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The modification of the Vlasov equation, in its standard form describing a charged particle
distribution in the six-dimensional phase space, is derived explicitly within a formal Hamiltonian
approach for arbitrarily curved spacetime. The equation accounts simultaneously for the Lorentz
force and the effects of general relativity, with the latter appearing as the gravity force and an
additional force due to the extrinsic curvature of spatial hypersurfaces. For an arbitrary spatial
metric, the equations of collisionless hydrodynamics are also obtained in the usual three-vector
form. © 2010 American Institute of Physics. �doi:10.1063/1.3497005�

I. INTRODUCTION

The Vlasov theory for curved spacetime is well devel-
oped, yet has been receiving but scant attention in plasma
physics. The reason for this may be that the existing theory
relies on covariant formulation,1,2 which renders difficult to
use the intuition available through standard formulations of
plasma physics. The so-called 3+1 formalism could help
solve this problem by projecting the general relativistic equa-
tions on the more conventional three-dimensional �3D�
space; specifically, the Maxwell’s equations and the particle
motion equations can be put in a three-vector form similar to
that in the Minkowski metric.3–10 However, a question re-
mains how exactly the Vlasov equation, in its standard form
describing a charged particle distribution in the six-
dimensional �6D� phase space,11 is modified when spacetime
is curved.

To answer this question is the main purpose of the
present paper. The same problem was previously addressed
ad hoc for a specific metric in Refs. 12 and 13 and more
generally in Refs. 14 and 15. However, in the latter case,
electromagnetic interactions were not included, and the
spacetime basis was not identified that would yield conven-
tional three-vector equations of collisionless plasma hydro-
dynamics �see below�. To close the theory, one thereby needs
to specify the 3+1 equations of charged particle motion ex-
plicitly and in the form analogous to that commonly used for
the Minkowski metric.11

The routine approach to these equations that involves the
full-fledged machinery of differential geometry6–10 cannot be
employed for this purpose. Also, their general form is re-
ported by different authors in different forms which are nei-
ther manifestly equivalent, nor always accurate.16 Thus, it
seems warranted to rederive the corresponding equations
from scratch, particularly, in the Hamiltonian representation
that is immediately applicable to the Vlasov theory. A spin-
off here is that, once the Hamiltonian formalism is devel-
oped, the covariant approach used in Refs. 14 and 15 be-
comes unnecessary. Instead of generalizing Refs. 14 and 15
then, one can as well make the 3+1 Vlasov theory self-
contained and reformulate it in a manner familiar from the

standard plasma physics. This constitutes the second purpose
of our paper.

Finally, our third purpose is to derive hydrodynamic
equations from the Vlasov theory in curved spacetime in
their usual three-vector form. Unlike approaches postulating
a hydrodynamic closure,13,17–19 this will yield a fundamental
fluid treatment of plasmas in the collisionless limit, where
the commonly used ideal-fluid approximation3,5,18,20 does not
apply.

Specifically, our results can be summarized as follows.
The three-dimensional dynamics of a charged particle in an
arbitrary spacetime metric, traditionally addressed within dif-
ferential geometry, is reformulated in terms of linear algebra
and Hamiltonian formalism. The modification of the Vlasov
equation, in its standard form describing a charged particle
distribution in the 6D phase space, is then derived explicitly.
The equation accounts simultaneously for the Lorentz force
and the effects of general relativity, with the latter appearing
as the gravity force and an additional force due to the extrin-
sic curvature of spatial hypersurfaces. For an arbitrary spatial
metric, the equations of collisionless hydrodynamics are also
obtained in the usual three-vector form.

The paper is organized as follows. In Sec. II, we restate
the 3+1 formalism by amending the approach that was
adopted in Ref. 3. In Sec. III, we derive the equations of
individual charged particles interacting with an electromag-
netic field in space with an arbitrary metric. In Sec. IV, we
obtain the Vlasov equation in a number of equivalent forms.
In Sec. V, we derive the equations of collisionless hydrody-
namics. In Sec. VI, we summarize our main results. Supple-
mentary calculations showing how our formalism relates to
that in Ref. 3 are given in the Appendix. Besides that, see our
Ref. 21 for additional information on the Hamiltonian treat-
ment of single particle motion in general relativity.

II. SPACETIME GEOMETRY

In this section, we restate the 3+1 formalism, which is
based on the so-called slicing approach summarized in Ref. 3
�not to be confused with the 1+3 formalism, which is based
on the so-called threading approach5,22�. Our purpose is to
restate the known theory in a systematic, self-contained, and
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yet concise and simple form, relying on the reader’s back-
ground in linear algebra rather than differential geometry;
hence, the rules of index manipulation, still required, are
included here. For reviews and other formulations,
see Refs. 3, 5–10, and 22–26.

