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A classical particle oscillating in an arbitrary high-frequency or static field effectively exhibits a modified
rest mass meff derived from the particle averaged Lagrangian. Relativistic ponderomotive and diamagnetic
forces, as well as magnetic drifts, are obtained from the meff dependence on the guiding center location and
velocity. The effective mass is not necessarily positive and can result in backward acceleration when an
additional perturbation force is applied. As an example, adiabatic dynamics with m� �0 and m� �0 is demon-
strated for a wave-driven particle along a dc magnetic field, m� being the effective longitudinal mass derived
from meff. Multiple energy states are realized in this case, yielding up to three branches of m� for a given
magnetic moment and parallel velocity.

DOI: 10.1103/PhysRevE.77.036402 PACS number�s�: 52.35.Mw, 45.50.�j, 45.20.Jj, 52.27.Ny

I. INTRODUCTION

A large number of problems connected with multiscale
adiabatic dynamics of classical particles in oscillatory and
static fields enjoy critical simplification within the guiding-
center approach, which allows separating fast oscillatory mo-
tion of the particles from their slow translational motion
�1–9�. Often, the average forces on a guiding center are then
written in terms of effective potentials �, such as pondero-
motive �7,10–12�, diamagnetic �13�, or others �8,12�. Yet the
applicability of the potential approximation is limited to, at
most, nonrelativistic interactions, another drawback being
the unphysical difference in fictitious fields −�� seen by
different species.

The purpose of this paper is to offer an alternative ap-
proach that allows embedding the average forces into the
guiding center properties through redefining the particle rest
mass meff. The average acceleration is then attributed to the
effective mass variations, which are naturally different for
different species; hence no fictitious fields are introduced. By
definition, this “object-oriented” formulation �14� is also in-
trinsically relativistic. Therefore it equally holds for arbitrary
adiabatic interactions �15�, thus proving to be more funda-
mental as compared to the effective-potential approach.

Previously, the effective mass meff was similarly intro-
duced for an electron interacting with an intense laser wave
in vacuum, with additional fields considered only as pertur-
bations �16–29�. In this paper, we show that meff can be
defined as well for any other multiscale dynamics of a par-
ticle in high-frequency or static fields. We offer a general
formula for the effective mass and show how manipulations
of meff as a function of the guiding center variables yield the
average forces and particle trajectories. We also show that
the effective mass is not necessarily positive and can result in
backward acceleration when an additional force is applied.
As an example, we explore the average motion of a laser-
driven particle immersed in a dc magnetic field. Multiple
energy states are realized in this case and yield up to three
branches of meff and the effective longitudinal mass m� for a
given magnetic moment and parallel velocity. We show that
both m� �0 and m� �0 are possible then, the negative-mass
regime too allowing for adiabatic dynamics.

The paper is organized as follows. In Sec. II, we derive
the general formula for meff and the guiding center Hamil-
tonian accounting for additional perturbation fields, if any. In
Sec. III, we apply the effective mass formalism to the par-
ticle motion in a static magnetic field and rederive both the
particle Hamiltonian and the magnetic drifts. In Sec. IV, we
explore the average motion of a laser-driven particle in a
static magnetic field and demonstrate the possibility for adia-
batic dynamics at negative meff and m�. In Sec. V, we sum-
marize our main ideas. Supplementary calculations are given
in the Appendixes: In Appendix A, we obtain the general
form of the drift Lagrangian employed in Sec. II. In Appen-
dix B, we show how the effective mass formalism allows
derivation of ponderomotive forces in various cases of
interest.

II. EFFECTIVE MASS

Consider a particle undergoing arbitrary quasiperiodic os-
cillations superimposed on the average motion. In the adia-
batic regime, one can map out the quiver dynamics by
changing variables �1–8�; hence the guiding center is treated
as a “dressed,” or quasiparticle. Suppose, for now, that the
background fields causing the oscillations do not vary along
the trajectory. Then the associated field tensor F�� will not
enter the averaged equations as a force. However, it will
affect the motion such that, in response to additional pertur-

bation fields F̃��, the guiding center will react as if it had a
modified mass.

