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Abstract

An approximate integral of the Manley–Rowe type is found for a particle moving in a high-frequency field, which may interact res
with natural particle oscillations. An effective ponderomotive potential is introduced accordingly and can capture nonadiabatic particle dcs.
We show that nonadiabatic ponderomotive barriers can trap classical particles, produce cooling effect, and generate one-way walls f
species. Possible atomic applications are also envisioned.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Even without a bias, an ac field can exert a significant ti
averaged force on a particle[1–3]. This so-called (average) pon
deromotive force is comprised of two components: the Mi
force due to the dipole interaction of the particle with the
field and the light pressure due to the particle scattering
absorption of the radiation. Often, the light pressure is ne
gible compared to the Miller force, and the induced part
dipole momentp follows an adiabatic equation of state. T
latter means thatp can be approximately expressed as a lo
function of the particle locationr, which, in the simplest case
is proportional to the amplitude of the field:p = α(ω; r)E0(r).
(Hereα is the polarizability tensor, andω is the field frequency
the conventional complex notation is implied.) In this case,
average force on the particle can be approximately describ
terms of the ponderomotive, or Miller potentialΦ, equal to the
average energy of the dipole–field interaction:

(1)Φ = −1

4

(
E∗

0 · α · E0
)
.

Importantly, Eq.(1) applies both to elementary and compou
particles and can capture adiabatic effects connected with p
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cle natural oscillations, such as Larmor rotation in a backgro
dc magnetic field, electron Langmuir oscillations in plasm
intra-atomic quantum oscillations, and molecular vibratio
Specific properties, which ponderomotive potentials(1) ex-
hibit for particles exhibiting natural oscillations, have been e
ployed in a vast variety of applications in atomic, molecu
and plasma physics, which enjoy experimental verification
a wide range of frequencies and intensities of electromagn
radiation[2–10].

In the presence of natural oscillations at frequencyων com-
parable withω, the potential(1) is “seen” by a particle on aver
age over time scales large compared to the field period 2π/ω,
the natural period 2π/ων , and the beat period 2π/|ω − ων |, if
any. It is implied then that the drift displacement of the part
on each of these time scales is insignificant as compared t
field scaleL, namely,

(2)v/ω � L, v/ων � L,

wherev is the particle average velocity, and

(3)v/�ων � L,

where�ων = ω − ων is the beat frequency. Ifων itself varies
in space, the variation of the beat period along the particle
jectory is also required to remain smooth enough:

(4)
v ∣∣∇ ln(�ων)

∣∣ � 1.

�ων
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Together with the requirement of small amplitude of the p
ticle oscillations as compared toL, Eqs.(2)–(4) represent the
validity conditions for Eq.(1).

At resonant interaction (ω ≈ ων ), the approximation of a
local potential(1) is violated. Near the resonance, the pa
cle polarizability exhibits a singularityα ∝ �ω−1

ν andΦ goes
to infinity (assuming negligible dissipation), although the t
force on a particle remains finite. Our preliminary studies p
dict a number of striking fundamental and applied effects in
domain, not captured by the traditional adiabatic model, inc
ing quantum-like behavior of classical particles in ponderom
tive barriers[11], a possibility of one-way rf walls[12–14], and
others[15]. To describe those in detail and predict new, un
plored effects, a generalization of the ponderomotive pote
concept is required.

For electrons and ions under rf drive near a cyclotron
onance in a magnetic field, this problem has been addre
previously in a number of works[2,8,16–27]. None of those
however, has introduced a non-singular ponderomotive po
tial in a non-heuristic fashion, except for the essentially p
turbative analysis proposed in Refs.[21,22]. Our recent work
though[12] has demonstrated the existence of what can be
terpreted as a conservation law foranynonadiabatic trajectory
Here we generalize and advance this result to the ponder
tive dynamics of particles of arbitrary nature.

The purpose of this Letter is to obtain the general prope
of particle dynamics in the resonance domain, when the co
tions(2) do hold, whereas those given by Eqs.(3) and (4)may
be violated. We derive the effective ponderomotive poten
which is valid for both adiabatic and strongly nonadiabatic
teractions and remains non-singular at the resonanceω = ων .
The possibility to introduce such a potential is due to the c
servation of an approximate integral of the Manley–Rowe t
[28,29], for which we suggest both a quantum interpretat
and a general “classical” derivation directly from the first pr
ciples of Hamiltonian mechanics. We show also that the p
erties of near-resonant ponderomotive barriers are striki
different from those expected within the traditional adiaba
model framework. In particular, we suggest how such barr
can be employed to produce one-way walls and even cool
onant species. We also discuss the implications of our re
with respect to the stability of particle aperiodic bounce
cillations in ponderomotive barriers. As an example, nonlin
dynamics of atomic clusters in an intense ac field is discus
and the problem of charged particle motion in a magnetic fi
under resonant drive is revisited from the standpoint of our
approach.

Although the analysis is performed for classical species
anticipate that our main results apply also to quantum partic
such as atoms and molecules. If so, the proposed methods
supplement the existing techniques of particle manipulation
laser fields[4–6]. The value added could be large then, as th
techniques allow present and potential applications in a w
variety of subjects such as light scattering, cloud physics, q
tum optics, isotopes separation, and others[7].

The Letter is organized as follows. In Section2, we de-
velop a general formulation for particle average dynamics un
-
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intense high-frequency radiation. In Section3, we study partic-
ular aspects of ponderomotive dynamics of a single-mode li
oscillator in an ac field resonant with the particle natural osc
tions. In Section4, we consider examples of particles (includi
those with internal degrees of freedom), to which our res
apply. In Section5, we summarize the main ideas of the Lett
Supplementary calculations are given inAppendices A–C.

2. Effective potential and integrals of particle motion

2.1. Example

Consider an example of a ponderomotive force on an
cillator. Namely, consider a charged particle motion in a
magnetic fieldB0 under the action of the ac field

(5)E = Re
[
E0 exp(−iωt)

]
.

Under the conditions(2)–(4) (assumingων ≡ Ω), the particle
exhibits adiabatic Larmor rotation at frequencyΩ = eB0/mc

superimposed on the induced oscillations at frequencyω. The
average effect of the ac field can then be replaced with the p
cle interaction with the ponderomotive potential(1), which now
takes the form

(6)Φ =
∑

ν=0,±1

e2|Ẽν |2
4mω(ω + νΩ)

.

HereẼν ≡ ξ∗
ν · E0 are the projections ofE0 on the polarization

vectors

(7)ξ±1 = (
x0 ± iy0)/√2, ξ0 = z0,

assumingB0 is primarily in thez direction (see Ref.[32] and
references therein). In addition to the average force−∂Φ/∂z

seen by the particle in the direction of its one-dimensio
guiding-center motion alongB0, the particle also experience
the diamagnetic acceleration−µB ′

0, where µ0 = mv2
L/2B0.

(Here vL = v⊥ − vac is the quiver velocity, additional to th
velocity of induced high-frequency oscillationsvac.) Like in
the case when the ac field is absent,µ0 is an adiabatic in-
variant, which is approximately conserved under the condit
(2)–(4) [32]. In this case, the “quasi-energy” of the partic
E = 1

2m〈vz〉2 + µB0 + Φ is also an adiabatic invariant, hen
Φ + µ0B plays a role of an effective potential.