A. Metric tensor and index manipulation

First, let us provide a brief introduction to the part of
tensor analysis that will allow a reader, assumed familiar
with linear algebra, to understand the rest of the paper
�excluding the Appendix, which contains no new results�.
Suppose that the spacetime is equipped with a metric tensor
ĝ �the caret is to denote rank-two tensors�, which then de-
fines a scalar product for any given four-vectors X and Y,

X · Y � ĝ�X,Y� , �1�

as a symmetric bilinear form. Consider a set of basis vectors
e�, where the Greek indices span from 0 to 3. Then, each
vector X can be decomposed as X=e�X� �and similarly for
Y; summation over repeated indices is assumed�, yielding

X · Y = g��X�Y�, g�� = g�� � ĝ�e�,e�� . �2�

Unlike in the Euclidean �or Minkowski� space, the metric
coefficients g��=e� ·e� may not form a diagonal matrix, i.e.,
e� are not orthogonal to each other. Hence, additional “dual”
basis vectors e� are introduced27 via

e� · e� = ��
�, �3�

which can also be understood as the definition of the
“mixed” metric coefficients g�

�=g�
�=��

�. Then, the vector
components X� in the original basis, or the so-called contra-
variant components, can be found as X��e� ·X. On the
other hand, one may as well define the so-called covariant
components as the vector components X� in the dual basis as
X��e� ·X; then,

X� = e� · e�X� = g��X�. �4�

Finally, let us define the inverse metric tensor ĝ−1 with the
metric coefficients denoted as g��=g�� �the symmetry being
inherited from that of g���; hence, from Eq. �4�,

X� = g��X�. �5�

Then, Eq. �2� can be equivalently put as

X · Y = g��X�Y� = g��X�Y� = X�Y� = X�Y�. �6�

In addition to the four-vector space, we will also be deal-
ing with a three-vector space �Sec. II C�, with objects to be
denoted with bold �X instead of X�. For those, the same rules
of index manipulation apply, except with the metric tensor
�ij �instead of g��� and Latin indices �instead of Greek indi-
ces�, spanning from 1 to 3. For further reading on tensor
analysis in application to the general relativity, one is re-
ferred, e.g., to Refs. 28–30.

B. Spacetime basis

Suppose that time t�x0 �assuming the speed of light is
equal to 1� is defined as some function of spacetime location,
such that constant-t hypersurfaces �t are space-like. Intro-

duce three arbitrary basis vectors ei�x�� as tangent to these
surfaces; hence, the generalized coordinates xi are introduced
in �t, which we denote as space. Then, an arbitrary infini-
tesimal four-vector dx is decomposed as

dx = eidxi + e0dt , �7�

where e0 is the basis vector along the time axis, yet to be
defined. Since the four-gradient �t is normal to �t �and thus
orthogonal to ei�, Eq. �7� yields

�t · dx = ��t · e0�dt . �8�

On the other hand,

dt =
�t

�x�dx� = �t · dx . �9�

Then, from Eq. �8�, one obtains

�t · e0 = 1, �10�

meaning that �t is dual to e0, i.e., �t=e0.
Consider a normalized vector

n = − � �t , �11�

where � is a scalar function such that

n · n = − 1, �12�

and the sign is chosen assuming the metric signature

�− ,+ ,+ ,+ � . �13�

�That is, n is the time-like unit normal to �t.� Then, Eq. �10�
finally rewrites as

n · e0 = − � . �14�

Equation �14� is the only requirement on how e0 should
be defined. Although the time axis could be normal to �t

�like n and �t�, in general, e0 can also have a component �
tangent to �t. Thus, from Eqs. �12� and �14�, the general
form of this basis vector is �Fig. 1�a��

e0 = �n + � , �15�

and the latter can be understood in two different ways. If e0

is imposed, then functions � and � are used to parametrize
the given basis B0��e0 ,ei�. Alternatively, one may be al-
lowed to choose e0 as needed; in that case, � and � are free
parameters, and it may be convenient to pick them differ-
ently depending on a problem of interest.

To understand the physical meaning of the functions �
and �, consider the coordinate form of n in B0,

n0 � e0 · n = �t · n = − �n · n�/� = 1/� , �16�

ni � ei · n = �ei · �e0 − ���/� = − �i/� , �17�

n0 � e0 · n = ��n + �� · n = − � , �18�

ni � ei · n = − ��ei · e0� = 0, �19�

or, in a compressed form,
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n� = �1/�,− �i/��, n� = �− �,0i� �20�

�cf. Figs. 1�a� and 1�b��. Then, due to Eq. �12�, one can treat
n�x�� as the four-velocity of some observer at x�, which we
call, after Ref. 3, a fiducial observer �FO�. Introducing the
FO proper time 	FO, one gets �Eq. �20��

� = d	FO/dt . �21�

Therefore, � is called the “lapse function.” Similarly, �i can
be understood as minus the spatial velocity of FO, meaning
that �i determine the rate at which the coordinate mesh on �t

is shifting with respect to FO; thus, � is called the “shift
vector.” Since the latter is not a physical velocity, it can be
arbitrary, including superluminal, and therefore e0 is not nec-
essarily a time-like vector.

