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The oscillation-center Hamiltonian is derived for a relativistic electron injected with an arbitrary momentum
in a linearly polarized laser pulse propagating in tenuous plasma, assuming that the pulse length is smaller than
the plasma wavelength. For hot electrons generated by collisions with ions under an intense laser drive,
multiple regimes of ponderomotive acceleration are identified, and the laser dispersion is shown to affect the
process at plasma densities down to 1017 cm−3. We consider the regime when the cold plasma is not acceler-
ated, requiring a /!g"1, where a is the laser parameter, proportional to the field amplitude, and !g is the
group-velocity Lorentz factor. In this case, the Lorentz factor ! of hot electrons does not exceed ##a!g after
acceleration, assuming its initial value also satisfies !0$#. Yet !$# is attained within a wide range of initial
conditions; hence, a cutoff in the hot-electron distribution is predicted.
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I. INTRODUCTION

Recent advances in laser technology have yielded tech-
niques for generating electromagnetic radiation with intensi-
ties as high as 1022 W /cm2 %1&. Experiments show ultrapow-
erful pulses in underdense plasmas produce hot electrons
with energies up to hundreds of MeV %2,3&. As argued in Ref.
%4&, the effect might be due to ponderomotive acceleration of
electrons, following large-angle collisions with ions in strong
electromagnetic field. Assuming that the laser dispersion is
negligible due to the plasma density being small, the model
explains the observed power-law spectra and predicts that the
particle maximum energy scales as the third power of the
field amplitude. This estimate is also in approximate agree-
ment with the available experimental data %4&; however, the
latter is insufficient to conclude whether the model is, in fact,
quantitatively accurate. On the other hand, the already small
yet nonvanishing densities of the plasma can undermine the
assumption of negligible dispersion and therefore modify the
acceleration mechanism: the electron velocity can then ex-
ceed the group velocity of a laser pulse, so the particles can
be reflected, or “snow-plowed” by the field envelope. Thus,
to understand the production of hot electrons in previous and
future experiments, the effect of the laser dispersion on pon-
deromotive acceleration must be explored.

Although a general theory of the relativistic ponderomo-
tive force in plasma has been formulated %5&, so far, the
snow-plow acceleration was studied analytically only in spe-
cific regimes when the electron motion is exactly integrable.
Particularly, Refs. %6–8& assume equal group and phase ve-
locities of the laser, and Refs. %9–12& suppose circular polar-
ization and cold electrons !i.e., having zero transverse mo-
mentum", also adopted in Refs. %13–16& for an oscillation-
center !OC" model. Hence, the effect of the laser dispersion
on the hot particle energy gain has not been understood.

The focus of this paper is then twofold. First, we derive
the OC Hamiltonian for a relativistic electron injected with
an arbitrary momentum in a linearly polarized laser pulse
propagating in tenuous plasma, assuming that the pulse

length L' is smaller than the plasma wavelength %p. Second,
we use this formalism to describe the ponderomotive accel-
eration of hot electrons generated at collisions with ions un-
der an intense laser drive. Specifically, we identify multiple
regimes of this acceleration and show that the laser disper-
sion affects the process at plasma densities down to n
$1017 cm−3. We consider the regime when the cold plasma
is not accelerated, requiring a /!g"1, where a is the laser
parameter, proportional to the field amplitude, and !g is the
group-velocity Lorentz factor. In this case, the Lorentz factor
! of hot electrons does not exceed ##a!g after acceleration,
assuming its initial value also satisfies !0$#. Simulta-
neously, !$# is attained in a wide range of initial condi-
tions, with the angular spread of the accelerated electrons
&$!g

−1.
Hence, we conclude that the distribution of hot electrons

produced at large-angle collisions with ions at L'"%p and
a /!g"1 must have a cutoff at the energy !$a!g. This re-
fines the result from Ref. %4&, showing how even weak laser
dispersion can affect the acceleration gain. However, further
experiments are yet needed to validate the updated scaling
because no relevant data has been reported for the regime
considered here.

The paper is organized as follows. In Sec. II, we introduce
our basic equations. In Sec. III, we derive the OC Hamil-
tonian for a particle interacting with a laser pulse in tenuous
plasma. In Sec. IV, we identify the major regimes of pon-
deromotive acceleration in plasma and find the general ex-
pression for the particle energy gain. In Sec. V, we discuss
what we call the plateau regime, where !$# is attained
within a wide range of initial conditions. In Sec. VI, we
summarize our main results. Supplementary calculations are
given in the Appendix.