Should(3)–(4) be violated due to the resonant interactio
bothµ0 andE will be subjected to substantial variations; hen
the potential approximation no longer holds in this case.
markably though, the combination of the two,E− (mcω/e)µ0,
is conserved, as one can deduce from Refs.[12,15,17]. This is a
sign that a formulation of the average ponderomotive dynam
must be possible in terms of ageneralizedeffective potential
even at resonant interactions. Such a formulation can be d
oped for a Hamiltonian oscillator of an arbitrary nature, as
show below in Section2. The implications of these results w
be considered in Sections3 and 4.
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2.2. Drift Lagrangian

A particle exhibiting internal oscillations (e.g., a molecu
an atom, etc.) is, generally, a system comprised ofN � 1 ele-
mentary constituents (e.g., electrons and a nucleus), intera
both with each other and the ac field. Our purpose is to des
the motion of the particle as a whole, treating the individ
constituents motion as its internal degrees of freedom. Acc
ingly, we will assume that the particle cannot dissociate (i.e.
constituents can only exhibit finite oscillations near the co
mon center of mass) and hence represents a well-defined
described by 3N independent coordinates.

Let us introduce the particle center-of-mass coordinateρ and
the constituents relative displacementshj � L (j = 1, . . . ,N ),
exhibiting finite oscillatory motion with real frequencies. In t
absence of the ac field, the particle center of mass will und
smooth, non-oscillatory behavior, and henceρ can be chosen
as the coordinate of the particle guiding center. An excep
would be a case when the particle as a whole interacts w
dc field, which confines its average motion to a subspace o
mensionalityn less than that of the real space. For example
electrostatic potential could attach the drift motion to a surf
(n = 2); or, a strong background magnetic field could kee
charged particle moving along a single field line (n = 1). In all
such cases we will assume deviations of the particle cent
mass from the guiding center subspace as additional oscilla
degrees of freedom, assumingn � 1. With that, one could de
fine the guiding center coordinate asρ̄ being the projection o
ρ on the subspace of the guiding-center motion.

In the presence of the ac field though,ρ̄ will generally oscil-
late at the frequency of the fieldω. Hence, more generally, th
guiding center coordinates must be introduced asr = ρ̄ − q,
whereq is then-dimensional center-of-mass quiver displa
ment. As, by definition, no natural frequency is associated
the center-of-mass motion in the subspace contemplated
will assume thatas a wholea particle experiences adiaba
oscillations q(a) under the conditions(2). For given fields,
q(a)(r, t) would be a known function, and thereforer can be
employed as an independent coordinate.

To derive the equation forr(t), let us consider the particl
action

(8)S =
t2∫

t1

Ldt,

whereL is the Lagrangian function, and the time scale�t =
t2 − t1 is large compared toω−1 andω−1

ν . The major contri-
bution to the actionS, linear in�t , is the time-averaged pa
of the Lagrangian,〈L〉, while the contribution of the oscillator
(with characteristic time scaleω−1, ω−1

ν ) Lagrangian to the in
tegral (8) remains small. Thus, the actionS is approximately
given byS = ∫ t2

t1
〈L〉dt , from where it follows thatLd ≡ 〈L〉

can be treated as the Lagrangian of the drift motion.
To calculateLd consider the LagrangianL as a nonlinea

operator on the particle 3N -dimensional dipole moment

(9)ψ = (e1x1, e1y1, e1z1, . . . , eNxN, eNyN, eNzN),
ng
e
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where ej are the electric charges of particle individual co
stituents, and(xj , yj , zj ) are the components ofhj . Sincehj

are assumed small, let us employ a second-order Taylor ex
sion forψ to get

(10a)L= L0 +Lψ +Lint,

(10b)Lψ = 1

2
(ψ̇,Mψ̇) − (ψ̇,Pψ) − 1

2
(ψ,Qψ),

(10c)Lint = (ψ,F).

Here the LagrangianL0(r,v), wherev = ṙ, describes the par
ticle motion atψi ≡ 0; Lψ describes free oscillations of th
dipole momentψ ; (·, ·) stands for a real dot product in 3N -
dimensional space;Lint = p · E describes the dipole interactio
of internal oscillations with the ac fieldE; p is the total dipole
moment of the particle;M , Q, andP areK × K real matrices
(K = 3N ) being functions ofr, with M , Q symmetric andP
antisymmetric[30,31]; F(r, t) is aK-dimensional force vecto

(11)F = (Ex,Ey,Ez, . . . ,Ex,Ey,Ez),

consisting ofN identical triplets(Ex,Ey,Ez) standing for the
electric field components (Appendix A). The guiding center La
grangian can then be written as

(12)Ld = L0 + 〈Lψ 〉 + 〈Lint〉.
Below we will show how Eq.(12)can be simplified for differen
cases of interest, and how the average ponderomotive forc
be calculated both for adiabatic and nonadiabatic interactio

2.3. Adiabatic interaction

To calculate〈Lψ 〉 and 〈Lint〉, note that the vectorψ can
exhibit bothdriven oscillations at frequencyω and free oscil-
lations at eigenfrequenciesων (Appendix B). Suppose first tha
all ων remain sufficiently far fromω in the sense of Eqs.(3)
and (4), so that all eigenmodesψν can be considered evolv
ing adiabatically. In this case, one can writeψ = ψ(0) + ψ(a),
where

(13)ψ(0) = Re
∑

ν

ψ(0)
ν , ψ(0)

ν = χ(0)
ν exp(−iωνt),

denotes residual free oscillations due to nonzeroψν(t = −∞)

at particle entrance to the ac field, assuming that summa
is taken over modes with non-negativeων , andχ

(0)
ν = 0 for

ων = 0; ψ(a) = Re[χ(a) exp(−iωt)] is the adiabatic respons
governed by the equation

(14)D(ω)χ(a) = F̃,

with χ(a)(t = −∞) = 0; α̂ = D−1 is the polarizability tenso
in K-dimensional space;

(15)D(ω) = −Mω2 + 2iPω + Q

is a Hermitian response matrix;̃F is the complex amplitude o
F = Re[F̃ exp(−iωt)].

The function〈Lψ [ψ]〉 then equals

(16)
〈
Lψ [ψ]〉 = 〈

Lψ

[
ψ(0)

]〉 + 〈
Lψ

[
ψ(a)

]〉
,
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where the Lagrangian of free oscillations,Lψ [ψ(0)] = ∑
ν L

(0)
ν ,

can be expressed as follows. Suppose, that the parametersLψ

are allowed to vary as the particle moves, and thus the com
amplitudesχ(0)

ν are generally not constant. Nonetheless, if
variations are slow enough (v/ων � L), then χ̇

(0)
ν � ωνχ

(0)
ν ,

and the following approximation can be employed:

L(0)
ν = ων

4

(
ψ(0)∗

ν ,D′(ων)ψ
(0)
ν

)

(17)

+ i

8

[(
ψ̇(0)∗

ν ,D′(ων)ψ
(0)
ν

) − (
ψ(0)∗

ν ,D′(ων)ψ̇
(0)
ν

)]
.

The first term in Eq.(17)equals−Jνων , whereJν is the action
of free oscillations at theνth mode (Appendix B), and the sec
ond term can be expressed asJνϕ̇ν , where−ϕν is the phase o
ψν . Hence, one can write

(18)L(0)
ν = d

dt
(Jνϕν) − J̇νϕν − Jνων.

The quantityϕν can be treated as a new variable, withJν =
∂Ld/∂ϕ̇ν being the associated canonical momentum. Then
Lagrangian equation forϕν is J̇ν = 0, meaning thatJν are con-
served for allν, except for those corresponding to zeroων .
Employing the conservation ofJν and omitting an unimpor
tant full time derivative, from Eq.(18) one getsL(0)

ν = −Jνων .
Adding a constant will neither affect the motion equations,
hence

(19)Lψ

[
ψ(0)

] =
∑
ν

′
Jν�ων,

where the prime denotes summation only modes with p
tive ων .

The Lagrangian of driven oscillations,〈Lψ [ψ(a)]〉, can be
calculated straightforwardly and yields

(20)〈Lψ 〉 = −1

4

(
χ(a)∗,Dχ(a)

)
,

whereD ≡D(ω). Employing Eq.(14)one gets also

(21)〈Lint〉 = 1

2

(
χ(a)∗,Dχ(a)

)
.