C. Spatial metric

To switch from a spacetime, where an arbitrary vector X
is decomposed as �see Eq. �15��

X = eiX
i + ��n + ��X0, �22�

to the three-vector representation, construct the spatial vector
space as follows. Introduce a symmetric tensor

h�
� = ��

� + n�n�, �23�

or ĥ= Î+nn �where Î is the unit tensor�, to project X on the
plane tangent to �t,

X̄ � ĥ · X = X + �n · X�n . �24�

Since ĥ ·n=0, directly from Eq. �22� one can see that

X̄� = �0,Xi + �iX0� . �25�

For X̄ is a tensor contraction, X̄� transform as vector com-

ponents by definition, and thus so do X̄i �but not necessarily

Xi�. On the other hand, X̄0�0; hence,

X � �X̄1,X̄2,X̄3� �26�

can be considered as a spatial three-vector.

Consider a length element in �t,

dx · dx � dx̄idx̄i = dx̄�dx̄�, �27�

where we used that dx̄0=0. Notice further that

dx̄ = ĥ · dx̄ , �28�

and thus dx̄�=h��dx̄�. Then, Eq. �27� yields

dx · dx = h��dx̄�dx̄� = �ijdx̄idx̄j , �29�

where we introduced �ij �hij to distinguish the four-tensor
h�� from its spatial part, which represents a symmetric three-
tensor. From Eq. �29�, it is then convenient to address �ij as
the spatial metric. One hence defines the mixed and contra-
variant metric tensors through

� j
i = �ik�kj = � j

i . �30�

This allows raising and lowering indices as

�ijX̄j = X̄i, �ijX̄
j = X̄i, �31�

where the covariant components satisfy

X̄i = Xi, �32�

as flows from Eq. �24� and ni=0. Hence, a three-vector scalar
product can be defined as

X · Y � �ijX̄
iȲ j = �ijX̄iȲ j = X̄iȲi = X̄iȲ

i. �33�

D. Spacetime metric

The three-vector components, Eq. �25�, can be under-
stood as components of X in the basis B
��
� ,ei�, with the
dual basis being �
� , ēi�, where


� = �n, 
� = − �−1n , �34�

and ēi= ĥ ·ei �Fig. 1�c��. Denoting the vector components in
B
 with underbars, one obtains, in particular, that

FIG. 1. Schematic of the spacetime bases �not in scale�. �a� Here n is the unit normal to the space hypersurface �t; e0 is the basis vector that determines the
time axis �t-axis�; e1 is the spatial basis vector �the other two spatial dimensions are not shown�; 
�=�n determines 
-axis; � is the lapse function; � is the
shift vector. �b� The vectors �e0 ,ei� form the basis B0; also shown is the dual basis �e0 ,ei�. �c� The vectors �
� ,ei� form the basis B
; also shown is the dual
basis �
� , ēi�.
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n�� = ��−1,0i�, n�� = �− �,0i� , �35�

and, for vectors X̄ projected on the plane tangent to �t

�Eq. �24��,

X̄�
� = �0,X̄i�, X̄� � = �0,X̄i� . �36�

In other words, the components of spatial four-vectors are
the same in B0 and B
, and will not be distinguished from
now on. Finally, from dx=�ndt+dx̄ �see Eq. �22��, we get

dx = 
�dt + dx̄ , �37�

so d
�
� ·dx equals dt. �Yet, when taking partial deriva-
tives, one must distinguish 
-axis, along which x̄i are fixed,
from x0-axis, or t-axis, along which xi are fixed.� Hence, an
arbitrary spacetime interval can be put as

dx · dx = − �2dt2 + dx · dx . �38�

Therefore, in the basis B
, the metric tensor is represented by
a block-diagonal matrix

g�� = �− �2 0

0 �ij
� . �39�

III. SINGLE PARTICLE MOTION

In this section, we derive the motion equations for indi-
vidual charged particles interacting with an electromagnetic
field in space with an arbitrary metric �ij. We consider both
the coordinate and the vector form of these equations. Par-
ticularly, this explains how Eq. �3.8� in Ref. 3, similar to
those, can be obtained without using the concept of a cova-
riant derivative �also see the Appendix�. Additional informa-
tion on the Hamiltonian formalism for the particle motion in
curved spacetime can be found in Refs. 21 and 31.

A. Canonical equations

Consider a particle with mass m and charge q interacting
with an electromagnetic four-potential A, so the particle ac-
tion S reads as �see, e.g., Refs. 31 and 32�

S =	 �− m
− dx · dx + qA · dx� . �40�

Introduce the particle Lagrangian L through S=�Ldt. Hence,
from Eq. �38�, one gets

L = − m�−1 + qAj�v̄ j − � j� + qA0, �41�

where the velocity components read as �Eq. �25��

v̄i � dx̄i/dt = vi + �i, �42�

and, with v ·v�v2, � is given by

�−1 = 
�2 − v2. �43�

�As before, the bold symbol v denotes a three-vector with
components v̄i, not vi�dxi /dt.� Then, one puts Eq. �41� in
the following form:

L = − m
�2 − v2 + qv · A + qA
, �44�

where Aj = Āj �Eq. �32��, and

A
 � 
� · A = A0 − � jAj �45�

is the covariant component of A along 
-axis.

