hand, from the ponderomotive treatme
more results of interest can be derived. For example, supp
the nonuniform intensity profile remains static during a tim
larger than that required for the accelerated particle to le
the region of interaction~e.g., in a focal region!. In this case,
the phase-average particle energyḡ is conserved, since
]H/]t50. Thus, assuminga2(`)50, one gets g(`)
5ḡ(`)5ḡ(0), meaning that

g~`!511 1
2 ~a21a2!0 , ~17!

where the subscript 0 denotes the evaluation of the rig
hand side of the formula att5t0 (h5h0). The additional
term a2/2 @compared to Eq.~10!# results from the particle
ponderomotive acceleration out of the interaction regi
which, for static intensity profile, replaces a similar decele
tion by the tail of a plane laser pulse. The detailed struct
of the intensity profile appears to be unimportant for the
energy gain because of the conservative property of the p
deromotive force. Also, it is worth noting that, by abov
threshold ionization, electrons are primarily produced at
maximum of electric field@9#, when the instantaneous mag
nitude of the vector potential is zero@a(h0)50#, if the field
intensity seen by electrons varies only slightly from one la
period to another.~If the field strength has not been larg
enough to unbind an electron on some period, the ioniza
event, if any, can occur on the next period only near the p
field: any other field strength has been previously exp
enced by the electron and has not caused an ioniza
event.! Therefore, electrons produced in the same region o
static laser field at different moments of time eventually m
retain approximately the same energyg(`)511a0

2/2.
One needs to keep in mind though that ionization in

laser field is a stochastic process@9#: Since the frequency o
a bounded electron oscillations inside an atom is much la
than the laser frequency of interest, electron performs m
tiple rotations around the ion in the laser field before ioniz
tion. Therefore, in principle, there can be few electrons
caping at different phases. One might also imagine ot
2-4
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RELATIVISTIC ELECTRON ACCELERATION IN . . . PHYSICAL REVIEW E68, 056402 ~2003!
situations when the phaseh0 differs from the one corre-
sponding to the peak field. However, working out the act
phase of particle escape remains out of the scope of
present study, which is primarily focused on particle dyna
ics after ionization.

IV. DISCUSSION

In this section, we discuss the possibility of ponderom
tive acceleration by ultraintense electromagnetic puls
available with existing laser systems, and present the res
of our numerical computations. We consider particle acc
eration both by a plane laser wave and by a focused w
with a static average intensity profile. In these two cases,
energy gain can be obtained analytically, which allows us
compare the numerical results with our theoretical pred
tions.

To start, let us calculate the actual value of the param
a0, which determines the characteristic energy of accelera
particles. In terms of the wavelengthl ~measured in mi-

FIG. 1. Normalized vector potentiala ~‘‘seen’’ by electron! of a
linearly polarized laser pulse vs phaseh. The field is switched on a
h052p/2. For the peak intensityI 5831021 W/cm2 and the
wavelengthl51.054mm, the dimensionless field strength param
eter isa0'57.
05640
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crons! and the laser intensityI ~measured in W/cm2), a0 is
given by

a05lmmAI W/cm2 /~2.7431018!. ~18!

For the sake of definiteness, consider the parameters of
radiation accepted in Ref.@9#, namely,l51.054mm and I
5831021 W/cm2 for the peak field. For those, Eq.~18!
yields a0'57. In the peak field, the maximal possible val
of the oscillating electron energyg(h)511a0

2(sinh
2sinh0)

2/2 is therefore gmax5112a0
2'6500 ~or E

'3.3 GeV).
As discussed above, a significant fraction of the elect

energyg;gmax can be retained by the particle after the i
teraction, only if the field amplitude seen by the partic
changes abruptly in time. As in previous sections, we w
assume a free electron to be born~for instance, by means o
ionization! in a peak-intensity laser field rapidly in compar
son with the wave period, so that instantaneous increas
the seen field intensity represents an adequate approx
tion.

First, consider the interaction with a linearly polarize
plane laser pulse switched on ath5h0, with intensity de-
creasing slowly ath→` ~see Fig. 1!. From Eqs.~10! and
~16!, it follows that the maximal retained energy is given b
g ret511a0

2/2'1630~or E50.83 GeV). This value matche
precisely with the one obtained numerically. In Fig. 2, t
normalized electron energyg ~solid line! is shown versus the
normalized timevt. It can be seen thatg(`)5g ret, where
the asymptotic value is represented by a dotted line. T
electron drift energyḡ5H/mc2 ~dashed line! is found to
follow Eqs. ~15!, as predicted above.

Lower acceleration is found for initial phases, other th
h056p/2. For the same laser field switched on ath050,
the electron energy after acceleration is negligible~compared
to gmax), exactly as predicted by Eq.~10! ~Fig. 3!. If the
amplitude of the laser pulse decreases adiabatically ah
→`, substantial acceleration forh050 can only be
achieved in spatially nonuniform field~rather than the field
FIG. 2. Electron normalized relativistic energyg5E/mc2 ~solid line!, normalized drift energyḡ5H/mc2 ~dashed line!, and predicted
normalized retained energyg ret511a0

2/2'1630~dotted line! vs phaseh ~upper plot! and timet5vt ~lower plot! for electron acceleration
by the laser field shown in Fig. 1 (a0557).
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FIG. 3. Electron normalized relativistic energyg5E/mc2 ~solid line! and normalized drift energyḡ5H/mc2 ~dashed line! vs phaseh
~upper plot! and timet5vt ~lower plot! for electron acceleration by the laser field shown in Fig. 1 (a0557) switched on ath050. The
theoretically predicted retained energy isg ret51.
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which depends on the phase only!, when the acceleration i
provided by the ponderomotive force pushing the particle
of the region of strong field.