II. BASIC EQUATIONS

Suppose a plane laser wave propagating in plasma with
group velocity vg and phase velocity vp along the x axis, so
that the vector potential reads as A=y0A,
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A = A( x − vgt

L'
)cos!k%x − vpt&" . !1"

!We assume no distortion of the pulse due to the plasma
dispersion; see Sec. V B." Here y0 is a unit vector along the
y axis, L' is the spatial scale of the envelope A, and k is the
wavenumber such that '#!kL'"−1"1. Consider a particle
with mass m and charge e interacting with this wave, assum-
ing that the electrostatic potential is negligible !Sec. V B".
Then the particle Hamiltonian is %17&

H = c*m2c2 + px
2 + (P! −

e

c
A)2

, !2"

where px is the x component of the particle kinetic momen-
tum, and P!=y0Py +z0Pz is the conserved transverse canoni-
cal momentum.

In the extended phase space, where !t ,−H" serves as an-
other canonical pair and the independent variable is the
proper time (, the equivalent Hamiltonian %18& reads as

H =
1

2m
+m2c2 + px

2 + (Py −
e

c
A)2

+ Pz
2 −

H2

c2 , , !3"

and, numerically, H#0. Introduce the dimensionless vari-
ables

x̄ = kx, ) = px/mc , !4a"

t̄ = ckt, ! = H/mc2, !4b"

(̄ = kc(, h = H/mc2, !4c"

*g = vg/c, *p = vp/c , !4d"

and Py,z# Py,z /mc=const. Hence, we rewrite Eq. !3" as

h =
1
2

%1 + )2 + !Py − Ā"2 + Pz
2 − !2& , !5"

assuming (̄ is the new time, and the normalized laser field
Ā#eA /mc2 reads as

Ā = a!'%x̄ − *gt̄&"cos!x̄ − *pt̄" . !6"

III. OSCILLATION-CENTER HAMILTONIAN

A. Extended Hamiltonian

Like in Refs. %6–11,13,14,16&, we assume a linear plasma
dispersion, which holds for arbitrarily large a at L'"%p
%19–21&,

+2 = +p
2 + k2c2, !7"

where +=kvp is the laser frequency, +p is the plasma fre-
quency %22&. %Nonlinear instabilities are neglected as they
occur on time scales exceeding the acceleration time, which
is less than the wave period !Sec. IV B".& Then

*g = *1 − ,, *p = 1/*1 − ,, , = +p
2/+2. !8"

Perform a canonical transformation on Eq. !5" %23&,

!x̄,); t̄,− !" → !-,P;.,W" !9"

governed by the generating function

F = !x̄ − *pt̄"P + !x̄ − *gt̄"W . !10"

Then

) = P + W, ! = *pP + *gW , !11"

so the new Hamiltonian reads as

H =
1
2
-1 −

,P2

1 − ,
+ ,W2 + Pz

2 + %Py − a!'."cos -&2. ,

!12"

and the new variables are given by

- = x̄ − *pt̄, P =
! − *g)

*p − *g
, !13"

. = x̄ − *gt̄, W = −
! − *p)

*p − *g
. !14"

Unlike at *p=*g %6–8& !e.g., for vacuum; see the Appendix",
or in the exactly integrable case of circular polarization with
zero Py %9–12&, there are two independent coordinates - and
. entering H here; thus, we proceed as follows. Introduce
the normalized momenta

P = ,P, W = ,W , !15"

which remain finite at ,→0; hence, the Hamiltonian

H =
1
2
-, −

P2

1 − ,
+ W2 + ,Pz

2 + ,%Py − a!'."cos -&2. .

!16"

Following the general perturbation theory %24–27&, we now
seek to map out the quiver dynamics. To do this, consider a
canonical transformation

!-,P;.,W" → !/,0̂;1,W" !17"

governed by the generating function

F = -0̂ + .W + S!-,0̂;.,W" . !18"

Choose S such that 0̂ and W are OC canonical momenta, i.e.,
the new Hamiltonian H!/ ,0̂ ;1 ,W" does not contain fast
oscillations. Then

-−
1

1 − ,
%20̂!-S + !!-S"2& + %W!1S + !!1S"2&2

+ ,f!.,-".
$

= 0, !19"

the tilde standing for the quiver part, and

f!.,-" =
1
2

a2!'."cos 2- − 2Pya!'."cos - . !20"