The effect is shown as follows. At zero F̃��, the average
dynamics is determined only by the field tensor F��� seen by
the particle in the guiding-center rest frame K�, further de-
noted by a prime. The action increment dS=L dt in the labo-
ratory frame K is then written as

dS�A�, v̄� = dS��F��� � + dG , �1�

where A� is the four-potential such that F��=��A�−��A�,
v̄= �v� is the guiding center velocity in K, v is the particle
true velocity, �¯� denotes the time average, and dG depends
on the selected gauge. Use dt= �̄ dt�, where dt� is the time
interval in K�, �̄= �1− v̄2 /c2�−1/2, and c is the speed of light;
then the guiding center Lagrangian reads
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L = L�/�̄ + Ġ , �2�

where L�=dS� /dt�. Omitting an insignificant full time de-
rivative, one can rewrite Eq. �2� as �30�

L = − meffc
2�1 − v̄2/c2. �3�

Hence L is formally equivalent to the Lagrangian of a free
particle with an effective mass

meff = − L�/c2, �4�

which is, by definition, both gauge- and Lorentz-invariant.
By definition, L�=L��F��� �, where F��� can be written in

terms of A�� ; thus

LA
��

� =
LA�

− ĠA�

�1 − v̄2/c2
, �5�

for any v̄. Consider v̄→0; in this case, A�→A�� , so

L��F��� � = �LA
��

− ��GA
��
/�t��v̄=0, �6�

where we removed the subindex “A��” in the left-hand side,
as L� is gauge-invariant.

In the absence of oscillations, L� must equal −mc2, where
m is the true mass; therefore

L� = − mc2 + LA
��
�v̄ = 0� − LA

��
�v = 0� . �7�

For clarity, we assume below that L�v=0�=−mc2. Then, us-
ing Eq. �A6�, one can write meff as

meff =
1

c2 �J · � − �L��v̄=0, �8�

where the right-hand side is to be evaluated in K� �hence the
index “v̄=0”�; J are the actions and � are the frequencies of
oscillations in canonical angles, if any, to average over �Ap-
pendix A�. Therefore, apart from the latter, meff is propor-
tional to the gauge-independent part of the averaged La-
grangian in the guiding-center rest frame �31�. Since L� is
calculated in K��v̄�, meff is generally a function of the veloc-
ity v̄. When F��� slowly varies with the guiding center coor-
dinate r̄ or time t, meff may similarly depend on those as
well, so Eq. �3� will automatically yield the average forces
�Eq. �A8��.

Suppose now that a particle interacts with a perturbation

field F̃�� governed by Ã�= �Ã , �̃�, which is imposed over
F�� �16,24,32�. In the adiabatic regime, the orbit is not al-
tered on the oscillation time scale; thus,

L = − meffc
2�1 − v̄2/c2 +

e

c
�v̄ · Ã� − e�̃ �9�

�e being the particle charge�, and a nonelectromagnetic po-
tential can be added similarly. Then, the canonical momen-

tum equals P̄= p̄+ �e /c�Ã, and the kinetic momentum p̄ is
given by

p̄ = �̄meffv̄ −
c2

�̄

�meff

� v̄
. �10�

Correspondingly, the Hamiltonian H= P̄ · v̄−L reads

H = �̄meffc
2 −

c2

�̄
	v̄ ·

�meff

� v̄

 + e�̃ , �11�

and E=H�r̄ , P̄ , t� is conserved when H is independent of
time. Thus meff can be viewed also as the normalized

quasienergy of an unperturbed �F̃��=0� particle in the
guiding-center rest frame, meff=E� /c2.

