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The scalings for basic plasma modes in the Friedmann-Robertson-Walker model of the expanding

Universe are revised. Contrary to the existing literature, the wave collisionless evolution must comply

with the action conservation theorem. The proper steps to deduce the action conservation from ab initio

analytical calculations are presented, and discrepancies in the earlier papers are identified. In general, the

cosmological wave evolution is more easily derived from the action conservation in the collisionless limit,

whereas when collisions are essential, the statistical description must suffice, thereby ruling out the need

for using dynamic equations in either case.
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I. INTRODUCTION

As the Universe has been expanding after the big bang,
the wave fluctuations seeded by the primordial thermal
noise have been evolving accordingly, adjusting to the
changing metric. Scalings that would describe the modifi-
cation of the wave amplitudes for various types of oscil-
lations have been of interest for decades [1–9]. However,
our finding here is that many of those reported earlier are,
in fact, erroneous, the reason being that the underlying
plasma hydrodynamics was applied incorrectly.

Used in the aforementioned literature is the collisionless
hydrodynamics. Contrary to Ref. [4], without solving dy-
namic equations the wave evolution can be predicted in
this case, specifically, from the action conservation theo-
rem (ACT). The latter is well known from the geometrical
optics [10–17] and was also independently rederived
ab initio for a variety of oscillations [10,11,18–24], con-
firming the general treatment. For prescribed curved space-
time, ACT was also proved explicitly in Ref. [25] and can
therefore serve as an independent test for ab initio theories
based on collisionless models [26].

In fact, ACT, being robust, may be preferable for deduc-
ing the wave evolution over solving dynamic equations.
This is because, even for basic waves, dynamic equations
are often incomparably cumbersome yet cannot be simpli-
fied significantly without losing the Hamiltonian nature of
the waves, and thereby introducing unphysical dissipation;
cf., e.g., Refs. [18,27]. As we explain below, those are such
inaccurate approximations that caused the earlier calcula-
tions to result in erroneous scalings. For example, over-
simplified dispersion relations were used that would not
hold even in a fixed metric. Also, collisionless equations
were utilized while collisional effects were nonetheless
implied and, unless the action is conserved, should have
been explicitly accounted for.

Thus, our main point here is that the cosmological wave
evolution is more easily derived from ACT in the collision-
less limit, whereas when collisions are essential, the sta-
tistical description [28] must suffice, thereby ruling out the

need for using dynamic equations in either case. However,
it is still instructive and, perhaps, more persuasive to
demonstrate how ACT works in the former case. Hence,
using basic modes in nonrelativistic plasma as examples,
we show the proper steps to derive hydrodynamic equa-
tions which, albeit approximate, nevertheless do comply
with ACT for an arbitrary expansion rate. For relativistic
temperatures, though, a full Vlasov treatment would be
needed, so it is not discussed here. Yet, a sufficiently
general formalism suitable to perform such calculations
was developed recently in our Ref. [29] (in addition, see
Ref. [4]), which also covers the general theory underlying
the present work; however, notice the amended notation.
The paper is organized as follows. In Sec. II, we intro-

duce the spacetime geometry by adjusting the correspond-
ing discussion in Ref. [29] for the synchronous metric,
which we will assume after Refs. [1–8]. In Sec. III, we
discuss ACT in application to this metric and consider the
evolution of several plasma modes, showing that those do
comply with ACT. In Sec. IV, we discuss discrepancies in
the related literature in more detail. In Sec. V, we summa-
rize our main results. Supplementary materials, including
Maxwell’s equations and a discussion on the particle mo-
mentum and temperature evolution in an expanding metric,
are given in the appendixes.

II. SPACETIME GEOMETRY

A. General relations

Suppose a general synchronous metric tensor g��, with

Greek indexes henceforth spanning from 0 to 3, and the
signature being ð�;þ;þ;þÞ. Following Refs. [1–8], as-
sume the expression for a spacetime interval in the form

ds2 ¼ �c2dt2 þ �ijdx
idxj; (1)

where c is the speed of light, and t � x0 is time. Consider
the constant-t hypersurfaces �t as space; then, xi are
spatial coordinates, and �ij plays a role of the spatial

metric, with Latin indexes spanning from 1 to 3 [30].
Correspondingly,
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g�� ¼ �c2 0
0 �ij

 !
; (2)

yielding that [31]

g � detg�� ¼ �c2�; � � det�ij: (3)

