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Electron–ion collisions in strong electromagnetic fields, whether nonrelativistic or ultrarelativistic, can lead
to the acceleration of electrons to high energies. The production efficiency and the Joule heating rate are cal-
culated. Experimental verification of theoretical predictions, including the power law scaling, is presented.
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PACS numbers: 42.65.–k
Recent experiments with petawatt laser plasmas
revealed interesting and unpredictable phenomena
[1, 2]. A large number of fast electrons with energies up
to several tens of MeV were detected. The estimated
energy of these electrons was up to 10% of the pump
laser energy. On the other hand, the plasma temperature
was of the order of hundreds of eV and was only
weakly dependent on laser intensity, but it was signifi-
cantly dependent on the pump pulse duration. The num-
ber of these hot electrons was dependent on the laser
intensity, and the angular distribution function of these
electrons was very wide. It seems difficult to imagine
that all these results are consequences of any plasma
wave turbulence. Moreover, a resonant wake process
such as might be used for deliberate acceleration of
electrons would exhibit strong directionality n of the
accelerated electrons. Thus, the review paper [1] con-
siders the electron distribution phenomena to be rather
puzzling. In this work, we point out that many of the
important features of strong laser–plasma interactions
and, particularly, hot-electron production can be inter-
preted as a consequence of electron–ion collisions.

However, traditional models of electron–ion colli-
sions in strong laser fields that are based on the small-
angle scattering approximation [3], i.e., under the
assumption that quivering electrons pass near ions
along straight lines, cannot explain the existing experi-
mental results. An alternative description of Coulomb
collisions, taking into account the substantial accelera-
tion of particles during the scattering process, was pro-
posed [4]. The application of the proposed model to the
description of hot-electron production provided by
electron–ion collisions and a comparison with experi-
mental data from [1, 2] constitute the major emphasis
of the present work.

¶ This article was submitted by the authors in English.
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The paper is organized as follows. First, we discuss
the applicability conditions and the main parameter for
the model being used. We show that, for relativistic lev-
els of laser intensities, these effects are very important.
We give estimates for the “energy spectrum” of hot
electrons (so named after [1]) directly formed by elec-
tron–ion collisions, obtaining a power tail distribution.
We estimate the total number of hot electrons pro-
duced from a unit volume per unit time. We calculate
as well the heating rate of the background plasma.
Finally, we compare the experimental data [1, 2] with
our theoretical predictions and show good agreement
between the two.

Let us note first the range of laser emission parame-
ters where the present model is suitable. In further
expressions, electron temperature T is in eV, intensity P
is in 1018 W/cm2, frequency ω is in 1015 Hz, density n is
in 1018 cm–3, and all other values are given in CGS
units.

The plasma is assumed to be cold in comparison
with the oscillatory energy, so that

(1)

This condition is satisfied easily and remains true prac-
tically for all plasmas interacting with short intense
laser pulses, especially in the first stage of the experi-
ment (preceding the Joule heating).

Second, the laser field intensity must be large
enough for the characteristic spatial scale of scatter-
ing bosc to be small compared to the radius of oscilla-
tions rosc:

(2)
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where posc = eE/ω is the oscillatory electron momen-
tum. This parameter range was first introduced in [4]. It
has never been considered in conventional theories of
electron–ion collisions, but it exhibits useful physical
limits. It can be written as a limit on the ion Coulomb
field potential energy at the distance of the oscillation
radius rosc, which must be small compared to the oscil-

latory energy . In other words, the dimensionless
parameter

(3)

needs to be small. This parameter appears naturally
when the test-particle-motion equation is put into
dimensionless form. In particular, in a nonrelativistic
approximation for a field with linear polarization along
the z0 axis, this equation can be rewritten as

(4)

Here, the time is normalized to Ω/ω, and distance, to the
characteristic scale

(5)

Note that the radius rE is equal to the distance from
the ion at which the amplitude of the laser field
becomes of the order of the amplitude of the ion Cou-
lomb field [4]. In terms of rE, the smallness of the
parameter Ω is equivalent to the fact that the radius of
the sphere surrounding the ion, inside of which the
Coulomb field dominates, is less than the radius of elec-
tron oscillations. Moreover, this scale appears naturally
when the acceleration due to the ion during the scatter-
ing process is considered (see below).

Thus, only the one parameter Ω determines the
structure of the seven-dimensional phase space of
Eq. (4). In the absence of the external field (Ω  ∞),
particle motion is regular and well-known from the
solution of the Rutherford problem [6]. A finite value of
Ω results in the formation of a stochastic layer in the
vicinity of separatrix curves, but as long as Ω @ 1, its
volume remains exponentially small.

As the field amplitude increases (which corresponds
to the decrease of Ω), the stochastic layer broadens and,
at Ω ≤ 1, occupies the whole region |p| ≤ posc in momen-
tum space. Even in this case, description of the electron
dynamics is possible under the approximation of regu-
lar trajectories, but only under the condition that it is
highly energetic particles (p @ posc) that contribute
most to the collision integral. However, we are prima-
rily interested in the opposite limit of small thermal
velocities (1), specifically, when particle dynamics is
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stochastic, since this is exactly the regime usually real-
ized in experiments.