Simulations of electron acceleration of this type were p
formed for a linearly polarized focused field witha5Rea,
where

ax5a0

ib

b12iz
expS 2

k~x21y2!

b12iz
1 ih D , ~19!

az5( i /k)(]ax /]x), and they component is neglected a
being one of a higher order with respect tob/l. Here b
5kw2 sets the longitudinal scale of the focal area, andw
5Nl is the focal waist size. For the factorN, three different
values were chosen to simulate different regimes determ
by the conditions Eqs.~14!, which, for the focal area, can b
put in a simple form

N@a0 . ~20!

Note that this condition is significantly more relaxed than
one given in Ref.@11#, namely, 12yz /c@1/kw, which, for

ultrarelativistic particles, yieldsN@a0
2. As we show below,

for the considered acceleration of electrons produced a
result of above-threshold ionization, condition~20! is consis-
tent with results of our numerical computations.

In Fig. 4, the particle energyg is shown versus timet
5vt for N5140 and initial particle locationr(t50)50, also
assumed below. As predicted from the ponderomotive
proximation, the phase-average energy is conserved thro
out the acceleration process. Thus, the retained energ
g ret511(a21a2)/2, wherea is evaluated at the momen
when the field was switched on. For the given field andh0
50, one hasg ret'810. Note that despite the fact that th
energy plots in Fig. 4 seem to demonstrate nonadiabatic
havior, in fact, the dynamics remains adiabatic: Each pe
of oscillations contains two peaks ofg(h), and each of those
changes slightly from one period to another. Because of
interchange of the two types of peaks, the functiong(h)
05640
t
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ed

e
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p-
h-
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e-
d

e

contains multiple Fourier harmonics, but the amplitudes
those evolve slowly. As the interaction region is decrea
and condition ~20! is violated, the acceleration become
nonadiabatic, as, for example, shown in Fig. 5 forN510. On
the other hand, even forN550;a0, the ponderomotive
treatment predicts the energy gain fairly well, as seen
Fig. 6.

In the end, we would like to point out that, as we me
tioned in Sec. II, all of the above analysis corresponds
laser-particle interactionin vacuum, where the phase and th
group velocities of laser pulses coincide. It is often the c
though that electron acceleration by laser pulses in a pla
appears to be of interest. In rare plasmas, with small ba
ground electron densities (n!mv2/4pe2), the refraction in-
dex remains close to unity, and the results obtained by
plying the ponderomotive treatment represent a go
approximation.

FIG. 4. Electron normalized relativistic energyg5E/mc2 ~solid
line! vs timet5vt for electron acceleration in a focused laser fie
with the focal waist w5140l and a0557, instantaneously
switched on ath050. Initial particle location is in the center of th
focal region. Forh.h0, the average intensity profile is assume
static. Condition~20! is satisfied, so that the ponderomotive d

scription is valid. The normalized drift energyḡ5H/mc2 ~dashed
line! is conserved equal to the theoretically predicted retained
ergy g ret'810.
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V. SUMMARY

In summary, we employed an analytical model to descr
acceleration of electrons produced as a result of abo
threshold ionization up to ultrarelativistic energies. T
model is based on a fully relativistic ponderomotive tre
ment. We showed that, though the above-threshold ioniza
represents an abrupt process compared to laser oscillat
the ponderomotive approach can still adequately predict
resulting energy gain of electrons if the proper initial con
tions are introduced for the particle drift following the ion
ization event. The major result of the present work cons
of obtaining the explicit expressions for those initial con
tions @Eqs.~13!# and determining the applicability condition
of the ponderomotive model@Eqs. ~14! and ~20!#, studied
both analytically and numerically and shown to be sign
cantly more relaxed than those given in Ref.@11#. The
Hamiltonian formulation for the electron average motion
lows us to simplify the problem of calculating the partic

FIG. 5. Electron normalized relativistic energyg5E/mc2 ~solid
line! vs timet5vt for electron acceleration in a focused laser fie
with the focal waistw510l anda0557, instantaneously switche
on at h050. Initial particle location is in the center of the foca
region. Forh.h0, the average intensity profile is assumed sta
Condition~20! is not satisfied, and the electron motion in nonad
batic. The theoretically predicted retained energy isg ret'810 ~dot-
ted line!.
id,

.

S.

05640
e
e-

-
n

ns,
e

-

ts
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-

drift trajectory and the particle energy gain. Not only does
allow one to reproduce the well-known results of electr
acceleration by plane laser pulses, but it also gives the
cise energy gain for acceleration in smooth transversely n
uniform fields, for which the conventional plane-wave a
proximation does not hold.

To our knowledge, no precise measurements on elec
acceleration after the above-threshold ionization have b
carried out at ultrarelativistic laser fields. While experimen
data remains unavailable for direct comparison with the
tained results, our analytical predictions show a good ag
ment with the results of our numerical computations.
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FIG. 6. Electron normalized relativistic energyg5E/mc2 ~solid
line! vs timet5vt for electron acceleration in a focused laser fie
with the focal waistw550l anda0557, instantaneously switche
on at phaseh0 (h050,p/2). Initial particle location is in the cente
of the focal region. Forh.h0, the average intensity profile is as
sumed static. SinceN;a0, condition~20! is satisfied only margin-
ally, though the ponderomotive description predicts the energy g
fairly well. The theoretically predicted retained energy~dotted
lines! is g ret511(a21a2)/2, which givesg ret'810 forh050 and
g ret'2440 forh05p/2.
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