Therefore,

(22)Ld = L0 − Φ +
∑
ν

′
Jν�ων,

whereΦ = 〈Lψ 〉 = −2〈Lint〉, or

(23)Φ = −1

4

(
F̃∗, α̂F̃

)
.

By definition, (F̃∗, α̂F̃) = E∗
0 · p̃, where p̃ is the complex

amplitude of the particle dipole moment in the real thr
dimensional space:̃p = α · E0, assuming the ac field of th
form (5). Therefore,Φ given by Eq.(23) is the same adiabati
ponderomotive potential as the one introduced by Eq.(1).

The Euler equation yielded by the Lagrangian(22),

(24)
d

dt

(
∂Ld

∂v

)
= ∂Ld

∂r
,

x

e

i-

would be the equation of adiabatic drift motion. Together w
Jν = const, an integral of such motion (assuming∂Ld/∂t ≡ 0)
is the HamiltonianHd = v · ∂Ld/∂v −Ld, or

(25)Hd = Ed + Φ −
∑
ν

′ �ων

ων

Eν,

whereEd stands for the particle kinetic energy (plus the
ergy of interaction with low-frequency background fields,
any), andEν = Jνων is the energy offree oscillations stored
in aνth mode. In the simplest case when interactions with l
frequency fields (if any) are inessential, Eq.(24) takes the form

(26)m
dv
dt

= −∇Φ −
∑
ν

′
Jν∇ων,

so that

(27)Φeff = Φ −
∑
ν

′
Jν�ων

plays a role of the effective potential. (The termsJνων(r) can
be omitted for constantων(r) at adiabatic interaction, but othe
wise result in essential forces analogous, say, to the diamag
force on a charged particle in inhomogeneous magnetic
(Section4.2).)

2.4. Near-resonant interaction

Rewrite Eq.(23) in the eigenmode representation:

(28)Φ = −1

4

∑
ν

|F̃ν |2
Dν(ω)

,

whereF̃ν are projections ofF̃ on the eigenvectorsχν , andDν

are the eigenvalues ofD = α̂−1. By definition,Dν(ω) → 0 as
�ων → 0. Hence, keeping only the leading term with resp
to �ω−1

ν , the adiabatic Miller potential equals

(29)Φ = − |F̃ν |2
4D′

ν(ων)�ων

= − |Ẽν |2
4�ων

[(
α−1

ν

)′
(ων)

]−1
,

where we also introduced the corresponding resonant e
value αν of the particle polarizabilityα, and the projections
Ẽν ≡ ξ∗

ν · E0 of the ac field amplitude on the eigenvecto
ξ ν of the tensorα. Note now that at�ων → 0 one has
|F̃ν |2/4Dν(ων) ≈ −J

(a)
ν �ων , whereJ

(a)
ν is the action corre

sponding to oscillations at theνth mode with the amplitude
χν = χ

(a)
ν (Appendix B). SinceJ

(a)
ν = E (a)

ν /ων , whereE (a)
ν is,

respectively, the energy of near-resonant adiabatic oscillat
one can write

(30)Φ = �ων

ων

E (a)
ν .

For a stable particleE (a)
ν > 0. Hence, close to the resonance,

adiabatic potential is attractive for�ων < 0 and repulsive for
�ων > 0. However, sinceE (a)

ν itself goes to infinity atω = ων ,
Φ(ω) exhibits a singularity at the resonance, as follows fr
Eq. (29). As the true force exerted by the ac field on a part
is finite, the fact thatΦ(ω) appears to be a singular function
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a clear sign of the adiabatic approximation failure in the re
nance region. Let us then derive a more precise expressio
Ld to obtain the true, non-singular average force applied
particle near the resonance.

Consider the general case when for some (possibly m
than one) modes the adiabaticity conditions(3), (4) may be
violated. To do so, divideψ into the nonresonant (certainly ad
abatic) partψnr consisting of modes with�ων/ω � 1 and the
remaining partψr consisting of those with�ων/ω � 1. Among
the latter we might find both adiabatic and nonadiabatic mo
which we will treat equivalently, hence no precise discrimi
tion between the two types of oscillations is required. The d
Lagrangian of the particle can then be written as

(31)Ld = L0 +Lnr +Lr,

(32)Lnr = −φnr +
∑
ν

′
Jν�ων,

whereφnr is the part of the adiabatic potentialΦ corresponding
to the interaction with nonresonant modes, over which also
summation is taken in Eq.(32).

To calculateLr, consider the particle near-resonant respo
in the formψr = Re[χ exp(−iωt)], whereχ is a slow function
as compared to the exponent. We can write thenLr = L(1)

r +
L(2)

r , where

(33a)L(1)
r = 1

2
Re

(
χ∗,Dχ(a)

) − 1

4

(
χ∗,Dχ

)
,

(33b)L(2)
r = i

8

[(
χ̇∗,D′χ

) − (
χ∗,D′χ̇

)]
.

HereD ≡ D(ω); the adiabatic responseχ(a) is governed by
Eq. (14), with only resonant component of̃F taken into ac-
count, andχ(a)(t = −∞) = 0. The LagrangianL(1)

r can be
expressed asL(1)

r = −φr + δφr, whereδφr is the correction to
the adiabatic potentialφr:

(34)δφr = −1

4

(
δχ∗,Dδχ

) =
∑

ν

′
Jν�ων.

Here the summation is taken over near-resonant modes,δχ ≡
χ − χ(a), and

(35)Jν = −1

4

(
δχ∗

ν ,D′(ων)δχν

)
is the action of free oscillations at aνth mode,Jν = Eν/ων ,
whereEν is the energy of these oscillations (Appendix B).

The drift Lagrangian can then be put in the form

(36)Ld = L0 − Φeff +L(2)
r ,

with Φeff given by Eq.(27). The difference from the adiabat
case is that nowJν are not necessarily constant, andΦeff must
generally be considered as a function ofχ :

Φeff = −1

4

(
χ(a)∗,D(ω)χ(a)

)
(37)+ 1

4

∑
ν

′
�ων

(
δχ∗

ν ,D′(ων)δχν

)
,

-
or
a

e

s,

t

e

e

where the first term again equals the adiabatic potentialΦ. Note
that this expression is not obtained by a perturbation met
and the two terms in Eq.(37) are allowed to be of the sam
order. In particular, near each resonanceω = ων , the terms
quadratic inχ

(a)
ν ∝ �ω−1

ν cancel out, whereas linear term
enter the expression being multiplied by�ων . It means that
unlikeΦ(ω), the effective potential(37) is a non-singular func
tion.

The quantityχ (as well asχ∗) should now be treated as a
independent variable, for which the Lagrangian equation ca
derived as follows. Consider the variation ofLd (Eq.(36)) with
respect toχ∗

ν :

δLd

δχ∗
ν

= δ

δχ∗
ν

{
−1

4
�ων

(
δχ∗

ν ,D′δχν

)
(38)+ i

8

[(
χ̇∗

ν ,D′χν

) − (
χ∗

ν ,D′χ̇ν

)]}
,

where we usedδL0/δχ
∗
ν ≡ 0, δΦ/δχ∗

ν ≡ 0,D′(ων) ≈D′(ω) ≡
D′, and the fact that only the terms corresponding to theνth
mode contribute to Eq.(38). Since bothχ(a)

ν andχ
(a)∗
ν are in-

dependent ofχ∗
ν , Eq.(38)can be rewritten as follows:

δLd

δχ∗
ν

= − i

4

[
D′χ̇ν + 1

2
Ḋ′χν − i�ωνD′δχν

]

(39)+ d

dt

[
i

8

δ

δχ∗
ν

(
χ∗

ν ,D′χν

)]
.