In order to describe particle scattering in the pres-
ence of the strong laser field, let us make use of the fact
that the collision process proceeds in two stages [4]. In
the beginning, particles are just attracted to the ion with
the essential changing of the impact parameters; i.e.,
the variation of the test particle density and momentum
direction occurs at practically constant kinetic energy
of the drift motion. Also, the electron bunching happens
at first stage, so that the wave phase at the momentum
of “hard” collision is the same for different electrons
and ions. Secondly, the “hard” collision occurs (which
is actually the last collision), accompanied by a sub-
stantial change of electron momentum and by electron
departure from the Coulomb center, and, at this stage,
scattering at large angles with a corresponding large
energy exchange is possible.

It is enough to find the particle density n(r, t) before
hard collision (i.e., the density in the small vicinity of
the ion) for deriving the probability density of a colli-
sion with impact parameter r over time W(r, t) =
vn(r, t)d2ρ. To obtain the particle density n(r, t) prior to
the last hard collision, one can use both the results of
numerical simulation and the results of analytical anal-
ysis [4]. In both cases, the dependence n(r, t) is a singu-
lar periodical function of t:

(6)

Here, ρ =  is the transverse electron coordinate
(impact parameter) before the hard collision, a(v) ≥
bv = e2Z/mv 2 is a coefficient describing the efficiency of
the attraction of particles to the ion and depending on
the direction of the initial velocity v relative to vosc. It is
important to emphasize that this dependence on drift-
velocity direction is weak [4]. Thus, for the major frac-
tion of test particles, we have quasi-isotropic scattering,
so that we can use expression (6) for further estimates.
It is also important to note that the obtained singularity
of the probability function occurs independently from
the wave polarization and intensity. In particular, it can
be shown that the same estimate is appropriate for
ultrarelativistic intensities as well.

Distribution (6) describes electrons that have expe-
rienced strong attraction to the ion. Previously, such
particles were called “representative” electrons [4].
Note that, for the majority of such particles, one can
consider the scattering of the total velocity, V = v +
vosc(t), as a small-angle scattering.

The hard collision can be described by the relations
from the Rutherford-problem solution [6]. With small-
ness of drift velocity (1) taken into account, momentum
variation here is determined by the oscillatory momen-
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tum value at the collision moment and by the impact
parameter ρ:

(7)

It is supposed in (6) that collisions occur only when the
oscillatory velocity reaches its maximum (it is the
effect of bunching that provides the latter [4, 5]) and the
collision is momentary. The latter condition implies the
upper limit on the impact parameter:

(8)

Otherwise, for such large impact parameters, velocity
variation during the scattering process is substantial
and Rutherford formulas (7) are not applicable. How-
ever, this limitation is not important, since the energy
variation ∆W of such far-flung particles in strong fields
(bosc ! rosc) is small compared to the oscillatory energy:

(9)

Equation (7) allows us to find the relation between
the density function on impact parameters (6) and the
distribution of the hot-particle production rate on
momentum per unit volume and unit time:

(10)

Using density distribution (6), one finally gets

(11)

Note that the dependence of the hot-electron distribu-
tion on momentum has the universal law ~1/p3 for any
(relativistic and nonrelativistic) energies of particles.

From the relation between the kinetic energy and the
particle momentum

(m is the rest mass of electron), it is easy to find the
particle energy distribution for the nonrelativistic case
w ! mc2

(12)

and the relativistic one w @ mc2

(13)
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We will insert here the dimensional estimate for the

particle density dn(w)/dt = (w)dw with energies

exceeding some limit in the relativistic case for the
period of the field, supposing w, cposc @ mc2:

(14)

In this relation, particle energy w is measured in MeV
and other quantities are measured in units specified in
(1). Note that this density does not depend on laser
intensity. However, the total number of hot electrons
depends on pump intensity due to the larger interaction
volume with laser intensities.

In particular, considering the number of particles
with energy higher than 1 MeV for plasma1 with den-
sity 1019 cm–3 and volume 300 × 20 × 20 µm at a pulse
duration of 10 ps, one finds that the hot-electron num-
ber must be of the order of 109 Z particles, where Z ≥ 10
is the charge of ions in plasma, which coincides well
with the number of particles, 1010 to 1011, measured
experimentally. Another comparison with experimental
data that one can perform is to observe that the number
of hot electrons produced by collisions must be propor-
tional to the square of the plasma density. We compared
this result with the data taken from [2] and found good
agreement between the theory and experiment.

In experiments [1, 2], it is the distribution of parti-
cles scattered off in the same direction that is measured,
i.e., the distribution function over momentum g(p) as
found in (11). Superposing theoretical dependence (11)
on the experimental data points, one can see good coin-
cidence between the two (figure). Note that, in the fig-
ure, we combined four different series of experimental
measurements [1, 2].