Regardless of the intrinsic curvature associated with �ij,

the spatial hypersurfaces �t can have a nonzero extrinsic
curvature [29,32]

Kj
i ¼ ��j‘

2

@�‘i

@t
; (4)

where �j‘ is the tensor inverse to �j‘; particularly, � �
�Tr K̂, being the volume expansion rate, reads as [see
Eqs. (4.7.4)–(4.7.6) in Ref. [33] ]

� ¼ 1

2
Tr

�
�̂�1 � @�̂

@t

�
¼ 1

2

@

@t
ln� ¼ 1ffiffiffiffi

�
p @

ffiffiffiffi
�

p
@t

; (5)

where we use a caret for abstract notation of rank-two
tensors. Hence, consider the hyperplane S tangent to �t.
For any four-vector X� � ðX0; XiÞ, its projection ð0; XiÞ on
S is also a four-vector. On the other hand, since the time
component of the latter is zero anyway, one can consider
the remaining part, X � ðX1; X2; X3Þ, as a spatial three-
vector; thus, S is a three-vector space.

The vector algebra in S is as usual, so the common
differential operators are defined as (Sec. 4.7 in Ref. [33])

r �X ¼ 1ffiffiffiffi
�

p @

@xi
ð ffiffiffiffi

�
p

XiÞ; ðr �XÞi ¼ �ijkrjXk;

where the former is connected with the four-divergence
X�

;� as [see Eq. (3)]

X�
;� ¼ 1ffiffiffiffiffiffiffi�g

p @

@x�
ð ffiffiffiffiffiffiffi�g
p

X�Þ

¼ 1ffiffiffiffi
�

p @

@t
ð ffiffiffiffi

�
p

X0Þ þ r �X

¼ @X0

@t
þ �X0 þr �X;

(6)

ri � @=@xi, and �ijk is the permutation pseudotensor,
connected with the permutation symbol ½ijk� as

�ijk ¼ ��1=2½ijk�; �ijk ¼ �þ1=2½ijk�: (7)

On the other hand, with �ijðtÞ, the vector time derivative

can be introduced in two different ways, particularly, as
follows. Consider an arbitrary three-vector field X and its
representation in a spatial basis, X ¼ eiX

i. The so-called
Fermi-Walker derivative of X with respect to t, to be
denoted as @X=@t, applies to both the basis vectors ei
and the vector components Xi, as usual:

@X

@t
¼ @ei

@t
Xi þ ei

@Xi

@t
: (8)

The projection of this on the jth axis is�
@X

@t

�
j ¼ ej � @ei

@t
Xi þ @Xj

@t
¼ @Xj

@t
� Kj

iX
i; (9)

where we used that [29]

e j � @ei
@t

¼ �Kj
i : (10)

Thus, Eq. (9) can be put in the following vector form:

@X

@t
¼ ej

�
@X

@t

�
j ¼ ej

@Xj

@t
� K̂ �X: (11)

Hence, we further rewrite this as

@X

@t
¼ LtX� K̂ �X; (12)

where Lt is the alternative, so-called Lie derivative with
respect to time, which is defined here as applying only to
the vector contravariant components:

LtX ¼ ej
@Xj

@t
: (13)

For details, see, e.g., Refs. [32,34] or Sec. 21.5 in Ref. [35].

B. Model metric

Following Refs. [1–8], let us henceforth assume the
particular Friedmann-Robertson-Walker (FRW) model,
which describes homogeneous isotropic spacetime
(Sec. 8.1 in Ref. [33], Sec. 1.3 in Ref. [36]). Assuming
also that the Universe is flat, Eq. (1) rewrites, in Cartesian
coordinates, as

ds2 ¼ �c2dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ; (14)

where aðtÞ is the so-called expansion factor. Then,

�jk ¼ a2�jk; � ¼ a6; (15)

with �jk ¼ diagð1; 1; 1Þ being the Euclidean metric or the

covariant Kronecker symbol. Hence, for any Xi,

Xi ¼ �ijX
j ¼ a2Xi; (16)

so, in addition to the contravariant and the covariant com-
ponents, Xi and Xi, it is convenient to introduce the ortho-
normal components

�X i � �Xi ¼ aXi ¼ Xi=a;
ffiffiffiffiffiffiffiffiffiffi
�Xi
�Xi

q
¼

ffiffiffiffiffiffiffiffiffiffi
XiXi

q
� X:

(17)

These represent the vector components in the local
Euclidean metric, so, unlike Xi and Xi, they are ‘‘measur-
able’’ in the usual sense, i.e., invariant to the normalization
of aðtÞ. Also, the extrinsic curvature tensor now is