The second term represents a full time derivative and hence
be neglected. Then to obtain the Euler equationδLd/δχ

∗
ν = 0,

one must require that the first term in Eq.(39) equals zero
which yields

(40)χ̇ν + τ−1
ν χν = i�ωνδχν,

whereτ−1
ν = 1

2(D′)−1Ḋ′. While Eq.(40) is, strictly speaking
derived for modes with�ων � ω, it can formally be applied to
any mode with nonzeroων . Even in this case, Eq.(40)properly
describes adiabatic evolution of free oscillations and pred
that at large�ων the amplitude of induced oscillations a
proachesχ(a)

ν .
The guiding-center equation of motion readily follows (s

Eq.(24)) from the drift Lagrangian, which we can finally put
the following form:

(41a)Ld = L̄d +Lχ ,

(41b)L̄d = L0(r,v) − Φeff(r, χ),

(41c)Lχ = i

8

∑
ν

′[(
χ̇∗

ν ,D′(ων)χν

) − (
χ∗

ν ,D′(ων)χ̇ν

)]
.

While Jν corresponding to nonresonant modes are integra
such motion (assuming∂Ld/∂t ≡ 0), those of resonant mode
are not conserved, and hence a particle can generally ex
stochastic behavior. Surprisingly though, one more indepen
integral can be identified in this case. Employing Eq.(24) to-
gether with Eq.(40), one can prove by direct calculation th
the full time derivative ofHd = v · ∂L̄d/∂v − L̄d equals zero
The approximate integral

(42)Hd = Ed + Φeff = const,
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coincides with that given by Eq.(25) and is conserved unde
the limitations(2) only, regardless of conditions(3) and (4).

Like in the adiabatic case, at nonadiabatic interaction
function Φeff can also be considered as the effective poten
seen by the particle. Directly from Eq.(42) it follows that

(43)m
dv

dt
= −dΦeff

ds
,

assuming thatEd = 1
2mv2, andds = v dt is a length elemen

along the particle trajectory. In the simplest case when no b
ground fields are present in the system, it is also convenie
employ the actual Lagrangian equation(24), which now takes
an “intuitive” form

(44)m
dv
dt

= −∇Φeff.

Note that the gradient in Eq.(44) applies to both terms o
Eq. (37), assumingδχν = χν − χ

(a)
ν (r), whereχν is an inde-

pendent variable.
Despite of deceptive similarity in form with a truly conse

vative force, near-resonant ponderomotive acceleration is
reversible. Onlyn of the particle 3N degrees of freedom ar
governed by Eq.(44). The remaining 3N − n degrees of free
dom, described by Eq.(40), are “frozen” at adiabatic inter
action, but otherwise are indispensable and can be viewe
hidden variables of the particle guiding center, should the la
be considered as a “black box”. Also associated with the p
cle average motion are a complex phase argχ and the natura
“location uncertainty”λ = v/min|�ων |, which makes the guid
ing center similar to aquantumobject. As shown in Ref.[11],
the quantum analogy can be elaborated upon further and
even be made quantitative.

2.5. Hamiltonian interpretation and quantum analogy

The conservation law(42) can also be explained altern
tively, by employing basic principles of Hamiltonian dynami
To show that, note thatJν are the canonical momenta corr
sponding to angle variablesϕν , ϕ̇ν ≡ ων . For clarity, label these
modes (with nonzeroων ) with indexesν = 2, . . . , q and intro-
duce the quantity

(45)J1 = − 1

ω

(
Ed + Φ +

q∑
ν=2

Jνων

)
,

which is the action variable corresponding to a general
coordinate ϕ1 oscillating at frequencyω1 = ω (see, e.g.,
Ref. [32]). At adiabatic interaction, when allων are well sep-
arated, each ofJν will represent an invariant, which results
conservation ofHd (Eq.(25)) being a combination ofJν . On the
other hand, at nonadiabatic interaction, when, say,ω1, . . . ,ωs

are close to each other,Jν�s will not be conserved individu
ally. In this case though, thesumof the resonant modes actio
Is = ∑s

ν=1 Jν will be an adiabatic invariant (Appendix C).
Since the action of each nonresonant modeJν>s remains con-
stant in any case, addingJν>s to Is will not violate the con-
servation law. Hence, the integral can also be expresse
e
l

k-
to

ot

as
r
i-

an

d

as

∑q

ν=1 Jν = const, or

(46)− 1

ω

(
Ed + Φ +

∑
ν

′
Jνων

)
+

∑
ν

′
Jν = const,

where nowany of the modes may be resonant with the
field. The obtained equation is clearly equivalent to the abo
predicted conservation ofHd given by Eq.(25), both in adia-
batic and nonadiabatic regimes.

Note that the conservation law(46) follows also from a
quantum-mechanical argument, if one recalls thatJν are pro-
portional to the number of quantaNν in corresponding modes
Nν = Jν/h̄. Consider the total energy of the systemE� , which
includes the energy of the “dressed” particle average mo
Ed + Φ [33–37], the energy of internal oscillations

∑′
ν Nνh̄ων ,

and the energy of the ac fieldNf h̄ω. As E� is conserved, one
can write that

(47)Ed + Φ −
∑
ν

′
Nνh̄�ων + N0h̄ω = const,

where the first three terms constituteHd, and N0 = Nf +∑′
ν Nν is the total number of quanta. SinceN0 is conserved

as the particle absorbs or emits photons (which is what
stitutes nonadiabaticity in classical terms), then Eq.(47) yields
Hd = const, in agreement with the above results.

One can see then that the conservation law forHd is of the
same type as Manley–Rowe relations, which are similar cla
cal manifestations of inherently quantum interactions betw
resonant oscillators[28]. (One can show also that such relatio
originate from specific Noether symmetry of resonant inte
tions [17,29].) Like those, the new integral allows to conclu
upon global stability of particle oscillations and obtain oth
results of interest. In Section3, we will consider some applica
tions of this conservation law on the simplest example of a
ticle with a single natural modeν. More complicated dynamic
of particles with richer eigenspectrum can be approached a
ogously.

3. Single-mode oscillator in resonant field

For a particle with a single natural modeν, the conservation
law (42) takes the form

(48)Ed + Φ − �ων

ων

Eν =Hd,

with Hd being a constant determined by initial conditions.
adiabatic interaction, when all of the conditions(2)–(4)are sat-
isfied,Jν = Eν/ων represents an invariant, so that(48)yields an
expression for the drift velocity at eachr. This fact allows to in-
tegrate the particle equation of motion and actually find the
pendencer(t) (at least, in quadratures and for one-dimensio
drift). At nonadiabatic interaction though,Jν varies in time, and
particle sees the effective potential

(49)Φeff = �ων

ων

[
E (a)

ν − Eν

]
,

with Eν(t) essentially being an unknown function (cf. Eqs.(27)
and (30)). Hence construction of the analytic solution is ge
erally impossible in this case. Nonetheless, applying theHd
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Fig. 1. Longitudinal velocityvz vs. guiding center locationz for a charged particle in the ac field with the spatial profileE0(z) = x0Ē0 exp(−z2/2L2) imposed over
uniform dc magnetic fieldB0 = z0B0. Herevz is measured in unitŝv = (e|Ē0|/mω)

√
Λ ∼ (|Φ|max/m)1/2; z is measured in unitŝz = c/ω; e|Ē0|/mcω = 0.001;

Λ = |1− Ω/ω|−1 = 100;Ω = eB0/mc; L = 0.4ẑ; Eν(t = 0) = 0. (a)v0 = 0.47v̂, that is,Hd < 0, (b)v0 = 0.53v̂, that is,Hd > 0; v0 ≡ vz(t = 0). The bifurcation
from stable to unstable bounce oscillations is analytically predicted at|v0| = 1

2 v̂, that is,Hd = 0.
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conservation together with Eq.(49) renders important infor
mation on the properties of particle dynamics in the resona
domain. Some of these properties are described below.

