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Current Drive in a Ponderomotive Potential with Sign Reversal
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Noninductive current drive can be accomplished through ponderomotive forces with high efficiency
when the potential changes sign over the interaction region. The effect, which operates somewhat like a
Maxwell demon, can be practiced upon both ions and electrons. The current-drive efficiencies, in
principle, might be higher than those possible with conventional rf current-drive techniques. It remains,
however, for us to identify how the effect might be implemented in a magnetic fusion device in a
practical manner.
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Radio frequency (rf) waves can drive currents effi-
ciently in plasma, through resonant wave-particle inter-
actions, in several frequency regimes, including the lower
hybrid [1], the electron-cyclotron [2], and other frequency
regimes [3]. In the ion cyclotron frequency regime, low-
frequency waves can resonantly drive either electrons [4]
or ions [5] to produce current-drive effects. All of these
effects enjoy considerable experimental verification, but
the efficiency in any resonant rf current drive is limited in
that it is a diffusive process, with low-energy particles
propelled to higher energy to drive current. Kinetic en-
ergy to the particles must be provided by the wave, unless,
in an inhomogeneous plasma, a population inversion ex-
ists along a diffusion path that connects to a low-density
low-energy region [6]. Otherwise, these current-drive
schemes tend to be less efficient than is current drive
with a dc electric field; a dc electric field drives all elec-
trons in the same direction, so that momentum is im-
parted also by braking those electrons traveling against
the force field, thereby also extracting kinetic energy.

The question remains whether higher efficiencies can
be achieved via nonresonant so-called ‘‘ponderomotive’’
forces, which have been studied in a number of contexts
[7–14], including driving plasma current [8,9]. Litwin
[10] suggests that there is cancellation that reduces the
so-called alpha effect relied upon by others [8]. What we
show, however, is that the current-drive effect might be
achieved efficiently in an inhomogeneous magnetic field,
where an important asymmetry of the ponderomotive
potential may be exploited [7], rather than in the absence
of a magnetic field or in the presence of only a uniform
magnetic field, where this effect cannot be realized.

To show the current-drive effect in an inhomogeneous
field, suppose a plasma is immersed in a magnetic field
B0 largely in the z direction, with some variation in z, so
that B0 � B0�z�ẑz. The cyclotron frequency of a particle
with charge e and mass m is then ��z� � eB0�z�=mc.
Suppose an electric field of the form Erf � x̂xEx�z�sin!t,
with the consistent magnetic field given by @Brf=@t �
�cr�Erf . This imposed field is assumed for simplicity
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calculation, beyond the scope of this effort, should con-
sider the propagation of realizable fields, obeying the
plasma dispersion relation. In the magnetic field and
electric field imposed here, the charged particle experi-
ences an average ponderomotive potential, which may be
written as

	�z� �
1

4
mv2

osc�z�
!2

!2 ��2�z�
; (1)

where v2
osc � �eEx=m!�2. A charged particle, in the pon-

deromotive potential (1), exhibits reversible motion if the
beat frequency ! �� changes little in a period, i.e.,
vz�

0�z�=�! ���2 
 1, where vz is the particle velocity
along the magnetic field [12]. Near the cyclotron reso-
nance � � !, this condition is clearly violated, resulting
in chaotic motion of the particle. The characteristic width
of the resonant interaction region is given by �z �������������������

LBvz=!
p

, where LB is the characteristic scale of the dc
magnetic field.

Note that the potential given by Eq. (1) is asymmetric
in the z direction, as shown in Fig. 1. Ponderomotive
potentials of this form have been proposed for rf confine-
ment of plasma (for a review, see Ref. [7]) and stabiliza-
tion of low-frequency modes in magnetically confined
plasmas [13], as well as for isotope separation in plasmas
composed of multiple ion species [14]. These applications
make use of the enhancement of the potential near the
resonance, rather than the sign reversal. What we show
here is that it is precisely the sign reversal in the potential
that can be exploited to produce a nonresonant current-
drive effect with high efficiency.