III. STATIC MAGNETIC FIELD

Let us demonstrate how the effective mass formalism ap-
plies to the problem of particle motion in a dc magnetic field
B=�	A, in which case

L = −
mc2

�
+

e

c
�v · A� , �12�

where �= �1−v2 /c2�−1/2. Assuming a smooth B, the motion
can be averaged over Larmor oscillations at frequency 

=eB /mc�, so the guiding center dynamics that remains is
one-dimensional, and the associated action J= �mc /e�� is
conserved �13�, where �= p�

2 /2Bm is the magnetic moment,
and p�=�mv� is the relativistic kinetic momentum trans-
verse to B. Thus the effective mass reads meff= ��B /��
− �L��� /c2, where the prime denotes the guiding-center rest
frame K�; � and B are Lorentz invariants, and

�� = �1 + 2�B/mc2 �13�

is constant. Since �L��=−�mc2+�B� /��, one obtains

meff = m�1 + 2�B/mc2, �14�

which is a relativistic invariant. The guiding center momen-
tum is then given by �̄meffv̄= p�, where we used a Lorentz
transformation �= �̄��. Hence the Hamiltonian �11� reads
�33,34�

H = �m2c4 + 2�Bmc2 + p�
2c2 + e�̃ , �15�

yielding, after omitting an insignificant constant, the well-
known nonrelativistic limit

H =
1

2m
p�

2 + �B + e�̃ . �16�

A more precise calculation also delivers particle drifts
�1,13,34�: Allow arbitrary v̄�, yet assume nonrelativistic v̄�

so as to treat the transverse drift as a perturbation. Following
Ref. �35�, we write the new guiding center Lagrangian as
L=L0+Lint, where L0=−meffc

2 / �̄ is that for the unperturbed
motion, and

Lint =
e

c
�v̄ · A� − e�̃ �17�

is the interaction Lagrangian small compared to L0. For sim-
plicity, assume static fields, so the guiding center quasien-
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ergy �11� is conserved. In this case, we can consider v̄ as a
function of r̄; hence �S=0 yields

�v̄ · �*�p̄ =
e

c
v̄ 	 B −

c2

�̄
�meff, �18�

where � differentiates with respect to r̄ at fixed v̄, and �*
��+�i��v̄i��� /�v̄i� is the full spatial derivative. Equation
�18� is equivalent to

v̄ 	 B* = 0, B* = B + �c/e��* 	 p̄ , �19�

which can as well be put in the form

v̄ = v̄�

B + �c/e��* 	 �p�b̂�

B + �c/e�p�b̂ · �� 	 b̂�
, �20�

where b̂=B /B, and p̄ p�b̂. This generalizes a similar analy-
sis, which was proposed in Ref. �35� for v�c, to any v, such
that v̄��c.

Equations �19� and �20� yield the known expressions of
the traditional drift approximation �4,33,36–39�. However,
they also allow for an arbitrary meff, not necessarily that
given by Eq. �14�; thus additional strong fields, if any, are as
well embedded here. Derivation of time-dependent and fully
relativistic magnetic drifts �40,41� using the effective mass
formalism should be possible, too, but remains out of the
scope of the present paper.

IV. RELATIVISTIC WAVE FIELD OVER A STATIC
MAGNETIC FIELD

The unified effective mass formulation readily yields the
ponderomotive forces previously derived from other consid-
erations �Appendix B�. In this section, we contemplate an-
other example of particle ponderomotive dynamics, which
exhibits unusual properties that, to our knowledge, have not
been covered in literature.

A. Basic equations

Consider a relativistic particle in a wave propagating
along a static magnetic field �42–50�. Assume a smooth mag-
netic field B=�	Adc, approximately in the ẑ direction; then
the vector potential Adc can be considered a linear function
of the particle displacement from the guiding center location:

Adc =
1

2
B�z��ẑ 	 r�� . �21�

For simplicity, we will also assume a vacuum electromag-
netic wave with circular polarization in the plane transverse
to B, so the corresponding vector potential reads

Aw = 	mc2

e

 a0

�2
�x̂ cos � − ŷ sin �� , �22�

where the invariant a0=eE0 /mc is allowed to slowly vary
in space and time, E0 is the amplitude of the electric field
E=−�1 /c���Aw /�t�, and �=t−kz is the phase, with

k= /c. In this case, the particle motion is fully integrable,
and the problem can be solved analytically.