Kj
i ¼ � _a

a
�j
i ; � ¼ 3 _a

a
; (18)

so the commonly introduced shear tensor �̂ [29,34] is zero
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here, and, finally, Eq. (12) rewrites as

@X

@t
¼ LtXþ �

3
X: (19)

III. ACTION CONSERVATION

As derived in Ref. [25], ACT for collisionless plasmas
reads as J �

;� ¼ 0, where J � is the action four-current

density. Using Eq. (6), one can rewrite this as [37]

1ffiffiffiffi
�

p @

@t
ð ffiffiffiffi

�
p

JÞ þ r � ðvgJÞ ¼ 0 (20)

(cf., e.g., Refs. [10,15]), where J � J 0 is the wave action
density, and vg is the group velocity. For homogeneous

waves, the divergence term can be omitted, so one gets

J
ffiffiffiffi
�

p ¼ const (21)

in the general form and, for the particular metric (15),

Ja3 ¼ const: (22)

These equalities can be specified using that

J ¼ E=!; (23)

where E is the wave energy density (Sec. 4.2 in Ref. [38]):

E ¼ 1

16�
�E� � @ð"̂!Þ

@!
� �Eþ j�Bj2

16�
; (24)

�E and �B are the wave electric and magnetic fields, "̂ is
the dielectric tensor, and ! is the frequency, all of which
can be approximated to the zeroth order in �. Hence, it is
instructive to arrive at the general theorem, Eq. (22),
through ab initio calculations, that is, by independently
deriving the fields �E and �B from Maxwell’s equations
for particular waves. Below, a number of such examples is
considered, showing the proper steps to recover Eq. (22)
for specific plasma modes. Hence, collisionless theories
which are at variance with ACT are ruled out.

A. Electromagnetic waves in vacuum

First, let us consider how vacuum electromagnetic
waves transform in the metric (15). Start out with the
corresponding Maxwell’s equations (Appendix A)

ð@=@tþ �ÞEi ¼ c�ijkrjBk; (25)

� ð@=@tþ �ÞBi ¼ c�ijkrjEk (26)

(Ei ¼ �Ei, Bi ¼ �Bi). These allow for a solution

Ej ¼ Ejeic ; Bj ¼ Bjeic ; (27)

c ðx‘; tÞ ¼ ik‘x
‘ �

Z t½i!ðt0Þ þ �ðt0Þ�dt0; (28)

where Ej and Bj are fixed, so !ðtÞ has the meaning of the

local frequency, and k‘ are the wave-vector covariant
components, assumed constant. (Having in mind that @k
is the photon momentum, cf. Appendix B.) This yields

�!E ¼ ck�B; !B ¼ ck� E; (29)

so the usual dispersion relation is obtained:!2 ¼ c2k2. On
the other hand, k2 ¼ kiki, where ki ¼ ki=a

2. (In terms of
the orthonormal components, this means that a �ki ¼ const,
which is understood from the fact that the wavelength must
grow linearly with a.) Thus, !� a�1, and for the field
amplitudes one gets, using Eq. (18):

Ei; Bi � exp

�
�
Z t

�ðt0Þdt0
�
� a�3: (30)

Hence, the invariant, orthonormal components satisfy

a2 �Ei ¼ const (31)

(and similarly for �Bi), which is an exact result for any aðtÞ,
contrary to Ref. [1]. This means that

E ¼ jEj2=ð8�Þ � a�4; (32)

so the action density (23) scales in agreement with
Eq. (22), as predicted.

B. Electromagnetic waves in plasma

Suppose now that a transverse electromagnetic wave is
propagating in plasma with nonzero electron density N. In
this case, to find how the amplitude evolves with time,
Maxwell’s equations must be complemented with the cor-
responding kinetic [29,39] or hydrodynamic equations for
electrons (ions can be considered motionless [40]), and it is
the latter approach that we choose here. Start out with the
continuity equation [29,34], which expresses the particle
conservation similarly to Eq. (20):

@N

@t
þ �N þ @ðNUiÞ

@xi
¼ 0; (33)

where we used that � is independent of xi and introduced
the electron flow velocity U; then, the average (over the
wave period) density N0 satisfies

N � N0a
3 ¼ const: (34)

Assume a nonrelativistic plasma and also that the effect of
collisions on the electron average momentum P is negli-
gible, following Refs. [1–8]. Hence, the equation for U is
derived from that for P [29]:�

@

@t
þ ðU � rÞ

�
U ¼ q

me

�
Eþ 1

c
U� B

�
þ K̂ � U�r � P̂

meN
; (35)

where q < 0 and me are the electron charge and mass, and

P̂ is the electron pressure tensor. The magnetic Lorentz
force can be neglected due to Bi & Ei and Ui � c. Thus,
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in the coordinate form,

@Uj

@t
þUi @U

j

@xi
¼ q

me

Ej � 2�

3
Uj � 1

meN

@Pij

@xi
; (36)

now with the factor of 2 in front of the extrinsic curvature
term, due to Eq. (19).