The three canonical momenta P̄i, completing the canoni-

cal pairs �x̄i , P̄i�, are defined as P̄i=�L /�v̄i, or

P̄i = m��ijv̄
j + qĀi. �46�

Using Eqs. �31� and �32�, one obtains then

P̄i = m�v̄i + qĀi = m�vi + qAi. �47�

Thus, the three P̄i given by Eq. �46� are equal to the covari-
ant components of the corresponding four-vector P.21 Simi-
larly, the kinetic momenta

p̄i = P̄i − qĀi �48�

equal

p̄i = m��ijv̄
j = m�vi, �49�

and thus coincide with the corresponding components of the
particle four-momentum p. Therefore, the formally intro-

duced variables P̄i and p̄i satisfy �unlike Pi and pi� the index
manipulation rules introduced in Sec. II C.

Hence, invert Eq. �49� as

v̄i =
�ijp̄j

m�
. �50�

This allows the particle Hamiltonian

H = P̄iv̄
i − L = �2m� − qA
 �51�

to be expressed as a function of p̄i. Specifically,

� = �/�, � = 
1 + p2/m2, �52�

thus, H rewrites as

H = �m� − qA
, �53�

where, in terms of the canonical momentum P, one has

� = 
1 + �P − qA�2/m2. �54�

Finally, note that, since one can also put the latter as

� =
1


1 − V2
, �55�

where V is the particle velocity as seen by FO,

V �
v

�
=

1

�

dx

dt
=

dx

d	FO
, �56�

one can understand � as the particle Lorentz factor as mea-
sured by FO.

The canonical equations are now obtained as follows.

For the coordinates, dx̄i /dt=�H /�P̄i yield the already known
equation

dx̄i

dt
=

�p̄i

�m
= v̄i. �57�

For the canonical momenta, one has dP̄i /dt=−�H /�x̄i, or
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1

�

dP̄i

dt
= m�ḡi +

�� jk

� x̄i

p̄jp̄k

2m�
+

q

�
� �Ā


� x̄i +
�Āj

� x̄i v̄ j� , �58�

where we substituted

�� jm

� x̄i = − ��m� jk��k�

� x̄i �59�

�from differentiating Eq. �30�� and introduced ḡi �not to be
confused with the metric tensor ĝ� as components of the
three-vector

g = − � ln � . �60�

�Unlike �, which is the gradient in the four-dimensional
�4D� space, the bold symbol � denotes the gradient in the 3D
space.� Using Eq. �48�, one then gets for the kinetic mo-
menta,

1

�

dp̄i

dt
= m�ḡi +

�� jk

� x̄i

p̄jp̄k

2m�
+ ̄i, �61�

with ̄i being the Lorentz force,

̄i =
q

�
� �Ā


� x̄i −
�Āi

�

+ � �Āj

� x̄i −
�Āi

� x̄j�v̄ j . �62�

B. Lorentz force

Consider expressing ̄i in terms of

F�� =
�A�

�x� −
�A�

�x� , �63�

which falls under the definition of a tensor �see, e.g., Sec. 83
in Ref. 30 or Sec. 4.2 in Ref. 29�. By analogy with the
Minkowski spacetime, write this so-called electromagnetic
tensor �Sec. 90 in Ref. 30� as

F�� = n�Ē� − n�Ē� + �����B̄�n�. �64�

Here Ē and B̄ are four-vectors with zero time components
�hence the bars�, ����� is the permutation pseudotensor,

����� = 
− g ������ , �65�

������ is the permutation symbol, and

g � det g�� = − �2�, � � det �ij , �66�

the equality flowing from Eq. �39�. �This form ensures that
F�� is indeed a tensor and introduces the exact amount of

free parameters �the six nonzero components of Ē and B̄� to
define an antisymmetric matrix like F��.�

In terms of F��, Eq. �62� rewrites as

̄i =
q

�
�F� i
 + F� ijv̄

j� , �67�

where F� �� are the corresponding components of F�� in the
basis B
. From Eq. �64�, one gets

F� i
 = − n� 
Ēi + ��i
jB̄
jn��, �68�

where we utilized Eq. �36� for the spatial four-vectors. Em-
ploying Eq. �35� in the form

n� i = 0, n� 
 = − �, n�� = �−1�

�, �69�

one gets

F� i
 = �Ēi + �−1�
i
jB̄
j = �Ēi, �70�

because �
i
j�=0. Similarly,

F� ij = ��ijkB̄
kn�� = �−1
− g �
ijk� B̄k = 
� �
ijk� B̄k

= 
� �ijk� B̄k = �ijkB̄
k. �71�

Here we use �ijk=
� �ijk� to define the permutation three-
pseudotensor �ijk. Unlike Eq. �16� in Ref. 23, this is a stan-
dard definition of �ijk, which automatically ensures that the
Lorentz force has a three-vector form.