At '"1, the terms containing !.S are negligible; thus, from
Eq. !19", S is nearly independent of W, and
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1 = . + !WS / . . !21"

Hence, Eq. !19" rewrites as

−
1

1 − ,
%20̂!-S + !!-S"2 − C2& + ,f!.,-" = 0, !22"

where C2= 0!!-S"21, and the angular brackets denote averag-
ing over -. Solving Eq. !22" yields

S = − -0̂ + 2- *0̂2 + C2 + ,!1 − ,"f!., -̃"d-̃ , !23"

where we chose the root which corresponds to P20,

P = 0̂ + !-S . !24"

Require that S does not contain a zeroth-order harmonic in -;
hence, due to Eqs. !21", !23", and !24", C is found from

2
0

23 *0̂2 + C2 + ,!1 − ,"f!1, -̃"d-̃ = 230̂ . !25"

!For an approximate solution see Sec. III C; also see Refs.
%13,14,16& for the case Py =Pz=0." Then, substituting Eqs.
!15" and !24" and

W = W + !.S / W !26"

into Eq. !16", one gets the new OC Hamiltonian

H =
1
2
+,!1 + P!

2 + 24" + W2 −
0̂2

1 − ,
, , !27"

4 =
a2

4
!1 − 52" , !28"

52 =
2C2

,!1 − ,"a2 , !29"

where P!
2 #Py

2+Pz
2. Hence, we integrate the motion in the

variables !/ ,0̂",

0̂ = const, / = 0̂(̄/!1 − ," + const, !30"

and the remaining canonical equations read as

Ẇ = − !1H, 1̇ = W . !31"

B. Effective mass M"

One can also revert to the space and time coordinates,
which is done as follows. Apply the variable change

0̂ = ,0̄, W = ,W̄, H = ,H̄ , !32"

where H̄!/ ,0̄ ;1 ,W̄" is the new Hamiltonian. Perform a ca-
nonical transformation

!/,0̄;1,W̄" → !X,Px;T,− H" !33"

governed by the generating function

F =
*p1 − *g/

*p − *g
Px −

1 − /

*p − *g
H . !34"

Then Px= 0)1, H= 0!1, and

X =
*p1 − *g/

*p − *g
, T =

1 − /

*p − *g
. !35"

Now return from the extended phase space to the physical
phase space, so that T becomes the independent variable.
Hence, the new Hamiltonian,

H = *M"
2 + P2, !36"

is equivalent to that of a particle with an effective mass

M" = *1 + 24 , !37"

where 4=4!a ,, ,Py ,0", where

0 =
0̂

*1 − ,
= H − *gPx !38"

is a constant determined by the initial conditions, and P2

=Px
2+P!

2 is the OC total momentum squared. Thus, the av-
erage force on a particle due to the laser field, or the so-
called ponderomotive force, reads as

F = − 0!1−1 ! M", !39"

in the nonrelativistic case yielding F/−!4, where 4 is
called the ponderomotive potential %28–32&.

From Eq. !28", it follows that the electron effective mass
and 4 in plasma are less than those in vacuum. As the treat-
ment is expanded to arbitrary dispersion !other polarizations
are allowed too", it can also be shown that M"6M at *p
21, and M"2M at *p61 in the general case. However, the
sign of the square root in Eq. !23" !and further" must be
chosen appropriately, accounting for the fact that P %Eq.
!13"& might then become negative.

C. Explicit approximation for M"

To find the Hamiltonian H and the effective mass explic-
itly, solve for 5 using Eq. !25", which rewrites as

2
0

23 *7−2 + 52!7,qy"/2 + f̄!-̃,qy"d-̃ = 237−1, !40"

where

7 = a*,/0, qi = Pi/a, f̄ = f/a2. !41"

At 7"1, 7qy"1, one can Taylor-expand Eq. !40" and per-
form the integration; hence, an approximate solution

5 / 7*qy
2 + 1/16. !42"

Then 5"1, so the effective mass reads as

M" = M(1 −
a252

4M2) , !43"

where M =*1+a2 /2 is the effective mass in vacuum
%16,28,33–37&. Particularly, for cold particles with P=0 !i.e.,
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0/M", and ,=,0 /M !assuming relativistic modification of
the plasma frequency, with ,0=const", one gets M"=M
%1−,0a4 / !64M5"&, in agreement with Ref. %38&.