3.1. Bounce oscillations in nonadiabatic barriers

The conservation ofHd allows to determine the stabilit
conditions for particle bounce oscillations in ponderomo
barriers. Suppose, for example, that�ων < 0, in which case
Φ < 0 (cf. Eq. (30)). Conservation ofHd requires then tha
Ed �Hd+|Φ| for all t . Hence a particle cannot leave the field
Hd < 0, as otherwise it must arrive in the regionΦ(z) = 0 hav-
ing Ed � Hd < 0. Thus, at negativeHd, even aperiodic bounc
oscillations remain stable and a particle remains trapped b
attractive ponderomotive potential. (Instability of such osci
tions can only result from dissipative effects like spontane
emission[33,38], not considered here.) Unstable oscillatio
develop otherwise and result in particle escaping from the
teraction region. Examples of trapped and untrapped par
trajectories are depicted inFig. 1, which exhibits the agreemen
between the sign ofHd and particle confinement.

3.2. Ponderomotive cooling

Breaking the adiabaticity allows irreversible energy
change between particles and the ac field. If the radiatio
redshifted from the resonance frequencyων , thermal parti-
cles lose their drift energy as they scatter off a nonadiab
ponderomotive barrier, regardless of their actual trajecto
Should particle natural oscillations thermalize between con
utive interactions with the field, the effect can be employed
cooling particles.

The idea can be explained as follows. When a free par
scatters off a ponderomotive barrier [Φ(±∞) = 0], the conser-
vation of Hd requires that the overall changes of the guid
center kinetic energyEd and the internal oscillations energyEν

are bound to each other:

(50)�Ed = �

[(
ω

ων

− 1

)
Eν

]
.

e

n

s

-
le

is

c
.

c-
r

e

If ων is constant, Eq.(50) reads�Ed = (ω/ων − 1)�Eν , so
for given �ων , the sign of�Ed is determined by the sign o
�Eν . Let us show that�Eν > 0 for moderateη = T0/Φmax,
whereT0 is the initial temperature. As follows from Eq.(40),
�Eν ∼ ΛΦmax, where1

(51)Λ = |1− ων/ω|−1 � 1.

If Λ � η, then�Eν � T0, hence�Eν ≈ Eν(+∞) > 0 for all
particles, regardless of the initial value ofEν . As a result, if
ω < ων , one has�Ed < 0, so thatall thermal particles are de
celerated (Fig. 3(a)).

Suppose now that each particle encounters the field re
edly, and the time between consecutive encounters exceed
relaxation time of particle natural oscillations. At each impa
the particle will lose about|ω/ων − 1|�Eν ∼ |Φ|max of its drift
energyEd, and yet get to the next encounter with negligibleEν ,
as compared toΛ|Φ|max. Then, after aboutη interactions, each
particle will be cooled down toEd ∼ |Φ|max � T0, assuming
η � 1. At lower energies though, new effects come into p
and further cooling slows down significantly, as we explain
low.

3.3. Dynamic trapping

What impedes cooling below the limitEd ∼ |Φ|max is the
dynamic trapping of particles by the ac field. It is possible th
due to nonadiabatic deceleration in an attractive ponderom
potential, a particle can lose all of its kinetic energyEd even be-
fore leaving the interaction region. In this case, an initially f
particle will be bounced back by the decelerating slope of
wave barrier, and hence will remain inside the potential we
least for one bounce oscillation (Fig. 2). More oscillations may
also follow after that; yet, because of the phase space cons
tion requirement, particles may not stay trapped forever. Ra
only dynamic (i.e., temporary) trapping is possible in this ca

1 See also Ref.[12]. Strictly speaking,Λ = min{ωtint, |1−ων/ω|−1}, where
tint is the interaction time. For clarity though, we assume thattint is sufficiently
large, so that one can use the definition(51).
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On the other hand, if the number of bounce oscillations with
potential well is large, the post-trapping dynamics of a part
correlates little with its pretrapping dynamics. Hence the dir
tion, to which the particle is released, is almost uncorrela
with the initial velocity, and a particle can randomly escape
ther forward or backward with respect to the direction of
original drift (Fig. 2). The overall scattering is then stochas
and may lead to both transmission or reflection of incident
ticles.

To derive the condition, under which these effects beco
possible, suppose for simplicity thatων = const. Also intro-
duce the particle drift displacement on the beat periodλ(v) =
v/|�ων |, the characteristic velocity change of the particle a
encounters the ac field̂v ∼ (|Φ|max/m)1/2, and the dimension
less parameter̂ε = λ(v̂)/L. Slow particles with initial velocity
v0 � v̂ are accelerated ponderomotively up to the velocity
the order ofv̂ inside the barrier. Ifv̂ itself is large enough
(ε̂ � 1), nonadiabatic effects have to reveal for all, even initia
slow particles, some of which may then experience trapp
On the contrary, at̂ε � 1, slow particles remain adiabatic an
hence cannot be trapped. As for fast particles (v0 � v̂), in both
cases they have enough energy to overcome the ponderom
deceleration and avoid trapping. Therefore, ifε̂ � 1, at suffi-

Fig. 2. Longitudinal velocityvz vs.z for a particle being trapped and released
an attractive ponderomotive potential in a dc magnetic field (same notatio
parameters as inFig. 1; L = λ(v̂)/ε̂; ε̂ = 3): vz = 0.30v̂ (black) andvz = 0.31v̂
(gray).
-
d
-

-

e

t

f

.

ive

d

ciently smallv0 a particle may be trapped within a potent
well, but if ε̂ � 1, trapping is impossible regardless ofv0.

To illustrate these conditions, consider a Gaussian fi
E0(z) = x0Ē0 exp(−z2/2L2) applied to a particle traveling i
a uniform magnetic fieldB0 = z0B0 (see also Section4.2).
The energy change of a particle as it goes through the
deromotive barrier can be estimated under the assumptionvz ≈
v0 = const. In this case, as follows from Eq.(40), �Eν =
−2π |Φ|maxf (ε−2

0 ), where|Φ|max= 1
8mv̂2, v̂ = (e|Ē0|/mω) ×√

Λ, f (x) = xe−x , andε0 = λ(v0)/L. Assuming thatv ≈ const
remains a good approximation also foru = v0/v̂ ∼ 1, we can
expect then that a particle having

(52)
u2

2
<

π

4
f

[
(ε̂u)−2]

must be released from the interaction region with negativeEd,
which is impossible. Therefore, foru satisfying the condition
(52), the approximationvz ≈ const isstrongly violated. It is
a sign that a turning point appears on the particle traject
which means that the particle gets trapped in the potential w
Trapping remains possible for̂ε, at which Eq.(52) has a real
solution foru. In compliance with the general condition deriv
above, such solution exists only forε̂ > 1.08, as can be show
numerically. These analytic predictions are confirmed with h
accuracy in our numerical calculations, as depicted inFig. 3.

It is clear now why the cooling mechanism described in S
tion 3.2cannot be efficient atEd � Φmax, that is, atv0 � v̂. For
a barrier withε̂ � 1 (Fig. 3(a)), the conditionv0 � v̂ guaran-
tees adiabatic dynamics. Correspondingly, the energy exch
between particles and the ac field will be exponentially sm
with respect toε0, hence substantial cooling will be possib
only on exponentially large time scales. On the other hand
ε̂ � 1 (Fig. 3(b)), slow particles will get trapped by the ac fie
and the characteristic trapping time increases with decr
of v0. Indeed, a released particle must have kinetic energEd
satisfying 0< Ed < Hd = 1

2mv2
0. As v0 approaches zero, th

interval shrinks, and it becomes less probable for a partic
escape the interaction region. Therefore, atEd � Φmax all par-
ticles will eventually get trapped by the ac field, hence furt
cooling, as described in Section3.2, will become impossible
al result
Fig. 3. Change of the drift energy�Ed of a particle traveling in a dc magnetic field as it scatters off a nonadiabatic attractive ponderomotive barrier: numeric
(dots) and analytic prediction (solid). Same notation and parameters as inFig. 2, energy is measured in unitsmv̂2: (a) ε̂ = 0.5 (no trapping); (b)̂ε = 3.3 (shaded is
the region of particle trapping as established numerically). For reference to compare with the analytically predicted trapping condition(52), shown also is a graph
1
2mv2

0 (dashed).
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ive
Fig. 4. (a) High-frequency field profile producing a one-way wall:L1 � λ � L2, λ = v0/|�ων |; (b) effective potentials for particles incident from the left (posit
repulsive potential; particles are reflected) and from the right (negative attractive potential; particles are transmitted).
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On the other hand, specific properties of nonadiabatic pond
motive barriers allow other cooling mechanisms operating
at v0 � v̂ via employing one-way walls, which we will discus
in Section3.4.