Assume a z dependence of electric field Ex�z� and
magnetic field B0�z� such that, at z � 0, Ex�z� has a
maximum and ! � � (see Fig. 1). Define region I (say,
z < z1), for which ! < ��z� and for which the particle
motion is essentially adiabatic. Similarly, define adiabatic
region III (say, z > z2), for which ! > ��z�. Define
resonant region II, z1 < z < z2, for which the particle is
essentially in resonance (z2 � z1 � �z). Particles encoun-
tering the adiabatic regions may be reflected, whereas
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FIG. 2. Region of current drive excitation. The magnetic field
going in and out of the excitation region is of the same
magnitude and direction. The field lines return on themselves
outside of the current drive region. A particle can be either
reflected or transmitted by the rf barrier. The particle velocity
v2 after scattering is mapped by the nonlinear operator T to the
velocity v1 before scattering.

FIG. 1. Schematic of the field configuration. The electric field
energy profile is shown by the dotted line and the ponderomo-
tive potential 	�z� by heavy solid lines. The maximum of the
electric field occurs at z � 0, which is also where the local
gyrofrequency ��z� equals !, the frequency of the applied
electric field.
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perpendicular heating. Particles impinging on the pon-
deromotive region traveling in the �ẑz direction can be
reflected, but because of the sign reversal, particles en-
countering the barrier traveling in the �ẑz direction will
be further accelerated precisely in the �ẑz direction. Thus,
such a barrier, operating essentially as a Maxwell’s de-
mon, might be very efficient in generating current. The
precise electric field profile should be important neither in
the adiabatic region (so long as it is slowly varying) nor in
the resonant region, which could even tolerate a mini-
mum rather than a maximum on axis.

In addition to the ponderomotive force, a magnetic
force F � ��rB0 accelerates particles along the dc
magnetic field, where the quantity � � mu2

?=2B0 is an
approximate integral of particle motion [7], analogous to
the adiabatic invariant of free gyromotion in a slowly
varying magnetic field. (Here u? � v? � vrf? is the per-
pendicular velocity in the absence of the velocity oscil-
lation, vrf , due to the rf field.) Note from Fig. 1 that both
the magnetic (�rB0) and ponderomotive (r	) forces
tend to drive particles in the �ẑz direction in the regions,
where the ponderomotive potential is established (re-
gions I and III). Inside region II, where the ponderomotive
approximation does not hold, the force exerted on a
particle also has the same sign, since it is primarily the
magnetic force, with the magnetic moment � changing in
time because of resonant interaction with the rf field.
Because of these nonadiabatic effects, the integrated
magnetic force, F � ��rB0, does not quite vanish
over a return of the particle to the same magnitude
magnetic field, which produces a current-drive effect as
well [15].

To calculate the current-drive effect produced by the rf
barrier, imagine a region in space where the ponderomo-
tive force is applied (see Fig. 2). Suppose that the mag-
netic field going in and out of this region is of the same
magnitude and direction, although the field lines pinch
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inside the region. In the pinch region, the cyclotron reso-
nance is satisfied locally. Suppose also that collisions are
negligible over the time a particle crosses the pinch
region. Then, electrons (or ions) coming into this region
are either reflected or transmitted, but in any event, the
slowing down of the electrons occurs independently of
the ponderomotive field. As such, what matters is only
that, as a result of encountering the barrier, electrons go
from velocity space location v1 to location v2. If one
knew the transformation function v2 � T�v1�, one would
be able to calculate the efficiency by simply averaging
over all particles.

To calculate the current-drive efficiency, note that the
region of current-drive excitation (Fig. 2) can be thought
of as a current source. The source operates as a selective
barrier. The number of particles in the velocity interval
d3v1 scattered off the barrier during time dt within the
cross section dA is dNB � f�v1�jvz1jd

3v1dtdA, where
f�v1� is the electron velocity distribution function.

Suppose the plasma is toroidal with period 2�R. The
instantaneous particle velocity �vvz in the ẑz direction
changes as a result of collisions with background par-
ticles, so that it is a function of both initial coordinates
and time, i.e., �vvz � �vvz�v; t�, where �vvz�v; t � 0� � vz.
Suppose the resonant particles are electrons. The current
carried by dNB electrons beginning with vz � vz1 is then
dI�1�z � edNB �vvz�v1; t�=2�R. Then the current generated
by dNB electrons scattering from velocity space loca-
tion (1) to velocity space location (2) is then given by
the difference between the current generated over time by
an electron beginning in location (2) and the current gen-
erated by an electron beginning in location (1). Under
continuous scattering by a barrier from location (1) to
location (2), the generated current can then be written as