Equation !42" can also be extrapolated as follows. Equa-
tion !40" must hold for any initial conditions; however, at
large 7, its right-hand side goes to zero, and, on the left-hand
side 7−2 becomes negligible in comparison with 3 f̄ 381. On
the other hand, the square root in Eq. !40" is supposed to
remain positive and nonvanishing due to the oscillating f̄ .
Thus, there is no solution for 5 at 781, meaning that there
exists 7"!qy" such that any realizable 7 satisfies

7 9 7" $ 1 !44"

!see also Sec. III D". Yet the exact numerical solution of Eq.
!40" for 5!7 ,qy" and its domain is close to Eq. !42" for any 7
from the interval %0,7"!qy"&, as seen in Fig. 1. Therefore, Eq.
!42" roughly holds for any realizable 7, and Eq. !37" can be
used to—at least—estimate M" explicitly.

D. Reflection point

Since 797", a particle cannot enter a field with a2a"

#7"0 /*,; thus, if the maximum field exceeds a", a particle
is reflected. On the other hand, not all 7 satisfying Eq. !44"
can be physically realized; thus, a particle may bounce off
even a weaker field.

Specifically, the reflection condition is found from

1̇2 + ,+1 + P!
2 +

a2!'1"
2

!1 − 52", = 02, !45"

which is obtained using Eq. !27", together with H#0. Sup-
pose ,"a2; then, at 1̇=0, being the condition of particle

stopping in the frame traveling with the laser envelope, Eq.
!45" yields

52!7r,q!" = 1 + 2!q!
2 − 7r

−2" !46"

for the reflection point 7r. Unlike 7"!qy", the value of 7r is
then determined by both qy and qz; hence, 7r67", except at
qz=0 and 3qy391, for which case one can show 7r→7" for
,→0, as also seen in Fig. 1.

With Eq. !42" used as an estimate for 5 %39&, one can
further show that, in agreement with Refs. %7–11&,

7r $ min41,q!
−15 , !47"

assuming the inequality !44". Thus, the reflection is impos-
sible at 7"7r and possible at 7$7r, whereas larger 7 cannot
be realized. Therefore,

7 9 7r $ 1, !48"

which also yields, from Eq. !42" and q!:qy, that

5 $ 1. !49"

IV. PONDEROMOTIVE ACCELERATION

A. Basic equations

The particle energy !, as affected by the ponderomotive
force !39", can now be calculated as follows. Use Eq. !11"
together with Eqs. !15" for P and W. Further, substitute P
from Eq. !24", with S found from Eq. !23", and W from Eq.
!26", with W=1̇ from Eq. !45"; hence,

! =
1
,

4*02 + ,a252/2 + ,%!a2/2"cos 2- − 2Pya cos -&

; *!1 − ,"„02 − ,%1 + P!
2 + !a2/2"!1 − 52"&…5 . !50"

Thus, the energy retained outside the field is

!< =
1
,

40; *!1 − ,"!02 − ,%1 + P!
2 &"5 , !51"

where the plus and the minus correspond to the particle over-
taking the pulse and falling behind it, respectively.

If no reflection occurs and the average-force approxima-
tion %from which Eqs. !50" and !51" are derived& holds on the
time interval !−< ,+<" then !< matches the energy before
entering the field, due to the conservation of 0 and P!. Yet
in the general case,

!< $ 0/, , !52"

unless 02=,!1+P!
2 " and the particle is transmitted. In case

of reflection, Eq. !51" can be Taylor expanded in , as

!< /
1 + 02 + P!

2

20
!53"

%cf. the exact solution !A5" for vacuum&.
Hence, !< can be found by substituting 0 from

02 = w2 − ,a2% f̄ + 50
2/2& . !54"

Here, we employed Eqs. !24", !29", !38", and !41" and, using
Eqs. !11" and !15", substituted P=w*1−,, with