3.4. One-way walls

Internal oscillations atων ≈ ω essentially decrease the p
tential seen by the particle by the factorγ : Φeff = γΦ, where
γ = 1−Eν/E (a)

ν < 1 (cf. Eq.(49)). Remarkably,γ = γ (Eν) can
be made different for different particle trajectories even at
samer. In particular, it means that particles incident on a no
diabatic ponderomotive barrier from opposite directions ca
arranged to see differentΦeff. As a result, a barrier can becom
asymmetric and operate as a one-way wall.

Various techniques to produce one-way walls on the b
of this principle (or what effectively amounts to it) have be
proposed recently in rf frequency range for electrons and
[12–14]and optical frequency range for atoms[39,40]. To illus-
trate how the idea can be employed on practice in the sim
case�ων = const, let us consider the field configuration d
picted inFig. 4(a), assuming that it is encountered by partic
with initially zero Eν [13]. (As explained in Section3.2, the
presence of nonzeroEν ∼ Ed can be neglected.) Assume al
thatL1 � λ � L2 and, at first, consider a particle incident
the ponderomotive barrier from the right. At its entrance to
ac field, such a particle will not have enough time to estab
adiabatic oscillations. As it passes the vanishingly narrow r
slope of the barrier, it will still haveχ ≈ 0, or δχν ≈ −χ

(a)
ν .

Hence, atz = 0 the particle will see

(53)Φeff(z = 0) ≈ Φeff(z = L2 → 0) = 0,

in compliance with the fact thatΦeff must be a continuous func
tion. As z is changing from 0 to−∞, the effective potentia
can only decrease, as bothJν and�ων remain constant on th
adiabatic left slope, whereasΦ gradually changes from its max
imum value to zero. A particle incident from the right then s
an attractive potentialΦeff ≈ Φ − Φmax < 0 (Fig. 4(b)) and
eventually gains energy

(54)�Ed = Φmax, �Eν = ΛΦmax.

A particle incident from the left, however, sees an adiabaticre-
pulsivepotentialΦeff ≈ Φ > 0. Assuming thatΦmax is large
o-
o

e
-
e

e

s

st

h
t

enough, this particle will never get to the nonadiabatic reg
0< z < L2; it will rather be reflected by the adiabatic slope a
leave the interaction region with zero�Ed and�Eν . It is then
clear that the contemplated ponderomotive barrier is asym
ric and acts essentially like a Maxwell demon, except tha
increases the energy of transiting particles, as required by
of thermodynamics[12,41].

One-way walls of the described type might find numer
applications employing selective manipulations with plas
particles. For example, in Refs.[12–14], it was proposed how
the contemplated Maxwell demon effect (MDE) can be used
driving electric current in magnetized plasmas. (The flexibi
in rearranging phase space makes these techniques at le
efficient, and in some regimes more efficient, as the con
tional current drive techniques[42].) Mechanisms of cooling
particles belowΦmax by what effectively amounts to ponder
motive one-way walls have also been proposed recently[39,43].
In addition, one can also imagine how the sensitivity of M
with respect to particle resonance properties could help in
arating plasma constituents (including isotope separation)
how asymmetry of nonadiabatic barriers in general could
employed for enhancing plasma confinement of mirror tr
and other applications[15].

If successful also on neutral particles, MDE could supp
ment the existing techniques of manipulating atoms by me
of laser fields[4–6], which broke important ground in atom
physics. Similar capabilities apply also for other small n
tral objects ranging from molecules to micron-sized partic
and permit one to selectively and stably trap particles, lev
them against gravity, channel particles along laser beams
use them as sensitive probes for measuring optical, ele
magnetic, viscous drag, and gravity forces[7,44–47]. These
light-pressure techniques allow present and potential app
tions in a wide variety of subjects such as light scattering, cl
physics, quantum optics, and high-resolution spectroscopy[7].
If these techniques could be additive with those proposed in
Letter, the value added could be large.

4. Classical particles exhibiting natural oscillations

Let us now consider the actual examples of particles (inc
ing those with internal degrees of freedom), to which the ab
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results can be applied. The purpose of this section is to de
within the framework of our new approach, the expressions
the Miller potentialsΦ for two types of such particles, to obta
expressions for the corresponding effective potentialsΦeff, and
to show how particular results of our previous works[12,32]
follow from the general consideration proposed above.

4.1. Atomic cluster

Consider first an atomic cluster, i.e., a compound part
containing electron gas, which can oscillate in the attrac
Coulomb field of the ion core. Since under an ac drive the e
tron cloud oscillates as a whole (assuming cold electrons
can be treated as a single constituent of the “macro-parti
Hence, counting also the ion core as one, we haveN = 2. Since
the guiding center motion is three-dimensional (n = 3), there
can beK − n = 3 independent modes (K = 3N ), each corre-
sponding to some nonnegative frequencyων , plusK − 3 = 3
modes with zero eigenfrequencies, corresponding to the ce
of-mass oscillations.

To obtain the eigenfrequenciesων , it is sufficient to find
poles of the particle polarizabilityα. This can be done as fo
lows. Assume that collisional heating of the cluster is insig
icant during the time when the ac field is on, and the size
the cluster is small compared to the radiation wavelength. T
an adequate model for a cluster would be a polarizable sp
characterized by a real dielectric constantε and a fixed radiusR
[48,49]. In this caseα is a diagonal tensor,α = αI, with all three
eigenvaluesαν equal to

(55)α = R3ε − 1

ε + 2
,

so thatων must satisfy the dispersion equationε(ων) = −2.
The dielectric constantε equals that of a plasma,ε(ω) = 1 −
ω2

p/ω2, whereωp is the plasma frequency of the electron g
inside the cluster[48]. Hence, the (Fröhlich) resonance tak
place atων = ωp/

√
3, whereas the coefficient is modified

the shape of a cluster deviates from spherical[50,51].
The Miller potential(1) then takes the form

(56)Φ = 1

4
|E0|2R3 ω2

p

3ω2 − ω2
p

,

and the effective ponderomotive potential equals

(57)Φeff = Φ +
(

1− √
3

ω

ωp

)
Ep,

where Ep is the energy of free electron (Langmuir) oscil
tions inside the cluster. At adiabatic interaction,Ep is conserved
(sinceJν = const, andωp is constant by definition), and thu
Φeff = Φ + const. Hence, the quasi-energyE = Ed + Φ, where
Ed = 1

2mv2, will represent an integral of particle motion in th
case. A more general integral, which is conserved even w
the cluster interacts resonantly with the ac drive, would be
quantityHd = Ed + Φeff. Even when the conservation ofEd is
violated, the conservation ofHd still bounds the change of th
particle drift energy to the change of its “internal” energy
e,
r

e
-
it
”.

r-

f
n
re

n
e

t → ∞:

(58)�Ed =
(√

3
ω

ωp

− 1

)
�Ep,

as follows from Eq.(50).