For transverse waves, the effect of pressure is negligible
[40]; thus, Eqs. (34) and (36) form a closed set, when
combined with Maxwell’s equations (Appendix A)

ð@=@tþ �ÞEi ¼ c�ijkrjBk � 4�qNUi; (37)

� ð@=@tþ �ÞBi ¼ c�ijkrjEk: (38)

Like before, search for a wave with fixed k‘:

Ej ¼ 1

a3
~Ejeik‘x

‘
; Bj ¼ 1

a3
~Bjeik‘x

‘
; (39)

and also substitute

Uj ¼ 1

a2
ujeik‘x

‘
: (40)

Then, after linearization,

_~E i ¼ ic�ijkkj
~Bk � 4�qN ui=a2; (41)

_~B i ¼ �ic�ijkkj~Ek; (42)

_u i ¼ q~Ei=ðmeaÞ: (43)

Differentiate the former with respect to time, using that

d

dt
ð�ijkkj ~BkÞ ¼ kj

d�ijk

dt
~Bk þ �ijkkj

d

dt
ða2BkÞ; (44)

with _�ijk ¼ ���ijk [Eq. (7)], da2=dt ¼ ð2�=3Þa2, and

Eq. (42) for
_~B
k
. Then, one obtains

€~E i ¼ ��

3
_~E
i �!2~Ei þ �

3

me

q
!2

pau
i; (45)

where ui is yet to be found from Eq. (43), and

!2ðtÞ ¼ !2
p þ c2k2; !2

p ¼ 4�Nq2=me; (46)

with !p being known as the plasma frequency. At zero �,

one gets ~Ei ¼ const� e�i!t, and the same for ui. Suppose
now that the metric expansion is present but slow, such that
� is much smaller than the local frequency !. Then, since
the third term on the right-hand side in Eq. (45) is already
of the order of �, we can evaluate the factor ui to the zeroth
order in �, using _ui 	 �i!ui in Eq. (43):

ui 	 iq~Ei=ðmea!Þ: (47)

Since, due to a2k‘ ¼ const and Eq. (34), we also have

_! ¼ ��

3

�
!þ!2

p

2!

�
; (48)

one can eventually put Eq. (45) in the form

€~E i þ �

3
_~E
i þ

�
!2 þ 2i!

d lnða!Þ
dt

�
~Ei ¼ 0: (49)

Then, its asymptotic solution reads as

~E i ¼ ffiffiffiffiffiffiffi
a!

p
exp

�
�i

Z t
!ðt0Þdt0

�
� const: (50)

From Eq. (39), one gets then Ei � ffiffiffiffiffiffiffiffiffiffiffiffi
!=a5

p
, so the field

orthonormal components scale as

�E i �
ffiffiffiffiffiffiffiffiffiffiffiffi
!=a3

q
: (51)

Let us compare this result with ACT. Since, to the zeroth
order in �, one has jBj2 ¼ ðc2k2=!2ÞjEj2, and the dielec-
tric constant equals " ¼ 1�!2

p=!
2, as usual [40], we

obtain (Sec. 4.2 in Ref. [38])

E ¼ jEj2=ð8�Þ �!=a3 (52)

for the wave energy density. Thus, the action density (23)
scales, again, in agreement with Eq. (22).