According to Sec. II, we calculate meff for uniform fields,
using Eq. �12� with A=Adc+Aw. The effective mass is de-
termined by the averaged Lagrangian in the guiding-center
rest frame K� �further denoted by a prime�, which is found as
follows. Since A depends on z and t only via ��z , t�, there
exists an integral

u = � − pz/mc , �23�

yielding that the following equality holds for any f �16�:

�f� = ��f�� /����. �24�

�The subindex � denotes that the averaging is performed over
the phase rather than time.� Take f =L�; then

�L�� = −
1

�����
	mc2 −

e

mc
�p� · A���
 . �25�

With f =v, Eq. �24� also yields

v̄ = �p�� /m����, �p��� = 0, ����� = u�. �26�

Given that the average motion is solely in the ẑ direction, K�
is now defined as the frame where �pz���=0.

Hence the particle motion can be written as follows:

x = x0 + R cos � −
a0

ku�2

sin �

�1 − ��
, �27a�

y = y0 − R sin � −
a0

ku�2

cos �

�1 − ��
, �27b�

z = z0 +
�0�

ku
+

Ra0

u�2

� cos�� − ��
�1 − ��2 , �27c�

px = − P sin � −
mca0

�2

cos �

�1 − ��
, �27d�

py = − P cos � +
mca0

�2

sin �

�1 − ��
, �27e�

pz = mc�0 −
Pa0

u�2

sin�� − ��
�1 − ��

. �27f�

Here �0=uv̄ / �c− v̄� is the normalized phase-averaged mo-
mentum; R�P /m
0, P, and �=��+�0 denote the gyrora-
dius, the transverse momentum, and the phase of the free
gyromotion superimposed on the wave-induced oscillations,
� being a Lorentz invariant:

� =

0

u
=


0/�
 − kvz

; �28�

��P2 /2Bm is the invariant action of this gyromotion con-
served under adiabatic perturbations �cf. Eq. �B6��; x0, y0, z0,
v̄, P, and �0 are determined by initial conditions.

To find u, substitute �=u+�z into �2=1+��
2 +�z

2, where
��p /mc, and average over � using ��z��=�0:
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�u + �0�2 = 1 + �0
2 + ���

2 ��. �29�

Then,

u = h�1 + s2 +
a0

2

2�1 − ��2 , h =�c − v̄

c + v̄
, �30�

where �=��u�, s2�2�B /mc2 is an invariant, and 1
4mc2a0

2

equals the zero-B nonrelativistic ponderomotive potential
�=e2E0

2 /4m2 �Eq. �B3��.
Combining Eqs. �25�–�30�, one gets

meff

m
= �1 + s2 +

a0
2�2 − ��

4�1 − ��2��1 + s2 +
a0

2

2�1 − ��2�−1/2

,

�31�

which is a covariant form of meff for the effective mass ex-
pressed as a function of Lorentz invariants. Equation �31�
yields Eqs. �14�–�20� at a0=0, Eqs. �B13� and �B14� at
B=0, Eqs. �B9� and �B10� at v /c�1, and Eqs. �B3�–�B5� at
v /c�1 together with B=0. From Eq. �31�, it also readily
follows that meff�a0�4��0; yet meff�a0�4��0 at least for
some ��1 �Fig. 1�. Other properties of meff are discussed in
Secs. IV B and IV C.

B. Tristability

In the presence of both relativistic effects and nonzero B,
the cyclotron resonance is essentially nonlinear and permits
multiple energy states at given v̄ and �. To see this, rewrite
Eq. �30� as

U�u� � 2�u − �0�2�h−2u2 − s2 − 1� − a0
2u2 = 0, �32�

where �0=
0 / �51�. Equation �32� is a fourth-order alge-
braic equation; thus it allows up to four values of u, which
also can be found analytically ��52�, Sec. 1.8-5�. �Explicit
solutions are not shown here because of their complexity.�
Since U�0��0 and U��� �= +�, two solutions always exist,
one of them being unphysical �u4�0�. Further consideration

of the signs in Eq. �32� shows ��52�, Sec. 1.6-6�c�� that, apart
from degenerate cases, there exist either one or three positive
roots, u1�u2�u3. Therefore one or three energy states are
possible �Fig. 2�, allowing for hysteretic effects �53–56�,
which also have quantum analogies in solid-state physics
�57–59�.