0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ξ

∆

qy # 0

qy # 0.5

qy # 1

qy # 2
$

FIG. 1. 5 %Eq. !29"& vs 7#a*, /0 for different qy #Py /a: dot-
ted: analytical approximation !42"; solid: numerical solution of Eq.
!25". On the right, each solid line ends at 7"!qy", which is the exact
formal upper boundary of the domain, where 5 is defined for a
given qy according to Eq. !25". Intersections with 52!7r ,q!" %Eq.
!46"& !dashed" yield the reflection points 7r !bold dots", which sat-
isfy 7r97", and physically realizable are 797r. Here, Pz=0 and
,→0; thus, 7r/7" for qy =0,0.5,1, but 7r67" for qy =2 %in this
case, 7" is marked with an asterisk !" "&. The exact 7r is close to
those flowing from the analytical approximation, except at qy =0.5
here. In the latter case, the approximate equation !42" fails to re-
solve a reflection point !the dashed line does not intersect the dotted
line"; whereas the exact solution shows that the reflection point does
exist !the dashed line does intersect the dotted line".
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w = !0 − *g)0 !55"

found from initial conditions !hence, the index 0". If a par-
ticle is born inside the field !Sec. IV B", the initial 5 itself
depends on 0 and must be found from Eqs. !29" and !25" or,
approximately, from Eq. !42"; yet an estimate can be ob-
tained as follows. From Eqs. !38" and !41", one gets that
02 / !,a2"$7−281, the inequality being due to Eq. !44". To-
gether with Eq. !49", this means that for an estimate, the term
proportional to 52 can be omitted in Eq. !54", and, since 3f 3
$max41,qy5, one finally gets

02 $ max4w2,,a2,,aPy5 . !56"

B. Regimes of hot-electron acceleration

Consider a hot electron produced inside a laser pulse, e.g.,
due to ionization or collision !Sec. IV C", at some -0 and a
on the order of the maximum amplitude amax. Hence, as the
particle starts to oscillate, it attains !$!< already on a frac-
tion of the oscillation period %Eq. !50"&, such as the one de-
scribed in Ref. %40&. To calculate the associated energy gain,
suppose an initial momentum ℘#p0 /mc, for simplicity, as-
suming !z=0 and ,"1; thus,

Py = !! − a cos -0 $ max4!!,a5 , !57"

whereas !' will denote the x component of the particle ki-
netic momentum. Then one of the six regimes is realized,
depending on how w %Eq. !55"& is expanded !Fig. 2" and
more regimes appear due to Eqs. !56" and !57", allowing
multiple scalings for 0 and Py, respectively.

Below, we limit our consideration to only a part of these
regimes because of the following. According to Eqs. !47" and
!48", a pulse with a maximum amplitude satisfying
,amax

2 81 will snow-plow cold electrons of the background
plasma, which have 0=1 and P!=0 %39&. However, this
would result in a significant electrostatic potential !ahead of
the pulse", which is not included into the model; thus, we
assume

,amax
2 " 1, !58"

so only few hot electrons could be snow-plowed. Assuming
also a=1, twelve distinct regimes persist !Fig. 3" and those
of primary interest are discussed below.

C. Acceleration in vacuum

Suppose that an electron is produced at rest, e.g., due to
ionization %41,42&; then, from Eq. !57",

P! = a0 # a cos -0 $ a . !59"

At ,"1, the pulse travels much faster than the particle;
hence, the weak dispersion due to plasma is inessential in
this case. Then Eq. !54" yields 0/w=1, so 7$a*,"1 and
02=,!1+P!

2 ", both because of Eq. !58". Therefore, particle
reflection from the pulse is impossible in this case !Sec.
III D" and Eq. !53" applies, yielding

!< = 1 + a0
2/2, !60"

in agreement with Ref. %40& and regime I in Fig. 3.
When a particle is born with positive !'=1, stronger ac-

celeration is predicted from Eq. !53" due to reduced 0. In-
deed, suppose a small pitch angle &0/!! /!' and, again,
neglect the plasma dispersion !,→0"; then

w /
1 + !!

2

2!'

" 1. !61"

Similarly, Eq. !53" holds, so one gets

!< /
Py

2!'

1 + !!
2 $

a2!'

1 + &0
2!'

2 , !62"

covering regimes III.1 and IV.1 in Fig. 3. Hence, only a small
fraction of electrons is accelerated efficiently, particularly,
those with &0$!'

−1"1. However, the maximum energy now
scales as !<$a2!', which is bigger than that flowing from
Eq. !60" by the factor !'=1.