The figure represents further evidence of the colli-
sional effects on hot electrons. The collisional heating
gives a natural upper limit to the momentum (and, cor-
respondingly, the energy) that particles may achieve.
This limit is the doubled oscillatory momentum 2posc,
which, under the conditions of the experiment [2]
(figure), corresponds to an energy of about 2 MeV. We
see, indeed, the abrupt decrease of the hot-particle
number for energies higher than 2 MeV. Similar results
were obtained in [1].2 It is important to emphasize that
what is shown in the figure is the dependence on the
“energy momentum” (electron kinetic momentum mul-

1 These data correspond to experiment [1].
2 We should note that much more energetic particles (with energies

up to /m or /m2c) can be produced as a result of elec-

tron–ion collisions in the ultrarelativistic case, while distribution
law (11) is applicable only for electrons with energy less than the
oscillatory energy poscc @ mc2. The momentum and angular dis-
tribution law of such ultraenergetic particles is different from
(11). It is probable that exactly these electrons have been seen at
distribution tails in experiments [1, 7].
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tiplied by the speed of light, pc), not on the actual
energy. These would be identical only in the case of
ultrarelativistic particles in [1]. The possibility of this
interpretation of the experimental results might be con-
nected with the fact that the magnetic scintillator used
for the measurements actually measures the distribu-
tion function of the particle momentum rather than the
particle energy.3 

Further comparisons with the experimental data can
be performed by analyzing the heating rate Q =

(w)wdw, which is easy to calculate using particle

energy distribution (12). By substituting a = bv, one
gets the expression for the heating rate:

In the nonrelativistic case w, cposc ! mc2,

(15)

in the ultrarelativistic case cposc @ mc2,

(16)

Here, ra = v /ω is the adiabaticity radius, i.e., the dis-
tance over which incident particles with an impact
parameter exceeding ra have adiabatically small energy
variation; bc = e2Z/mc2 is the Rutherford radius, which,
if estimated with for Z = 1 and for electron velocities

3 Taking this into account and also considering the dependence on
plasma density and the “cutoff” effect, we might conjecture that
the power law shown in [2] was aberrant due to a calibration mis-
take.

g∫

Q . 4πninemv osc
2 v abosc;

Q . 4πninemc2cbc
2 c
v
----.

The comparison between the experimental results (figure
from [1, 2]) and the theoretical (solid line, (11)) dependence
of hot-electron distribution on “energy momenta” pc.
Arrows show the “cutoff” effect.
equal to the speed of light c, matches the classical elec-
tron radius.

Expression (16) must be supplemented by an addi-
tional term describing the contribution of ultrarelativis-
tic electrons to distribution law (13). This term will
obviously coincide with (16), at least approximately,
but, for a more precise calculation, a more detailed
description of the collisions is necessary. That descrip-
tion would need to take into account the radiation losses
and quantum effects taking place in the case when the
momentum variation becomes significant.

Note that the heating rate in ultrarelativistic case
(16) does not depend on the pumping field amplitude.
The estimate of the heating rate per unit volume,

, (17)

allows one to estimate the plasma temperature (kinetic
energy) after the pulse has passed. In particular, for a
pulse with an ultrarelativistic intensity and a duration of
1 ps (which corresponds to the conditions of the exper-
iment in [1]), the electron temperature is of the order of
hundreds of eV. That is exactly the order of the temper-
ature (200–600 eV) observed in the experiment in [1].

The results represented above were obtained using
the pair-collisions approximation, wherein the proba-
bility of the simultaneous collisions of three and more
particles is assumed to be negligible. The condition of
this approximation is the smallness of the interaction
volume nVint ! 1. Usually (without a field), the interac-

tion volume is estimated as Vint = , giving

(18)

where rD =  is the Debye radius. In strong
fields, the interaction volume is Vint ≈ σeffrosc (σeff =
πbvbosc is the effective collisional cross section [4]),
which leads to the mild requirement

(19)

But this condition, obviously, can be derived using dif-
ferent approaches. Indeed, the new scale rE that appears
as the particle attraction is taken into account is the dis-

tance to the ion (multiplied by the factor rE; see
[4]), at which a particle moving near the ion with an
oscillation velocity hits the ion after a single oscillation.
The effect of attraction will not be “washed off” by
neighboring particles if this scale is less than the Debye
shielding radius rD. Hence, one again comes to condi-
tion (19). One more simple condition can be consid-
ered, namely, the absence of the influence of external
ions on the dynamics of hard collision. The volume of

Q eV cm 3–  s 1–[ ] 1013 nZ

T
-------=

bv
3

nbv
3
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3
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hard collision is Vhard = 2π rosc. So, the condition is
nVhard ! 1 or

, (20)

the ordinary condition of transparent plasmas. Both
conditions (19) and (20) are simple to fulfill.

To summarize, in considering the two types of par-
ticles being scattered (Eq. (6)), we derived an expres-
sion for the effective collision frequency and the hot-
particle energy distribution, which agree well with
experimental data. Moreover, taking into account the
“representative” electrons (the singular part of (6)) is
necessary for an adequate explanation of the experi-
mental results.
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