Finally, Eq. �67� rewrites as

̄i = q�Ēi + �−1�ijkv̄
jB̄k� . �72�

With the definition �56�, one hence obtains that ̄i can be
regarded as covariant components of the three-vector

� = q�E + V � B� . �73�

Equation �73� is similar to that in the Minkowski space.
However, notice the difference between V that enters here
and the velocity v=dx /dt �Eq. �57��; in particular, see Ap-
pendix for comparison with Ref. 33. Notice also that, within
the three-vector formalism that we adopt, the shift vector �
does not explicitly enter the above derivation of the Lorentz
force, unlike in Ref. 23. It can be reintroduced, though, by
substituting v̄ j =v j +� j �Eq. �42��. Contrary to Ref. 26, the
so-called transport velocity v j �dxj /dt here is also a three-
vectors, e.g., because it equals the difference of three-vectors
v̄ j and � j.

C. Metric-caused forces

Now let us revert to Eq. �61� and calculate the effect due
to the spatial surfaces �t being curved. First, raise the index
using

dp̄�

dt
=

d���ip̄i�
dt

= ��idp̄i

dt
+ � ���i

�

+ v̄k���i

� x̄k �p̄i. �74�

Substituting Eq. �57� and employing Eq. �30�, one obtains
�similarly to Sec. 87 in Ref. 30�

1

�

dp̄�

dt
= −

�̄kj
� p̄jp̄k

m�
+ m�ḡ� −

��i

�

��ij

�

p̄j + ̄�, �75�

where �̄kj
� = �̄ jk

� are given by

�̄ jk
� =

��i

2
� ��ik

� x̄j +
��ij

� x̄k −
�� jk

� x̄i � , �76�

also known as connection coefficients, or Christoffel sym-
bols, associated with the metric �ij �Chap. 4 in Ref. 29�.
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Introduce what is called the extrinsic curvature of the spatial
surfaces �t as34

K̄ij = −
1

2�

��ij

�

�77�

�see, e.g., Ref. 5 or Sec. 21.5 in Ref. 28�. Then,

1

�

dp̄�

dt
= −

�̄kj
� p̄jp̄k

m�
+ m�ḡ� + 2K̄j

�p̄j + ̄�, �78�

where K̄j
�=��iK̄ij, in agreement with the standard rules of

spatial index manipulation �Eqs. �31��.
In Eq. �78�, the first term on the right-hand side is due to

the generally non-Euclidean form of �ij, the second one is
the gravity force, and the third one is due to the curvature of
�t considered as a subspace of spacetime �while �ij, being
the own metric of �t, may or may not exhibit an intrinsic
curvature�. The vector equation that we will now derive il-
lustrates these forces in further detail.

D. Vector equation

It can be shown �Sec. 8.5 in Ref. 28� that

�̄kj
� = e� ·

�ek

� x̄j , �79�

where ek are the basis three-vectors tangent to �t, and e� are
those of the dual three-vector basis. Then,

1

�

dp̄�

dt
+

�̄kj
� p̄jp̄k

m�
=

e�

�
· �ek

dp̄k

dt
+ p̄k�v · ��ek

=
1

�
�e� ·

d�ekp̄
k�

dt
− e� ·

�ek

�

p̄k . �80�

The first term in the square brackets equals the �th projection
of dp /dt, whereas the second one can be represented as fol-
lows. First, notice that the expression

e� ·
�ek

�

= ē� ·

�ēk

�

�81�

coincides with the connection coefficient �k

� associated with

the 4D metric g�� �rather than �ij�, written in the basis B
.
Similarly to Eq. �76�, we can then write

�k

� =

g�
��

2
� �g��


�x�k +
�g��k

�x�
 −
�g� k


�x�� � , �82�

where the underbars show that the elements of the metric
tensor and their derivatives are evaluated in B
. From Eq.
�39�, both covariant and contravariant metric elements with
mixed �i.e., spacetime� coefficients are zero. Then, since x�


�
, one gets

�k

� =

g�
�j

2
� �g� j


�x�k +
�g� jk

�

−

�g� k


�x� j � =
1

2
g�

�j�g� jk

�

=

1

2
��j�� jk

�

.

�83�

Comparing this with Eq. �77�, we obtain

e� ·
�ek

�

= − �K̄k

�. �84�

Hence, Eq. �78� rewrites as the following vector equation,
independent of the spatial basis:

1

�

dp

dt
= m�g + K̂ · p + q�E + V � B� . �85�

�Note the unit coefficient in the term K̂ ·p, unlike in Eq.
�78�.� For an alternative representation of Eq. �85� and com-
parison with similar representations found in literature, see
the Appendix.