J �
e

2�R

Z
f�v1����v2� � ��v1��jvz1jd

3v1; (2)

where ��v� is the current response function:

��v� �
Z 1

0
�vvz�v; t�dt: (3)

For example, for constant slowing down rate �, we get
205004-2



P H Y S I C A L R E V I E W L E T T E R S week ending
14 NOVEMBER 2003VOLUME 91, NUMBER 20
��vz; v?� � vz=�. For superthermal velocities, the ve-
locity dependence of the collisions cannot be ignored;
in the high-velocity limit ��vz; v?� ! �vz=�0��v=vth�

3=
�5� Zi�, where Zi is the ion charge state, vth is the elec-
tron thermal speed, and �0 is the collision frequency of
thermal electrons [2].

The efficiency of a current-drive scheme is determined
by how much current can be produced per unit power
taken from an rf source. Perfect adiabatic reflection
would generate current with no power dissipation, acting
like a Maxwell demon, and thus violating thermody-
namic laws. Irreversible heating inevitably accompanies
the current drive, because particles transmitted through
the barrier are stochastically heated as they traverse the
resonance. This heating is additional to the antenna heat-
ing, which is neglected here. Then the power dissipated by
the rf barrier per unit cross section is

P �
Z

f�v1��E�v1�jvz1jd3v1; (4)

where �E�v1� � m�v2
2 � v2

1�=2 is the average irreversible
energy gain of an individual particle as it scatters off the
rf barrier. This calculation represents the full dissipation
of the rf field, neglecting only the energy leakage if the
mode were not standing, but had a finite group velocity.
For a standing mode of the plasma, as we anticipate, the
dissipation is simply equal to the energy gained from the
particles passing through it, as calculated here.

The current-drive efficiency " � J=P can be deter-
mined precisely for a Maxwellian distribution of elec-
trons in a straightforward if tedious calculation. However,
one can give a very rough estimate of the efficiency by
considering a model velocity distribution

f�v� � n
��v? � v?c�

4�v?c
���vz � vzc� � ��vz � vzc��; (5)

where the positive quantities v?c and vzc stand for the
characteristic transverse and longitudinal electron veloci-
ties of the order of vth. Substituting (5) into Eqs. (2) and
(4) and using ��v?;�vz� � ���v?; vz�, one gets

" �
e

2�R
��v�� � ��v��

�E� � �E�

; (6)

where v� � T�v?c;�vzc�, and �E� stands for the energy
change of a particle with initial velocity �v?c;�vzc�.
Since Eq. (6) does not depend on the actual mapping
T�v�, it is applicable for estimating the current-drive
efficiency for a variety of mechanisms that heat and
accelerate charged particles, as long as those processes
can be described by a velocity space mapping.

How large is the efficiency of the current drive in a
ponderomotive potential with sign reversal? The largest
efficiency is achieved when the heating is minimized. To
reflect adiabatically most of the particles coming from
region III, suppose that the height 	max of the pon-
deromotive potential is larger than the electron ther-
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mal energy: $ � 	max=mv2
th > 1. For simplicity, we

neglect the asymmetric magnetic mirroring effects; in
the absence of the effects that we discuss here the mag-
netic effects, arising from �rB0 forces, being symmet-
rical, must cancel. In principle, however, they could be
included in the transmission function T. The particles
heated are then those that travel backwards (from
region I) and pass through the resonance region. The
transverse heating for these passing particles is approxi-
mately �E? � ��=2�

����
�

p
	max, where

����
�

p
�

������������������
LB!=vz

p
is the number of cyclotron orbits completed in traversing
the resonant region. For � � 1, transmitted particles
are mainly heated rather than accelerated, so substitute
��v�� � vzc�v2

zc �v2
?c � 2�E�=m�3=2vth��1

0 and �E� �

��=2�$
����
�

p
mv2

th into Eq. (6). For reflected particles, use

��v�� � vzc�v2
zc � v2

?c�
3=2vth��1

0 and �E� � 0. The ef-
ficiency of the ponderomotive current drive is then

"PM

"0
�

2u

�$
����
�

p ��v2
zc � v2

?c � 2%$
����
�

p
�3=2

� �v2
zc � v2

?c�
3=2�; (7)

where "0 � e=2�mR�0vth, and vzc and v?c are mea-
sured in units of vth.