Note that the effect described here could be anticipated
for large-angle electron-ion collisions in tenuous plasmas %4&.
Suppose a cold electron oscillating in a laser field with a
quiver kinetic momentum p̄$$a and zero average velocity.
!For the general case, see Fig. 3 and Sec. V." Suppose further
that this particle collides with an ion such that the momen-
tum vector instantaneously rotates toward the pulse propaga-
tion direction, i.e.,

!' / p̄$, !! / p̄$&0. !63"

Then the maximum !< from Eq. !62" reads as

!< $ a3, !64"

the result being called the a3-effect %4&, and the angular
spread of the accelerated electrons is

& / P!/!< $ a−2 " 1. !65"

D. Modification of the a3-effect in plasma

Increasing the number of accelerated electrons requires
higher plasma densities, and the a3-effect is modified in this
case because of the laser dispersion; hence, the energy gain
is calculated differently. Particularly, for electrons with the
initial conditions %Eq. !63"&, one has w$a−1 %Eq. !61"; re-
gime IV& and qy $1; then Eq. !56" yields 02

$max4,a2 ,a−25. At >#,amax
4 "1 !regime IV.1", one obtains

FIG. 2. Scalings for w %Eq. !55"& depending on the normalized
initial momentum ℘ !!z=0, ,"1". The roman numbers tag distinct
regimes.
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0$a−1, so the reflection condition is not met, and the
plasma effect is negligible. Suppose now that >81 !regime
IV.2". Then one gets

0 $ a*, , !66"

so it becomes possible to reflect electrons from the pulse, at
least, for some -0. !In vacuum, this effect is impossible be-
cause particles could not travel faster than light." Hence, the
final energy is estimated from Eq. !52" as

!< $ a,−1/2, !67"

and the angular spread of the accelerated electrons is

& / P!/!< $ *, " 1. !68"

Finally, rewrite Eq. !67" as !<$a3>−1/2. Then a uniform
scaling is obtained, which covers both regimes IV.1 and IV.2,
accounting for how the a3-effect is modified with the plasma
density,

!< $ a3 ? min41,>−1/25 . !69"

This agrees with the results of our numerical simulations,
in which we calculated trial electron orbits using the exact
Hamiltonian !16" for a given Gaussian field vector potential
using the fourth-order Runge-Kutta method. The particles
were introduced at various locations within the laser pulse
with the initial condition ℘=y0a cos -0, mimicking electron-
ion collisions %cf. Eq. !63"&. The electrons were tracked until
they escaped the field, and the final energy !< was studied as
a function of the phase -0 and the laser amplitude a at the
initial moment. Specifically, at >"1 we observed the
vacuum a3-effect, and electron reflection from a pulse was
seen at

,amax
4 8 4.4. !70"

Hence, a sharp dependence of !< on whether particles are
reflected or not %albeit the scaling !69" holds for reflected
and transmitted electrons equally, as predicted from Eqs. !51"
and !52"& and the abrupt elevation in Figs. 4 and 5, both
agreeing with Eqs. !67" and !69".

Regime w [Eq. (55)] Py [Eq. (57)] Π [Eq. (54)] γ∞ [Eq. (51)]

I w ≈ 1 Py ∼ a Π ≈ 1 γ∞ ∼ a2

II.1 w ≈ ℘⊥ Py ∼ a Π ≈ ℘⊥ γ∞ ∼ a2/℘⊥

II.2 w ≈ ℘⊥ Py ≈ ℘⊥ Π ≈ ℘⊥ γ∞ ≈ ℘⊥ ≈ γ0

III.1 w ≈ ℘2
⊥/(2℘||) Py ∼ a Π ≈ ℘2

⊥/(2℘||) γ∞ ∼ a2℘||/℘2
⊥

III.2 w ≈ ℘2
⊥/(2℘||) Py ≈ ℘⊥ Π ≈ ℘2

⊥/(2℘||) γ∞ ≈ ℘|| ≈ γ0

III.3 w ≈ ℘2

⊥/(2℘||) Py ∼ a Π ∼ aα1/2 γ∞ ∼ aα−1/2

IV.1 w ≈ 1/(2℘||) Py ∼ a Π ≈ 1/(2℘||) γ∞ ∼ a2℘||

IV.2 w ≈ 1/(2℘||) Py ∼ a Π ≈ 1/(2℘||) γ∞ ∼ aα−1/2

V.1 w ≈ α℘||/2 Py ∼ a Π ∼ aα1/2 γ∞ ∼ aα−1/2

V.2 w ≈ α℘||/2 Py ∼ max{℘⊥, a} Π ≈ α℘||/2 γ∞ ≈ ℘|| ≈ γ0

VI.1 w ≈ 2|℘||| Py ∼ a Π ≈ 2|℘||| γ∞ ∼ a2/|℘|||

VI.2 w ≈ 2|℘||| Py ∼ max{℘⊥, a} Π ≈ 2|℘||| γ∞ ≈ |℘||| ≈ γ0

FIG. 3. Regimes of ponderomotive acceleration for electrons born inside the laser field with initial momentum ℘. The dashed and
dot-dashed lines separate formally different domains which correspond to the same maximum energy !<$a,−1/2, hence, a plateau !shaded",
where !< is independent of ℘. The dot-dashed lines are also a schematic of the curve !71", at which the particle velocity equals the pulse
group velocity. The roman numbers are the same as for the corresponding domains in Fig. 2.
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V. PLATEAU REGIME