The condition for multiple ui reads

�0 � �c � h��1 + s2�1/3 + �a0
2/2�1/3�3/2. �33�

Therefore assuming that three branches exist for a given s,
there must exist the same number of energy states for s=0.
The latter energy states correspond to three equilibria in the
momentum space �p� cos � , p� sin � , pz�, where �=�+�, �
is the gyrophase. Apart from the degenerate case when u2
approaches u3, the particle trajectory �27� is a continuous
function of the initial conditions for each branch. Thus as-
suming negligible dissipation �Sec. IV C�, all three equilibria
are stable here �Fig. 3�, unlike for a one-dimensional �1D�
nonlinear oscillator �60�, as well as in contrast to the 3D
cyclotron resonance in a quasistatic field �56� or any wave
with a parallel refraction index n� other than unity �61–64�.

The difference from Refs. �56,61–65� is understood from
the angle-action equations for the transverse oscillations,
which now are governed by the Hamiltonian

H = �� − 1�J − ��J cos � . �34�

Here J=��
2 /2� is the action conjugate to the angle �, and

�=a0 /��; the effective time is �, d�= �u /��dt. Since �z

= �1−u2+2�J� /2u �Eq. �27��, and dr /d�=p /mu, the par-
ticle motion stability in the �� ,J� space is equivalent to that
in the 6D phase space �r ,p�. �We define � through � being
the cylindrical phase in the momentum space rather than that
in the coordinate space. In this case, Eq. �34� is exact; oth-
erwise, a similar yet approximate equation follows, in agree-
ment with Refs. �61,63� for n� =1, n�=0, and v /c�1.�

For given � and ����, only one equilibrium, namely, a
center, is allowed on the phase plane �� mod 2� ,J� and lo-
cated at J= �� /2�1−���2, �=0 ���1� or �=� ���1�.
However, as �=��ui�, there exist up to three different phase
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�10

0
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FIG. 1. Effective mass meff of a wave-driven particle in a mag-
netic field �Eq. �31�, with s=0; m units� vs a0 and �.
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FIG. 2. Solution of Eq. �32� for u vs �0�
0 /: at �0→�, one
has u1,2��0�a0h /�2, and u3�h�1+s2, where ui corresponds to
different branches; u�0�=h�1+s2+a0

2 /2. For a given �0, u2 and u3

appear simultaneously behind the nonlinear resonance u=�0 �dot-
ted�; the condition is yielded by Eq. �33�. Shown is the case v̄=0
�so u= �����, s=0 for a0=0.3, a0=1.5, and a0=3.
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planes, and hence the equal number of center points
�i=1,2 ,3�. This situation is different from that, e.g., in Refs.
�62,63�, where several equilibria are bound to coexist on a
single phase plot: as multiple centers are topologically im-
possible on a plane without a saddle �66�, the intermediate-
energy equilibrium is unstable and cannot be observed there.
Since the topological constraint does not apply in our case,
all the three equilibria are now stable and equally realized.
This results in unusual particle dynamics, which we discuss
in Sec. IV C.

C. Longitudinal mass

As the three energy states correspond to different effective
masses, a guiding center behaves differently depending on
which meff is selected; even the sign of the particle accelera-
tion in response to perturbation forces can vary. To see this,
rewrite the average motion equation �A8� as

m�

dv̄
dt

= F� , �35�

where m� =�p̄ /�v̄, or

m� =
�

� v̄
	�̄meffv̄ −

c2

�̄

�meff

� v̄

 �36�

is the effective longitudinal mass �67,68�,

F� = −
�

� z̄
��̄meffc

2 −
c2

�̄
	v̄

�meff

� v̄

 + e�̃� −

� p̄

�t
�37�

is the perturbation force, and p̄= p̄�z̄ , v̄ , t� �Eq. �10��.
A tedious yet straightforward derivation yields