IV. VLASOV EQUATION

There are several ways to introduce the distribution
function f describing the 3D motion in �t that naturally ex-
trapolate the one from the Minkowski spacetime. In this sec-
tion, we will show that those definitions are equivalent; yet,
the equation for f can take various forms. �Notice also that,
when electromagnetic interactions are included, one may
need to close the Vlasov theory with the Maxwell’s equa-
tions. For those, see, e.g., Eq. �3.4� in Ref. 3 and also our
Appendix for the notation.�

A. Liouville theorem

First, let us define f as the particle density in the 6D
phase space, that is,

f = dN/d� , �86�

where dN is the number of particles in the phase volume
element d�. In this case, the Vlasov equation can be derived
immediately from the Liouville theorem �Sec. 3 in Ref. 35�.
Namely, the latter says that d� is conserved; then, since dN
is also constant, one gets

df

dt
= 0, �87�

that is, f is conserved along the particle 6D trajectories.
Yet these trajectories do not have to be expressed

through canonical variables. For example, one may consider
f as a function of x̄i and p̄i. Then, in agreement with Ref. 15,
Eq. �87� rewrites like that for the Minkowski spacetime
�see, e.g., Chap. 8 of Ref. 11�, i.e.,

� f

�

+

dx̄i

dt

� f

� x̄i +
dp̄i

dt

� f

� p̄i = 0, �88�

and one can use Eqs. �57� and �78� for dx̄i /dt and dp̄i /dt to
close it.

B. Divergence form

To connect f with measurable quantities, d� in Eq. �86�
is derived as follows. From Sec. III A, it flows that the ca-
nonical variables are contravariant components x̄i and the

canonical momenta are covariant components P̄i. Since
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� ��x̄i, P̄i�
��x̄j, p̄j�

� = 1, �89�

one can also use kinetic momenta, though; then,

d� = d3x̄�d3p̄�, �90�

where d3x̄��dx̄1dx̄2dx̄3 and d3p̄��dp̄1dp̄2dp̄3.36 �From now
on, asterisk denotes whether upper or lower indices are as-
sumed.�

Hence, one needs to find how d3x̄� and d3p̄� are con-
nected with the invariant physical volumes in the coordinate
and momentum spaces.14 Since both of those are vector
spaces with the metric �ij, one can write

dVx = 
�d3x̄�, dVp = 
�d3p̄�. �91�

Thus,

d� =
1

�
� ��x̄i, p̄i�

��x̄j, p̄j�
�dVxdVp. �92�

Since p̄i=�ijp̄
j, the Jacobian here equals �; therefore,

d� = dVxdVp. �93�

This means that f , originally defined as the phase-space den-
sity �Eq. �86��, is also the density in �x̄i , p̄i� space,

f =
dN

dVxdVp
, �94�

in agreement with Ref. 14.
This result allows yet another representation of the

Vlasov equation, which is derived as follows. First, rewrite
Eq. �94� as

�f =
dN

d3x̄�d3p̄�
, �95�

which means that �f can be considered as the density f� in
�x̄i , p̄i� space, if the latter is assigned the Euclidean volume
form �so the elementary volume is not dVxdVp but rather
d3x̄�d3p̄��. Then, the particle current along x̄i-axis is jx

i

= f� dx̄i /dt, and the current along p̄i-axis is jp
i = f� dp̄i /dt,

yielding that the particle conservation law reads as usual,

� f�

�

+

� jx
i

� x̄i +
� jp

i

� p̄i = 0 �96�

�because the 6D space is considered Euclidean�. Then, using
that f�=�f , one gets

���f�
�


+
�

� x̄i�dx̄i

dt
�f� +

�

� p̄i�dp̄i

dt
�f� = 0, �97�

which we henceforth call the divergence form of the Vlasov
equation. Equation �97�, considered in combination with Eq.

�57� for dx̄i /dt and Eq. �78� for dp̄i /dt �and Eq. �72� for ̄i�,
represents the main result of this paper. In Sec. V, it will also
be used to yield three-vector equations of collisionless
plasma hydrodynamics.

C. Other representations

The variables �x̄i , p̄i� are natural for describing dynamics
on spatial hypersurfaces �t, because they allow for vector
interpretation and are also self-contained �e.g., p0 and p0

�Ref. 21� do not need to be considered�. Yet, let us show how
our formalism extrapolates to the original variables �xi , pi�,
particularly, to compare with Ref. 14.

In the form �87�, the Vlasov equation in variables �xi , pi�
can be written immediately as

� f

�t
+

dxi

dt

� f

�xi +
dpi

dt

� f

�pi = 0, �98�

in agreement with Ref. 15. Correspondingly, the equations
for dxi /dt and dpi /dt can be obtained, e.g., from our Ref. 21
or from Eqs. �57� and �78�, since

dxi

dt
=

dx̄i

dt
− �i,

dpi

dt
=

dp̄i

dt
−

d��ip0�
dt

�99�

�cf. Eqs. �25� and �42��. Here p0 is given by21

p0 = m
dx0

d	
� m

dt

d	
= m� =

m�

�
, �100�

	 is the particle proper time, and �see Eq. �52��

� = 
1 + �ijp̄
ip̄j/m2 = 
1 + �ijpipj/m2, �101�

the latter equality �to be used below� being due to

p̄i = pi. �102�

Similarly, the divergence form is derived as follows.
First, using Eq. �102�, rewrite Eq. �90� in the form

d� = � ��x̄i,pi�
��xj,pj�

�d3x�d3p� = d3x�d3p� � rd3x�d3p�,

�103�

where r is the following Jacobian:

1

r
= � �pj

�pi
� . �104�

Combine Eq. �103� with Eq. �86�, so one gets

rf =
dN

d3x�d3p�
. �105�

Then, by analogy with Eq. �97�, we immediately obtain

��rf�
�t

+
�

�xi�dxi

dt
rf� +

�

�pi�dpi

dt
rf� = 0, �106�

again in agreement with Ref. 14.
Now let us show how the expression for r is derived

�without introducing the “mass shell” used in Ref. 14�. First,
employ Eq. �102�, yielding

�pj

�pi
=

�

� p̄i

�p̄j − � jp0� = � ji − � j�p0

�pi
. �107�

Then, using Eq. �100� together with Eq. �101�, one gets
�p0 /�pi= v̄i /�2, so Eq. �107� rewrites as
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�pj

�pi
= � ji −

v̄i� j

�2 = � jiwj
i, wj

i = �i
j −

vi�
j

�2 , �108�

and therefore 1 /r=w /�, where w�det wj
i. One of the ways

to find the determinant of wj
i, which is a 3�3 matrix, is

through a brute-force calculation. A somewhat more elegant
�and independent of the number of dimensions, albeit longer�
way would be to see that wj

i is a tensor of rank �1,1�, and
thus w is independent of the �spatial� basis. Hence, one can
consider the basis such that � points, say, along z-axis.
Then, � j =�z

j�z, in which case one immediately finds
w=1−vz�

z /�2. In the invariant form, this result is expressed
through the scalar product of v and �; therefore,

r =
�

1 − v · �/�2 . �109�

�When �=0, one gets r=�, and Eq. �106� becomes equiva-
lent to Eq. �97�, because �x̄i , p̄i� are then the same as �xi , pi�
and t-axis coincides with 
-axis.� Using that p0=g0�p�, with
g�� expressed5,21 in the basis B0 �rather than B
, as in Eq.
�39�� and Eqs. �100� and �66�, one can also rewrite Eq. �109�
as

r =
p0

p0
det g��. �110�

Hence, our result agrees37 with that in Ref. 14.

V. HYDRODYNAMIC EQUATIONS

Finally, let us consider moments of the Vlasov equation
to obtain equations of collisionless hydrodynamics. To pre-
serve the vector form of the dynamic equations, we use
�x̄i , p̄i� variables. Correspondingly, the average of an arbi-
trary function � over the momentum distribution is defined
as

��� =
1

N
	 � f dVp =


�

N
	 � f d3p̄�, �111�

where N stands for the particle density in the 3D space,

N =	 f dVp = 
�	 f d3p̄� �112�

�not to be confused with the particle proper density5�.
Integrating Eq. �97� over d3p̄� yields

�

�

�N
�� +

�

� x̄i ��NŪi
�� = 0, �113�

where we introduced the flow velocity, as measured by FO,
according to U= �V�. Using the expression for the 3D diver-
gence operator written in the metric �ij �see, e.g., Sec. 4.7 in
Ref. 29�, one can rewrite Eq. �113� as

1

�

�

�

�N
�� + � · ��NU� = 0. �114�

This represents the continuity equation, which could also be
obtained from the particle conservation in the 4D spacetime,
by requiring that the four-divergence of the particle flow be
zero.3

As our next step, let us multiply Eq. �97� by p̄j and then
integrate over d3p̄� again. In this case, one obtains

1

�

�

�

�NP̄ j
�� +

1

�

�

� x̄i ��NŪiP̄ j
�� + �N�̄k�
j ŪkP̄�

+ �� · ���̂�� j = �N�F + K̂ · P� j . �115�

Here we introduced the average momentum P= �p�, the av-
erage force on a particle

F = m���g + K̂ · P + q�E + U � B� , �116�

and the pressure tensor

�̄ jk =	 �p̄j − P̄ j��V̄k − Ūk�f dVp, �117�

so one can interpret the fourth term in Eq. �115� as jth com-
ponent of its divergence �Sec. 4.7 in Ref. 29�,

�� · ���̂�� j =
1


�

�

� x̄k ���̄ jk
�� + �̄k�
j �̄�k. �118�

With Eq. �114� taken into account, Eq. �115� rewrites as

1

�

�P̄ j

�

− �K̂ · P� j + �U · ��P̄ j + �̄k�

j ŪkP̄�

= −
1

�N
�� · ���̂�� j + F̄ j . �119�

Then, following the same argument as in Sec. III D, one
obtains the vector equation

� 1

�

�

�

+ �U · ��P = −

1

�N
� · ���̂� + m���g + K̂ · P

+ q�E + U � B� , �120�

similar to that in the Minkowski metric.
Higher moments of the Vlasov equation, which could

yield a hydrodynamic closure like in Refs. 38–41, can be
obtained analogously, and most easily for a nonrelativistic
motion ���1�. Those are not discussed here, but are ad-
dressed separately in our Ref. 42, where we contemplate the

evolution of linear waves in a metric with nonzero K̂. Ex-
amples showing how the above equations can be used for
applied calculations are also given in Ref. 42.