A. Maximum energy gain

Now consider a more realistic case when the electron is
also preaccelerated by the pulse before the collision; hence,
we assume arbitrary initial conditions instead of Eq. !63".
Similarly to Sec. IV D, one can show that the acceleration is
affected by plasma only in regimes III.3, IV.2, V.I, and V.2
!Fig. 3". Those adjoin the curve

!' =*1 + !!
2

,
, !71"

which corresponds to the particle traveling at the pulse group
velocity, with !!"!' !dot-dashed in Fig. 3". Hence, the re-
spective interactions are classified as follows.

!i" In regimes III.3 and IV.2, a particle initially travels
along x axis slower than the pulse and is accelerated up to
the energy !67".

!ii" In regime V.I, a particle initially travels along x axis
faster than the pulse. However, it gains additional transverse
momentum before it escapes from the field, resulting in the
same energy gain !67".

!iii" In regime V.2, a particle is fast enough to run ahead
of the pulse such that the energy ! is not affected !!</!0",
as opposed to vacuum where !</!0a2 would apply at arbi-
trarily large !0 !cf. IV.1".

!iv" In all other regimes, the particle gains
energy smaller than both !0 and that given by Eq. !67".
Thus, for an electron born inside a laser field, one has

!< $ max4!0,#5 , !72"

where ##a!g is approximately the energy of a particle co-
moving with the pulse, with the transverse momentum
p̄!$a=1 and the group-velocity Lorentz factor !g=,−1/2.

Assuming !06#, the maximum !over -0" of the particle
final energy is then attained in the “plateau” formed by the
domains III.3, IV.2, and V.I, where it is independent of the
initial momentum ℘ and so is the angular spread of the ac-
celerated electrons:

!< $ a!g, & $ !g
−1. !73"

Below, we assess the feasibility of the plateau regime and
suggest an estimate for the energy of hot electrons, which
can be produced in conceivable experiments.

B. Required parameters

The one-dimensional !1D" model above neglects electron
escape from the accelerating field in the transverse direction.
This is a valid approximation if

@(̄ $ kL!/p̄!, !74"

where @(̄$@1 /1̇ is the normalized proper time of the in-
teraction, and @1$1 because the acceleration occurs on a
single period !Sec. IV B". In the plateau regime, Eq. !45"
yields 1̇$a*,; thus, Eq. !74" rewrites as

L!/% 8 !23*,"−1, !75"

where we took % for the laser wavelength, and p̄!$a. For
narrower pulses, the energy gain would be somewhat lower
than that predicted by Eq. !73", particularly, for particles
born at Ā"amax, as also confirmed in our numerical simula-
tions !Fig. 6". Nonetheless, one can anticipate the 1D scaling
to hold for feasibly focused ultraintense fields down to about
,$10−4. Hence, the laser dispersion should affect the elec-
tron acceleration at plasma densities down to about
1017 cm−3.

Now, let us estimate the influence of the previously ne-
glected wake potential A, which impedes the acceleration
because the associated electrostatic force is directed oppo-
sitely to the ponderomotive force %11,43,44&. The energy
gain due to the electric field EA=−!A is !A$eEAL /mc2,
where L$k−1@(̄!< is the interaction length, or kL$!g

2. As-

FIG. 4. The final energy !<= px /mc of electrons accelerated by
a plane laser pulse a=amax exp!−x2 /L'

2" with L' =11% in tenuous
plasma vs the normalized vector potential envelope a=eA /mc2 at
collision and cosine of the collision phase -0; ,=10−3, amax=15,
and %=23 /k. The elevation corresponds to the electrons being
snow-plowed.
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!a"

0 2 4 6 8 10
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!b"

FIG. 5. Same as in Fig. 4 for -0=0, with amax=10. !a" ,
=10−4: numerical !solid" and analytical !!<=a3", corresponding to
the a3-effect !dashed"; no particle reflection from the pulse. !b" ,
=10−3 !numerical"; the elevation corresponds to the electrons being
snow-plowed.