4.2. Particle in a magnetic field

Return now to an elementary charged particle (electro
ion) in a high-frequency field(5) in the presence of a dc ma
netic fieldB0 = ∇ × A0. Employ a linear approximation for th
vector potentialA0(r) = 1

2B0(z)(z0×r) with respect to the par
ticle displacementz0×r from the location of the guiding cente
assuming thatB0 is a slow function ofz. Assuming also that th
gyrofrequencyΩ = eB0/mc is comparable or larger thanω,
we must treat the guiding center motion as one-dimensi
(n = 1). Hence there can be at most two “internal” eigenmo
with distinct nonnegative frequenciesων (plus, the same num
ber of modes with−ων ). To find those, one can either start w
the actual expression forLψ (see Ref.[15]), or, more easily,
employ the already known expression for the polarizability t
sor[32]

(59)α = − e2

mω2




1
1−b2

ib

1−b2 0
−ib

1−b2
1

1−b2 0

0 0 1


 ,

whereb = Ω/ω. From Eq.(59), it is seen thatα exhibits singu-
larities at the cyclotron resonanceω = ±Ω , which gives us one
of non-negative eigenfrequenciesων . The remainingων are ap-
parently zero, which can also be proved directly by solving
full characteristic equationDψ = 0, as shown in Ref.[15].

To calculate the Miller potential, it is convenient to intr
duce the complex amplitudes of the ac fieldẼν ≡ ξ∗

ν · E0 in the
new basis formed by the eigenvectorsξ ν of the polarizability
tensor:

(60a)ξ±1 = x0 ± iy0

√
2

, α±1 = − e2

mω(ω ± Ω)
,

(60b)ξ0 = z0, α0 = − e2

mω2
,

whereαν are the corresponding eigenvalues ofα. The adia-
batic ponderomotive potentialΦ = −1

4

∑
ν αν |Ẽν |2 (Eq. (23))

then is given by(6), and the effective potential can be e
pressed asΦeff = Φ − J (ω − Ω), whereJ is the action vari-
able(35)corresponding to free natural oscillations at freque
Ω : J = mv2

L/2Ω . (Here vL = v⊥ − vac is the quiver veloc-
ity, additional to the velocity of induced high-frequency osc
lations vac.) Then, introducing the particle magnetic mome
µ = mv2

L/2B0, one gets

(61)Φeff = Φ + µ(B0 − Bres),

whereBres= mcω/e is the magnetic field strength, at which
particle would be in exact cyclotron resonance with the ac d
at frequencyω. In the adiabatic limit, whenµ = (e/mc)J is
conserved, one hasΦeff = Φ + µB0 + const. Hence, the quas
energyE = Ed +µB0 +Φ, whereEd = 1m〈vz〉2, will represent
2
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an integral of the particle motion in this case (cf. Ref.[32]).
A more general integral, which is conserved even when a p
cle interacts resonantly with the ac drive, would be the quan
Hd = Ed + Φeff. Even when theµ conservation is violated, th
conservation ofHd still bounds the change of the particle dr
energy to the change of the magnetic moment att → ∞:

(62)�Ed = �
[
µ(Bres− B0)

]
,

as follows from Eq.(50), in full agreement with the result w
obtained in Ref.[12] by straightforward averaging of partic
the motion equations.

5. Conclusions

In this Letter, we generalize the ponderomotive formulat
to particles (including those with internal degrees of freedo
moving under the action of a high-frequency field, which m
interact resonantly with natural particle oscillations. The
fective ponderomotive potential is derived for both adiab
and strongly nonadiabatic interactions and remains nonsi
lar even at resonant drive. The possibility to introduce s
a potential is due to the conservation of an approximate i
gral of the Manley–Rowe type, for which we suggest a n
ural quantum interpretation. We show that the propertie
near-resonant wave barriers are strikingly different from th
expected from the traditional adiabatic model. On one ha
nonadiabatic ponderomotive potentials can repel or attract
ticles in measurably predictable ways, in which sense they
operates just like normal potentials. On the other hand tho
nonadiabatic potentials are more flexible as tools for con
ling particle motion. They are not limited by the requiremen
conservativeness, hence allowing more freedom in manip
ing particles, which can be either charged plasma particle
neutral particles, such as atomic clusters and others. We
that, as a result, nonadiabatic ponderomotive barriers ca
arranged into stable traps for classical particles, produce c
ing effect, and generate one-way walls for resonant specie

Although the analysis is performed for classical spec
we anticipate that our main results can be extrapolated
on quantum particles, such as atoms and molecules. If so
proposed methods could supplement the existing techniqu
particle manipulation by laser fields. The value added coul
large then, as these techniques allow present and potentia
plications in a wide variety of subjects such as quantum op
isotopes separation, high-resolution spectroscopy, and oth
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Appendix A. Compound particle Lagrangian

Consider the Lagrangian of a compound particle consis
of N � 1 individual elementary particles:
i-
y

)

u-
h
-

-
f
e
,
r-
n

h,
-

t-
r
w
e
l-

,
o

he
of
e
p-
,
.

g

L=
∑
j

[
1

2
mjv

2
j − ejφ(rj ) + ej

c
vj · A(rj )

(A.1)− 1

2

∑
i �=j

Uij

(|rj − ri |
)]

.

Heremj , ej , rj , andvj are, respectively, the mass, the char
the location, and the velocity of aj th particle;φ = φac + φbg
and A = Aac + Abg are the scalar and the vector potentia
which determine the ac and the low-frequency backgro
fields correspondingly;c is the speed of light;Uij (|rj − ri |)
is the energy of interaction between particles labeled with
dexesj andi.

Assuming that|rj − r| � L, whereL is the minimum scale
of the fields, andr is the guiding-center location, one ca
rewrite Eq.(A.1) as

(A.2)L= L0 +L∼ +
∑
j

Lj .

HereL0 is the Lagrangian of the guiding center motion a
would be without excitation of particle internal degrees of fr
dom:

(A.3)L0 = 1

2
mv2 − eφbg(r) + e

c
v · Abg(r),

wherem = ∑
j mj , e = ∑

j ej , andv = ṙ. (Note though that
in the presence of a dc magnetic fieldBbg when the particle
gyrofrequencyΩ = eBbg/mc is of the order ofω, the pro-
posed model captures the guiding center motion only alo
single field line. In this case, the component ofv transverse to
Bbg = ∇ × Abg should be taken equal to zero by definition (s
Sections2.2 and 4.2for details).) The term

(A.4)L∼ =
∑
j

mj vj · v − eφac(r) + e

c
v · Aac(r)

is approximately a full time derivative, and can be omitted
insignificant. The LagrangiansLj are those of elementary pa
ticles relative motion. Assuming thatUij give rise to linear
oscillations, we model them with quadratic functions ofrj −ri ,
and thus, when elaborated to the second order inhj = rj − r,
Lj can be put in the form

(A.5a)Lj = L(0)
j +L(int)

j ,

(A.5b)

L(0)
j = 1

2
mj ḣ

2
j + ej

c
ḣj · [(hj · ∇)Abg(r)

] − 1

2

∑
i �=j

hi · Uij · hj ,

(A.5c)L(int)
j = ej hj · E′,

whereE′ is the external field in the guiding center rest frame

(A.6)E′ = E + 1

c
v × B.

The field E′ consists of both the ac componentE′
ac and the

low-frequency background componentE′
bg. For an ac field, the

amplitudes of the electric and the magnetic fields are conne
with each other:Eac ∼ (Lω/c)Bac, as follows from the Fara
day’s law. Sincev/c � 1, one can usually neglect the ter
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c
v × Bac in comparison withEac, and thus,E′

ac≈ Eac. In turn,
E′

bg = Ebg both in the absence ofBbg and in the opposite cas
whenBbg is sufficiently strong, so that one must considerv as
parallel toB (see above). We will therefore assume for si
plicity that E′ = E, while a more general case can also
contemplated.