C. Electron Langmuir waves

Let us also study the evolution of electrostatic oscilla-
tions, so that Bi ¼ 0, and

Ei ¼ �ri’ ¼ �iki ~’eik‘x
‘
: (53)

Assume that ions are approximately motionless and con-
sider the electron Langmuir oscillations [18]; then, the
electrostatic potential satisfies the Poisson equation [flow-
ing from Eq. (A1)] in the form:

k2 ~’ ¼ 4�qnN0; (54)

where we substituted

N ¼ N0ð1þ neik‘x
‘Þ: (55)

Unlike in Sec. III B, let us keep the pressure term in

Eq. (36), so an expression is needed for P̂. Instead of
postulating a scalar pressure, as in the ideal-fluid approxi-
mation [6,32,34,41], one can deduce a tensor equation for

P̂ from the Vlasov equation [29] by considering the
second-order velocity moment of the latter, as usual.
Namely, employing also Eqs. (33) and (36), one obtains

@Pjk

@t
þUi @P

jk

@xi
þ Pki @U

j

@xi
þ Pji @U

k

@xi

þ Pjkr � Uþ ð7�=3ÞPjk þ ðr � bQÞjk ¼ 0 (56)

(cf. Ref. [18]), where bQ is the heat flux. For the unper-

turbed pressure tensor Pij
0 in homogeneous plasma

(@=@xi � 0), Eq. (56) yields _Pij
0 ¼ �ð7�=3ÞPij

0 , so, with

Eq. (18) for �, one obtains

�ij � a7Pij
0 ¼ const; (57)
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in agreement with Appendix B. As for the wave perturba-

tion to Pij
0 , notice the following. The Langmuir oscillations

are strongly damped, i.e., do not exist, unless the electron
thermal velocity is small compared to the wave phase
velocity (Chap. 8 in Ref. [38]). On the other hand, in the

latter regime, one has ðr � bQÞjk � @Pjk=@t. Thus, the heat
flux can be neglected, yielding a hydrodynamic closure;
see also Refs. [18,42–44].

After linearization, one then obtains the following:

_n ¼ �ik‘u
‘=a2; (58)

_u i ¼ �iðki=k2Þ!2
pa

2n� ikj�
ji=ðmeN a2Þ; (59)

_� jk ¼ �ið�jkk‘u
‘ þ�k‘k‘u

j þ�j‘k‘u
kÞ=a2; (60)

where we substituted

Pjk ¼ Pjk
0 þ 1

a7
�jkeik‘x

‘
: (61)

At fixed a, or zero �, a solution is found in the e�i!t form,

requiring that k be an eigenvector of Pij
0 [18]; then,

!2 ¼ !2
p þ 3k2v2

T; v2
T � Pij

0 kikj=ðmeN0k
2Þ: (62)

Now let us consider how this solution evolves at nonzero
� � !. First, take a time derivative of Eq. (58) and sub-
stitute Eq. (59):

€n ¼ � 2�

3
_n�!2

pn� �jkkjkk

meN0a
7
: (63)

To rewrite the latter term, multiply Eq. (60) by a constant
factor kjkk to get

_� jkkjkk ¼ 3�jkkjkk _n: (64)

Then �jkkjkk ¼ 3�jkkjkkn, so Eq. (63) is put as

€nþ 2�

3
_nþ!2n ¼ 0; (65)

with !ðtÞ from Eq. (62). In this form, the equation for n is
equivalent to that for compressional gravitational waves
(Sec. 15.9 in Ref. [33]), which is different only in the sign
of!2

p due to the electrostatic repulsion being replaced with

the gravitational attraction.
The asymptotic solution of Eq. (65) is given by

n ¼ 1

a
ffiffiffiffi
!

p exp

�
�i

Z t
!ðt0Þdt0

�
� const: (66)

From Eqs. (53) and (54), one then obtains

�E i � 1

a3
ffiffiffiffi
!

p ; (67)

and, thus, the energy density [18] scales like

E ¼ !2

!2
p

jEj2
8�

� !

a3
: (68)

Hence, the evolution of the action density (23) agrees with
Eq. (22); i.e., the number of plasmons is conserved, just as
when the plasma is compressed mechanically in a fixed
metric [18]. Particularly, when the thermal corrections are
neglected (kvT � !p), combining Eq. (68) with Eq. (34)

yields

jEj2 � N3=2
0 ; (69)

again in agreement in Ref. [18].