VI. CONCLUSIONS

In this paper, the 3D dynamics of a charged particle in an
arbitrary spacetime metric g��, traditionally addressed within
differential geometry, is reformulated in terms of linear alge-
bra �Sec. II� and Hamiltonian formalism �Sec. III�. The
modification of the Vlasov equation, in its standard form
describing a charged particle distribution in the 6D phase
space, is then derived explicitly in two equivalent forms
�Eqs. �88� and �97��. The equation accounts simultaneously
for the Lorentz force and the effects of general relativity,
with the latter appearing as the gravity force and an addi-

tional force due to the extrinsic curvature K̂ of spatial hyper-
surfaces �t. For an arbitrary spatial metric, the equations of
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collisionless hydrodynamics are also obtained in the usual
three-vector form �Eqs. �114� and �120��; for their applica-
tions, see our Ref. 42. Another form of the Vlasov equation,
which does not lead to vector equations but, on the other
hand, allows for an arbitrary spacetime basis B0, is also de-
rived �Eqs. �98� and �106�� within the new formalism and
agrees with the results reported in Refs. 14 and 15.
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APPENDIX: ANOTHER FORM OF THE PARTICLE
MOTION EQUATION

Although Eq. �85� is sufficient for our purposes, let us
explain how our notation relates to that from the widely cited
Ref. 3 �see also Refs. 6 and 8–10�. First of all, the derivative
on the left-hand side of Eq. �85� is the same as �the spatial
part of� the four-vector

ĥ ·
d�ĥ · p�

d	FO
= �−1ĥ ·

d�ĥ · p�
d	

, �A1�

where 	 is the particle proper time, d	=d	FO /�; thus, Eq.
�85� coincides with Eq. �3.8� in Ref. 3. Following Ref. 3,
expand this derivative as

dp

d	FO
= D	p +

1

�
�v · ��p = D	p + �V · ��p . �A2�

Here D	 is called the Fermi–Walker derivative,

D	p �
1

�

�p

�

. �A3�

which applies to both the components p̄i and the basis vec-
tors ei that constitute the three-vector p=eip̄

i. �The index 	
denotes differentiating with respect to 	FO rather than 	.� One
can further rewrite D	p as

D	p =
1

�
�ei

� p̄i

�

+

�ei

�

p̄i� . �A4�

Hence, its projection on the �th axis equals

�D	p�� =
1

�

� p̄�

�

− K̄k

�p̄k, �A5�

where we used Eq. �77�. Reverting to the vector form, one
can then write

D	p = D	p − K̂ · p �A6�

�cf. Eq. �2.16b� in Ref. 3�, where, by definition,

D	p � D	�e�p̄�� =
e�

�

� p̄�

�

. �A7�

That is, the new derivative D	 acts on the vector components
but does not affect ei. Notice now that, in the basis B
, the
partial derivatives of vector components with respect to 


coincide with the Lie derivatives along 
���n �see, e.g.,
Ref. 5�. Since this holds for all components of D	p, the latter
can be given the following covariant definition:

D	p =
e�

�
�L�np̄��, �A8�

that is, �D	 can be understood as �the spatial part of� the Lie
derivative along �n �cf. Eq. �2.13� in Ref. 3�.

Similarly, one can introduce yet another Lie derivative,
now along the original time axis e0 �rather than 
��. Using
Eq. �15�, one obtains

Lt � Le0
= L�n + L�. �A9�

Thus, for three-vectors,

Ltp = �D	p + L�p �A10�

�cf. Eq. �2.16c� in Ref. 3�. Again, use that, in the basis B0,
the Lie derivative along e0 coincides with the partial deriva-
tive with respect to t, namely, �Ltp̄��=�p̄� /�t. Then,

Ltp̄ = e��Ltp̄�� = e�

� p̄�

�t
. �A11�

In other words, Lt can be understood as the time derivative,
which differentiates the vector components but not the basis
vectors in B0.

Combining the above formulas, one gets

D	 = �−1�Lt − L�� − K̂ . �A12�

Hence, the particle motion equation, Eq. �85�, rewrites
equivalently as

�−1�Lt + �v · ���p = m�g + 2K̂ · p + �−1L�p

+ q�E + V � B� , �A13�

where K̂ can be alternatively put as3

K̂ = − �̂ − ��/3�Î , �A14�

with �̂ being the traceless “shear tensor,” �=Tr K̂ being the

volume expansion rate, and Î being the unit tensor. �Also, see

Ref. 3 and Sec. 21.5 in Ref. 28 for the relation between K̂
and n�x��.� This allows a direct comparison of our result
with that given in Eq. �17� in the widely cited Ref. 33. Par-
ticularly, one can see that the latter must be corrected in the
following aspects: �i� the time derivative that enters Eq.
�A13� is, strictly speaking, the Lie derivative Lt; �ii� the ve-
locity v on the left-hand side is different from V on the
right-hand side �Eq. �56��; �iii� the Lorentz factor � is deter-
mined by V but not v �Eq. �55��; �iv� the gravitational force
m�g enters the right-hand side with the plus sign rather than
the minus sign.
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