PONDEROMOTIVE ACCELERATION OF HOT ELECTRONS… PHYSICAL REVIEW E 80, 036404 !2009"

036404-7



suming the wake spatial scale of about the plasma wave-
length %p= !k*,"−1 and the density perturbation on the order
of n, the Poisson’s equation gives aA#eEA / !mc+"$*,.
Then !A$aAkL$,−1/2, yielding !A /!<$a−1"1, i.e., the
wake is indeed negligible.

For the interaction on the whole pulse length !L$!g
2L'",

one can similarly obtain !A /!<$L' / !%a". Thus, for ul-
trashort intense pulses %i.e., such that L' / !%a""1&, A is,
again, insignificant. Similarly, one can show that the laser
envelope spreading due to the dilute plasma dispersion can
be neglected, as we assumed in Sec. II. Indeed, the pulse
spreads significantly only after propagating over a distance
Ls$vgL'

2!!2+ /!k2"−1; with Eq. !7", this gives Ls$kL'
2 /,

!cf., e.g., Eq. !19" in Ref. %45&". Thus, Ls /L$kL'=1, so the
approximation of a fixed pulse shape holds on the time scales
of our interest.

Hence, Eq. !73" is a valid approximation for estimating
the electron final energy. For example, at laser intensity
I$1020 W /cm2 and wavelength %$1 Bm, corresponding
to a/%% / !1 Bm"&%I / !1.37?1018 W /cm2"&1/2$10, and
n$1017 cm−3, corresponding to ,$10−4, Eq. !73" predicts
!<$103 and &$0.01. Therefore, hot electrons can be accel-
erated to energies of a fraction of GeV and will be scattered
within a small angle of 0.6° %46&.

VI. CONCLUSIONS

In this paper, we derive the oscillation-center Hamiltonian
for an electron injected with an arbitrary momentum in a
linearly polarized laser pulse propagating in tenuous plasma,
assuming that the pulse length L' is smaller than the plasma
wavelength %p. We then use this formalism to describe the
ponderomotive acceleration of hot electrons generated at col-
lisions with ions under an intense laser drive. Specifically,

we identify multiple regimes of this acceleration and show
that the laser dispersion affects the process at plasma densi-
ties down to 1017 cm−3 at intensities 1020 W /cm2. We con-
sider the regime when the cold plasma is not accelerated,
requiring a /!g"1, where a is the laser parameter, propor-
tional to the field amplitude, and !g is the group-velocity
Lorentz factor. In this case, the Lorentz factor ! of hot elec-
trons does not exceed ##a!g after acceleration, assuming
its initial value also satisfies !0$#. Simultaneously, !$# is
attained in a wide range of initial conditions, with the angu-
lar spread of the accelerated electrons &$!g

−1. Hence, the
distribution of hot electrons produced at large-angle colli-
sions with ions at L'"%p and a /!g"1 will have a cutoff at
!$a!g. This refines the result from Ref. %4&, showing how
even weak laser dispersion can affect the acceleration gain.
However, further experiments are still needed to validate the
updated scaling because no relevant data has been reported
for the regime considered here.
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APPENDIX: ENERGY GAIN IN VACUUM

In the case of vacuum, a simplified solution is possible as
follows. Perform a canonical transformation %23&,

!x̄,); t̄,− !" → !-,)!;C,− w" , !A1"

using a generating function

F! = !x̄ − t̄")! − t̄w . !A2"

Then

- = x̄ − t̄, )! = ), C = t̄, w = ! − ) , !A3"

and the transformed extended Hamiltonian is given by

h! = 1 − w2 − 2w)! + Pz
2 + 4Py − a!'-"cos -52 # 0.

Then w is conserved, yielding an explicit solution for ),

) =
1

2w
%1 − w2 + Pz

2 + 4Py − a!'-"cos -52& . !A4"

Hence, the particle energy !=)+w is obtained, and outside
the field one has %cf. Eq. !53"&

!< =
1 + w2 + P!

2

2w
. !A5"
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FIG. 6. Same as in Fig. 4 for -0=0 and amax=10, but for a
two-dimensional pulse a=amax exp!−x2 /L'

2−y2 /L!
2 " with L' =11%

and different !#L! /%, where %=23 /k.
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