m� = m�̄3�2
3/2

�3
, �n = 1 + s2 +

a0
2

2�1 − ��n , �38�

�2 coinciding with u�2. In the absence of the laser field �a0

=0�, Eq. �38� reads m� =meff�̄
3�0 �Eq. �14��, as one would

expect for a particle with meff independent of v̄ �67�. Given a
nonzero a0, one as well has m�1�0 because ��1 at the first
branch, as seen from Fig. 2. It is also seen from Fig. 2 that
u3� ��0 /�c�uc, where uc�u��c�,

uc = h�1 + s2�1/3��1 + s2�1/3 + �a0
2/2�1/3�1/2;

thus m�3�0, correspondingly. However, u2� ��0 /�c�uc,
yielding m�2�0 for any v̄ and s �Fig. 4�.

Since also the oscillation orbit is stable �Sec. IV B�, a
particle residing at the second branch will exhibit unusual
behavior in response to perturbation forces F�, including
gravitational and electrostatic potentials. Unlike a “normal”
particle with a positive mass, a particle with m� �0 will ac-
celerate adiabatically in the direction opposite to F� �Fig. 5�.
Alternatively, should the unperturbed particle exhibit bounce
oscillations in z �e.g., due to inhomogeneity of E or B�, F�

will shift the equilibrium point in the direction determined by
the sign of F� /m�, with stable bouncing to persist for either
sign of m� �Fig. 6�. Merely a dissipative instability is possible

for m� �0 �e.g., m�v̇̄=−�v̄ yields v̄�e�t/�m���; yet it develops
on a time scale different from that of the oscillations and, for
weak damping, remains insignificant until large t.

Transferring particles between the different mass branches
also allows for a current drive effect distinguishable from the
traditional methods, which rely on wave-induced diffusion to
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for conditions see the caption of Fig. 2.
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higher kinetic energies �69�. The effect is explained as fol-
lows. Stationary fields conserve the particle quasienergy �11�
for a given m� branch and therefore do not permit accelera-
tion along a closed loop. However, should m� be changed
nonadiabatically along the loop, the overall work performed
can be nonzero; hence, even curl-free fields such as those
due to electrostatic or ponderomotive potentials will be able
to produce a continuous energy gain. Similar effects were
previously discussed in Refs. �12,61,63,70–75�. With the
effective-mass formalism, these effects can now be explained
within a unified approach.

V. CONCLUSIONS

We showed that a classical particle oscillating in an arbi-
trary high-frequency or static field effectively exhibits a
modified mass meff derived from the particle averaged La-
grangian �Eq. �8��. We obtained relativistic ponderomotive
and diamagnetic forces, as well as magnetic drifts, from the
meff dependence on the guiding center location and velocity.
The effective mass is not necessarily positive and can result
in backward acceleration when an additional perturbation
force is applied.

As an example, we explored the average motion of a
laser-driven particle immersed in a dc magnetic field. Mul-
tiple energy states are realized in this case and yield up to
three branches of meff and the effective longitudinal mass m�

for a given magnetic moment and parallel velocity �Fig. 4�.
We showed that both m� �0 and m� �0 are possible then, the
latter regime too allowing for adiabatic dynamics. From
other contexts, such negative masses are known to be ca-
pable of driving intriguing effects like absolute negative con-
ductivity �76,77�, negative mass instability �78–86�, and re-
lated phenomena �87–89�. Yet the effects that may flow from
the variable sign of m� �or meff� particularly for laser-driven
particles in a magnetic field remain to be studied.
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APPENDIX A: GUIDING CENTER LAGRANGIAN

Consider a dynamical system, which exhibits slow trans-
lational motion in some guiding center variables �Q ,P� su-
perimposed on fast oscillations in angle-action variables
�� ,J�. In the adiabatic regime, J is conserved, so the system
action S can be put in the form

S = J · �� +� P · dQ −� H dt , �A1�

where �� is the increment of � along a given trajectory,
H�Q ,P ;J� is the Hamiltonian, and t is the time. Suppose that
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we are only interested in guiding center trajectories, that is,
those in the �Q ,P� space. In this case, we can neglect the
first term in Eq. �A1�, so as to come up with a reduced
variational principle �S=0, where

S =� �P · Q̇ − H� dt �A2�

is the new action to be varied with respect to Q and P only
�cf., e.g., Ref. ��90�, Sec. 44��.