With the above formulas, the LagrangianL can be finally
put in the form(10a), with

(A.7a)

Lψ =
∑
j

{
mj

2e2
j

ṗ2
j + 1

cej

ṗj · [(pj · ∇)Abg(r)
]

−
∑
i �=j

1

2eiej

pi · Uij · pj

}
,

(A.7b)Lint =
∑
j

pj · E(r),

wherepj = ej rj stand for the dipole moments of the partic
individual constituents, andp = ∑

j pj is the total dipole mo-
ment of the particle.

Appendix B. Properties of generalized linear oscillators

The Lagrangian

(B.1)Lψ = 1

2
(ψ̇,Mψ̇) − (ψ̇,Pψ) − 1

2
(ψ,Qψ)

describes free linear oscillations in coordinatesψ and yields a
Euler equationD̂ψ = 0, where

(B.2)D̂ = M
d2

dt2
− 2P

d

dt
+ Q.

The eigenmodesψν = χν exp(−iωνt) are then defined by th
characteristic equationD(ων)χν = 0, where

(B.3)D(ω) = −Mω2 + 2Rω + Q,

andR = iP . We will assume that allων are real, for which we
will require thatM , Q, andP areK × K real matrices, with
M , Q symmetric and nonnegatively defined,P antisymmetric,
andR imaginary Hermitian correspondingly[30,31].

Under these conditions, the eigenmodes are orthogonal
weight function. To show that, note first that for anyψν =
χν exp(−iωνt) the functionψ−ν = χ∗

ν exp(iωνt) will also be
an eigenmode[31]. We thus can represent areal function ψ

in the formψ = ∑
ν χν exp(−iωνt), where summation is take

over allν, both positive and negative. Consider then a real
pression(ψ̇,Pψ), which can be put in two alternative comple
forms: first, as

(B.4)(ψ̇,Pψ) =
∑
ν,µ

ωµ

(
χ∗

µ,Rχν

)
exp

[
i(ωµ − ων)t

]
,

and second, after taking a complex conjugate and exchan
the dummy indexes, as

(B.5)(ψ̇,Pψ) =
∑
ν,µ

ων

(
χ∗

µ,Rχν

)
exp

[
i(ωµ − ων)t

]
,

th

-

g

where we employed the fact thatR† = R. By subtracting
Eq. (B.4) from Eq. (B.5) and noting that the difference b
tween the two must remain zero at allt , one gets(ωµ −
ων)(χ

∗
µ,Rχν) = 0, meaning that(χ∗

µ,Rχν) = δµνRν . Us-
ing this result together with the characteristic equation
M† = M , one can show also that(χ∗

µ,Mχν) = δµνMν , and
(χ∗

µ,Qχν) = δµνQν .
Since of the 2K vectorsψν the firstK modes are comple

conjugate to the remaining ones, it is convenient to consideψ

in the form

(B.6)ψ = Re
∑
ν

χν exp(−iωνt).

The Lagrangian function(B.1) can then be expressed asLψ =∑
ν Lν , where summation is taken over half of modes, i

those with nonnegativeων , and

Lν = 1

4

(
ψ̇∗

ν ,Mψ̇ν

) − 1

4

(
ψ̇∗

ν ,Pψν

) + 1

4

(
ψ∗

ν ,P ψ̇ν

)
(B.7)− 1

4

(
ψ∗

ν ,Qψν

)
.

Consider also the energyHψ = Pψψ̇ − Lψ , wherePψ =
∂Lψ/∂ψ̇ is the canonical momentum associated withψ :

(B.8)Hψ = 1

2
(ψ̇,Mψ̇) + 1

2
(ψ,Qψ).

Like the Lagrangian,Hψ can also be written as a sum ov
individual modes with non-negativeων : Hψ = ∑

ν Hν , where

(B.9)Hν = 1

4

(
ψ̇∗

ν ,Mψ̇ν

) + 1

4

(
ψ∗

ν ,Qψν

)
.

In turn,Hν can be expressed in terms of theνth action variable

(B.10)Jν = 1

2π

∮
Pν dψν,

which remains an adiabatic invariant as the parameters o
system experience slow variations[52]. Since

(B.11)Jν = −1

4

(
χ∗

ν ,D′(ων)χν

)
,

whereD′(ω) is the derivative of(B.3), the energy of aνth mode
equalsHν = Jνων ; hence the associated phase variableϕν os-
cillates in time at frequency∂Hν/∂Jν = ων .

Appendix C. Adiabatic invariants for resonant oscillators

Consider a system governed by the Hamiltonian

(C.1)H =H0(J, t) + εH∼(J,ϕ, t),

whereJ = (J1, . . . , Js) denote action variables,ϕ = (ϕ1, . . . ,

ϕs) denote angle variables,t is time,ε � 1 is a small parame
ter, andH∼ is the perturbation Hamiltonian. If all frequenci
ωi = ∂H0/∂Ji are aliquant andε is sufficiently small, the sys
tem exhibits regular dynamics, with the image point moving
phase space along ans-dimensional invariant torus provided b
the conservation of allJi [53]. Suppose though that the fir
p frequenciesωi are close to each other (|ωi − ωj | � ωi ), in



368 I.Y. Dodin, N.J. Fisch / Physics Letters A 349 (2006) 356–369

ria
rbe
so
us
co

i

ri-

far
-
dia

rac

ven
t

and

ing,

83)

v,

nd

94

ys.

hel,

5.
33
which case even a small perturbation can destroy the inva
torus and resonantly drive the system away from its unpertu
trajectory. The overall deviation will then depend on the ten
gij = ∂ωi/∂Jj , and in general can be arbitrarily large. Let
show that even in this case the system will nonetheless
serve an adiabatic invariant being a combination ofJ1, . . . , Jp.

Consider a canonical transformation(J,ϕ) → (I, θ), where

(C.2)θi<p = ϕi − ϕ̄, θp = ϕ̄, θi>p = ϕi

are the new angle variables, with̄ϕ being the average overϕi :

(C.3)ϕ̄ = 1

p

p∑
i=1

ϕi,

and where the new action variables are derived asIi = ∂F/∂ϕi

from the generating function

(C.4)F(ϕ, I) =
p−1∑
i=1

(ϕi − ϕ̄)Ii + ϕ̄Ip +
s∑

i=p+1

ϕiIi,

so that

(C.5a)Ji<p = Ii + Ip

p
− 1

p

p−1∑
j=1

Ij ,

(C.5b)Jp = Ip

p
− 1

p

p−1∑
j=1

Ij ,

(C.5c)Ji>p = Ii .

In terms of the new variables, the Hamiltonian of the system
given by

(C.6)H′ =H0(I, t) + εH∼(I, θ , t),

where the frequencieṡθi = ω′
i , ω′

i = ∂H′/∂Ii , equal

(C.7)ω′
i<p = ωi − ω̄, ω′

p = ω̄, ω′
i>p = ωi,

and where

(C.8)ω̄ = 1

p

p∑
i=1

ωi

is the average frequency of resonant oscillators. Sinceω′
i<p

are small, the oscillations in variables(θi, Ii) (i < p) may be
resonant, and thusIi<p may be subjected to substantial va
ations. On the contrary, the frequencyω′

p is large compared
to ω′

i<p. Since by the initial assumption it also remains
from ωi>p, the corresponding actionIp is approximately con
served throughout the interaction. The value of the new a
batic invariant can be found by taking a sum of Eqs.(C.5)over
i = 1, . . . , p, which yields

(C.9)Ip =
p∑

i=1

Ji.

A similar argument can also be applied to the remainingq ≡
p − 1 resonant oscillators, with frequencies inside the cha
teristic interval�ω around the new average frequencyω̄′ =
nt
d
r

n-

s

-

-

∑q

i=1 ω′
i/q. If ε � �ω/ω̄, the new actionI ′

q = ∑q

i=1 Ii will
also be an adiabatic invariant. Extending the technique e
further, one can say then that at leastk + 1 � p independen
integrals exist if, roughly,ε � (�ω/ω̄)k .
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