To gain an appreciation for this efficiency, we compare
the efficiency in this very approximate model of the
ponderomotive effect to that achieved in the electron-
cyclotron current-drive (ECCD) scheme [2]. In ECCD,
electrons traveling in one direction are heated by the rf
field in the perpendicular direction. Thus, take ��v�� �

vzc�v2
zc � v2

?c � 2�E=m�3=2vth��1
0 and �E� � �E for

the electrons incident on the barrier with positive vz; and
take ��v�� � �vzc�v2

zc � v2
?c�

3=2vth��1
0 and �E� � 0

for those incident with negative vz. Using Eq. (6) in the
limit �E ! 0, the ECCD efficiency is then given in di-

mensionless form by "EC="0 � 3vzc

���������������������
v2

zc � v2
?c

q
. To es-

timate the ratio "PM="EC, take $ � 2 and � � 4; for
the normalized energy of 2D transverse motion, take
v2
?c � 2; and, since in the range of unity the ratio of

the two efficiencies is insensitive to its precise value, take
vzc � 1. One then gets "PM="EC * 2. What this crude
calculation tells us is that the ponderomotive current-
drive efficiency can be large, maybe even larger than
the ECCD efficiency.

The effects calculated here apply equally well to ions
as to electrons. Driving a minority species ion current
in a plasma with two ion species can similarly lead to
efficient current drive [5,16], and the ions driven by the
ponderomotive effects suggested here will lead to similar
current-drive efficiencies. To drive an ion current, con-
sider two species of ions, one with charge state Z% times
the other charge state. Suppose the ions drift relative to
each other. In the frame of reference in which the ion
current vanishes, the electrons will tend to follow the ions
with the higher charge state, since they collide more often
205004-3
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with the higher charge ions, resulting in net current, den-
sity J � en%v%Z%�1� Z%�. Since the current in a neutral
plasma is frame invariant, the current appears in the
laboratory frame as well. To induce a drift of momentum
p%, by pushing ions from velocity space location (1) to
velocity space location (2), requires power PD, such that

p%

PD
� m%

�vz=��2 � �vz=��1
�E

; (8)

where � � �e � �i is the sum of the collisional slowing
down frequencies on electrons and majority ions, respec-
tively. For minority species current drive, which has
recently enjoyed experimental verification [17], minor-
ity ions are, say, cyclotron heated in the perpendicular
direction, to velocity space location (2) from nearby
location (1). Thus, we get p%=PD � �3=2�m%�vz=�� �
��i=��, where the effect is maximized when �e � �i.
For the case of ponderomotive barrier reflection, we get
an induced drift p%=PD � 2m%�vz=��=�E?, where we
again used a model two-delta function distribution (5),
except that we assumed that the main current-drive effect
came from reflection rather than heating. The main in-
efficiency occurs from the perpendicular heating, which is
related to the maximum ponderomotive potential, as for
electrons, by �E? � ��=2�

����
�

p
	max. Comparing these

two efficiencies, we can see that, if the ponderomotive
potential is several times the minority ion temperature so
as to reflect nearly all impinging minority ions, and if �
is kept small (though still larger than unity), then the
current-drive efficiency is of the order or can exceed the
minority species current-drive efficiency.

What can be concluded is that the ponderomotive
current-drive effect with sign reversal has an efficiency
that might be on the order of the efficiencies of leading
resonant rf current-drive mechanisms. But because this
mechanism depends on very different physics, with very
different parametric dependencies, there remains the en-
ticing possibility that an optimized implementation of
this effect could result in even higher rf current-drive
efficiencies. These speculations come, however, with seri-
ous caveats. First, it remains for us to identify suitable
plasma waves that can be excited in confinement devices
of interest, producing a very localized, intense rf field, so
that substantially all particles in one small flux tube can
be reflected. Second, the dc magnetic field must change
sharply enough that the parameter � is not too large; this
parameter would be too large if the natural variation of
the magnetic field in large fusion devices were relied upon
(even for ions, and more so for electrons). These represent
serious issues to be overcome before a useful current-
drive scheme can be proposed for tokamaks. Among
toroidal fusion devices, it may be more likely to realize
this effect on a spherical torus, on a stellerator, or in the
edge region of a tokamak, where there may be opportu-
nities to sharply change the magnetic field strength along
a magnetic field line. The effect might also find use on
205004-4
linear devices or in regimes entirely apart from those
normally considered for toroidal fusion devices.
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