Using S=�L dt, where L is the Lagrangian, Eq. �A2� can
be written as �31�

S =� �L − J · �̇� dt . �A3�

By definition, the integrand here must be expressed in terms

of the guiding center variables only. Hence �̇=��Q ,P� �a
parametric dependence on J is implied hereafter�, so J · �̇ dt
is not an exact differential, and the first term in Eq. �A3� is
transformed as follows: By definition, L is a periodic
function of �, except that it may contain nonperiodic terms
that are full-time derivatives. Since omitting the latter does
not affect the motion equations, below we assume that
L= �L�+L�, where the angle brackets stand for time averag-

ing, �L��=0, and �L� is a function of �Q ,P�, or �Q ,Q̇� only.
On time scales of interest, that is, �t��i

−1 and
�t� ��i−� j�−1 ��i being any of the oscillation frequencies�,
the oscillatory term in Eq. �A3� vanishes; thus

S =� ��L� − J · �� dt . �A4�

We can now introduce a guiding center Lagrangian L�Q ,Q̇�
as S=�L dt. Since the equality

� L dt =� ��L� − J · �� dt �A5�

must hold for any time interval, one has

L = �L� − J · � , �A6�

in agreement with Refs. �91,92�. �For a system exhibiting
oscillations on multiple time scales, different L’s can be in-
troduced depending on how the time averaging is defined.�
One can also show that Eq. �A6� conforms to the require-
ment of gauge invariance: Replacing L with L+dG /dt,
where G�� ,Q , t� is an arbitrary function, will result in
L→L+�L, where

�L = � · � �G

��
� + Q̇ ·

�Ḡ

�Q
+

�Ḡ

�t
, �A7�

and Ḡ�Q , t�= �G�� ,Q , t��. The first term is equal to zero due

to G being periodic in �. Thus one has �L=dḠ /dt, i.e., �L
is, too, a full-time derivative, and therefore does not affect
the average motion equations

d

dt	 �L

�Q̇

 =

�L
�Q

. �A8�

For L being a periodic function of t �rather than, or in
addition to, ��, the above procedure would map out the time
variable, thus yielding an analog of the Maupertuis principle
��90�, Sec. 44�. However, should t be kept �unlike �� as the
independent variable, the derivation of the guiding center
Lagrangian is modified as follows. Consider the fast time t̃
and the slow time t̂ separately. Then we obtain an extended
system having the action

Ŝ = J · �� − H̃ �t̃ +� P · dQ −� Ĥ dt̂ , �A9�

where the formally introduced momentum −H̃ conjugate to t̃
is to remain constant in the adiabatic regime. The super-

Hamiltonian Ĥ must generate the same canonical equations
as those of the original system; it must also provide that
dt̃ /dt̂=1, as follows from the definition of t̃. These condi-

tions are satisfied if one takes Ĥ=H+ H̃, so the super-
Lagrangian

L̂ = P · Q̇ + J · �̇ − H̃ṫ̃ − Ĥ �A10�

equals L. Then the guiding center Lagrangian reads

L̂ = �L� − J · � + H̃ , �A11�

which is equivalent to Eq. �A6�, since constant H̃ can be
omitted.

Results similar to those in this appendix were obtained
earlier for particle motion in a dc magnetic field �3,35,41�,
oscillations in nonrelativistic high-frequency waves �8,93�,
and laser-driven relativistic electron dynamics in vacuum
�16,24,25�. In the main text, we make use of the general form
of the theorem �A6�, which contains the earlier results as
particular cases. This generality allows us to formulate a fun-
damental concept of the effective mass for an oscillating par-
ticle without making preliminary assumptions on the nature
of the oscillations.

APPENDIX B: PONDEROMOTIVE FORCES

1. NONRELATIVISTIC WAVE FIELDS

Let us apply the effective mass formalism to derive pon-
deromotive forces, starting with those in the nonrelativistic
regime �7,10–12,94�. Consider a particle oscillating in a
high-frequency wave E=−��, where

� = �0�r,t�cos�t − k · r� . �B1�

We will assume that kv̄�; we will also assume that the
envelope �0�r , t� varies little on the time scale −1 and has a
spatial scale � large compared to the amplitude of the par-
ticle oscillations ���eE /m2� and the guiding center dis-
placement on the oscillation period ��� v̄ /� �7�. Then L�
=−mc2+ �Losc�, where
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Losc 
mṙosc

2

2
− erosc · E�r̄,t� �B2�

is obtained using ��r���r̄�−rosc ·E, with the quiver dis-
placement rosc=−eE /m�2, and the Doppler-shifted fre-
quency �=−k · v̄. Then �Losc�=−�, where

� =
e2E0

2

4m� − k · v̄�2 �B3�

is known as the ponderomotive potential �7,10–12,94�, E0
being the field amplitude; thus

meff = m + �/c2. �B4�

Omitting an insignificant constant, the guiding-center La-
grangian reads L= 1

2 mv̄2−�. Hence the Hamiltonian takes
the well-known form

H =
1

2m
p̄2 + � , �B5�

� playing a role of an effective potential, as expected.
Suppose now that, under the same conditions, an addi-

tional dc magnetic field B is imposed. Assuming that B is
smooth, one has L�=−mc2−�B+ �Losc�, where

� =
m

2B
�v� − vosc�2 �B6�

is the new adiabatic invariant proportional to the action of
the particle Larmor rotation at frequency 
0=eB /mc, vosc is
the induced oscillatory velocity linear in E �11,93,95,96�, and
�Losc� is quadratic in E. Suppose B ẑB�z� �Eq. �21�� and
take

E = Re�E0
�+��̂�+� + E0

�−��̂�−� + E0
����̂����e−it+ikz, �B7�

where E0
�j� are smooth envelopes, and �̂�j� are unit vectors

denoting circular polarization in the plane transverse to the
dc magnetic field and linear polarization parallel to B:

�̂��� = �x̂ � iŷ�/�2, �̂0
��� = ẑ . �B8�

In this case, �Losc�=−�B �93�, where

�B =
e2

4m�2� �E0
�+��2

1 + 
0/�
+

�E0
�−��2

1 − 
0/�
+ �E0

����2� �B9�

matches the known ponderomotive potential in a dc mag-
netic field �10,11�. Thus meff=m+ ��B+�B� /c2, and

H =
1

2m
p̄2 + �B + �B, �B10�

in agreement with the earlier results �93�.

2. RELATIVISTIC LASER WAVE IN VACUUM

Now consider relativistic electron motion in a vacuum
laser field A=A0�r , t� cos � of arbitrary polarization, assum-
ing that the vector-potential envelope A0�r , t� has a scale that
is large compared to the wavelength, �=�t−n ·r /c� is the
phase, and n̂=k /k is a unit vector, say, in the ẑ direction.
Using Eqs. �23�–�26� and conservation of the transverse ca-
nonical momentum p�� =−�e /c�A�, one has

L� = − mc21 + �a�2��

�����

, �B11�

where a�=eA� /mc2, and �a�2��= �a2�� is an invariant. Using
Eq. �29�, one also has, without solving the motion equations,
that

����� = �1 + �p��
2��/�mc�2 = �1 + �a2��, �B12�

and L�=−mc2�����. Thus meff equals �16–29�

meff = m�1 + �a2��, �B13�

which is a Lorentz invariant independent of v̄. Correspond-
ingly, the guiding center momentum reads p̄= �̄meffv̄, and the
well-known Hamiltonian is given by

H = �meff
2 c4 + p̄2c2, �B14�

the ponderomotive force resulting from the meff dependence
on r̄ and, possibly, slow dependence on t.
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