D. Magnetohydrodynamic waves

Finally, let us consider the evolution of low-frequency
magnetohydrodynamic waves in the presence of a static
magnetic field B0 (Sec. 4.3 in Ref. [45]). Start out with
Faraday’s law [Eq. (A5)] and substitute

E ¼ �U�B=c; (70)

which is obtained, as usual, from the momentum equation
[Eq. (35)] for electrons under the assumption of negligible
electron inertia (me ! 0); then,

ðLt þ �ÞB ¼ r� ðU� BÞ: (71)

Under the same assumption, the electron fluid velocity
equals the ion fluid velocity; hence, from the ion momen-
tum equation, we get�

@

@t
þ ðU � rÞ

�
U ¼ j� B

miNc
þ K̂ � U; (72)

where mi is the ion mass, and the pressure term is ne-
glected. The current density j is found from Ampere’s law,
under the quasistatic approximation: j ¼ ðc=4�Þr � B.
Then, using Eq. (19), one obtains

miN

�
Lt þ 2�

3
þ ðU � rÞ

�
U ¼ 1

4�
ðr � BÞ �B: (73)

After linearization, Eqs. (71) and (73) read as

½Lt þ ���B ¼ r� ðU� B0Þ; (74)

½Lt þ ð2�=3Þ�U ¼ ðr� �BÞ �B0=ð4�miN0Þ; (75)

where we introduced �B ¼ B�B0 as a small quiver
perturbation to B0. Like before, assume a wave with fixed
k‘ and substitute Eq. (40) and also

�B ¼ 1

a3
~Beik‘x

‘
: (76)

Then, Eqs. (74) and (75) take the form

Lt
~B ¼ ia½k� ðu�B0Þ�; (77)

Ltu ¼ i½ðk� ~BÞ �B0�=ð4�miN0aÞ; (78)
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which, using that a3Bi
0 ¼ const, one can put as

L2
t
~B þ ð2�=3ÞLt

~B þ V2
AW ¼ 0; (79)

where VA ¼ B0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�miN0

p
is called the Alfvén speed,

W � k� ðb� ðb� ðk� ~BÞÞÞ; (80)

and b � B0=B0 is the unit vector along B0.

From r � �B ¼ 0, one gets k � ~B ¼ 0, so

W ¼ k� ðb� ½kð ~B � bÞ � ~Bðk � bÞ�Þ
¼ ð ~B � bÞ½k� ðb� kÞ� þ ðk � bÞ½k� ð ~B � bÞ�
¼ ð ~B � bÞ½bk2 � kðk � bÞ� þ ~Bðk � bÞ2: (81)

It is then convenient to separate the transverse and the

longitudinal (with respect to B0) parts of
~B and k as

~B ¼ ~B? þ ~Bkb; k ¼ k? þ kkb: (82)

Hence, W rewrites as

W ¼ ~B?k2k þ ðbk2 � k?kkÞ ~Bk; (83)

and one also obtains

Lt
~B ¼ Lt

~B? þ ½ _~Bk � ð�=3Þ ~Bk�b; (84)

L2
t
~B 	 L2

t
~B? þ ½ €~Bk � ð2�=3Þ _~Bk�b; (85)

where we neglected terms of the order of �2. Then,

L2
t
~B? þ ð2�=3ÞLt

~B? þ k2kV
2
A
~B? � k?kkV2

A
~Bk

þ bð €~Bk þ k2V2
A
~BkÞ ¼ 0; (86)

with the projections reading as

€~B i
? þ ð2�=3Þ _~Bi

? þ k2kV
2
A
~Bi
? � ki?kkV

2
A
~Bk ¼ 0; (87)

€~B k þ k2V2
A
~Bk ¼ 0: (88)

This shows that two different modes can exist, correspond-

ing to different ~Bk.
Shear waves. If ~Bk ¼ 0, Eq. (87) reads as

€~B i
? þ ð2�=3Þ _~Bi

? þ k2kV
2
A
~Bi
? ¼ 0: (89)

The latter is formally equivalent to Eq. (65); thus,

~B i
? ¼ 1

a
ffiffiffiffi
!

p exp

�
�i

Z t
!ðt0Þdt0

�
� const; (90)

except now !2 ¼ k2kV
2
A � a�3. These are called shear

Alfvén waves; for them [Eq. (76)], � �Bi �
ffiffiffiffi
!

p
=a3 � a�9=4.

Compressional waves. If ~Bk is nonzero, Eq. (88) yields

~B k ¼ !�1=2 exp

�
�i

Z t
!ðt0Þdt0

�
� const; (91)

where !2 ¼ k2V2
A � a�3. These are called compressional

Alfvén waves, and one gets

� �Bk ¼ b � �B� ~Bk=a3 � a�9=4 (92)

for the orthonormal component of �B along B0. The

driven oscillations of ~Bi
?, as described by Eq. (87), provide

that the magnetic field retains zero divergence. Thus,

� �Bi
? � ð �k?= �kkÞ� �Bk � a�9=4, so the same scaling also

holds for the total perturbation field � �Bi.
In other words, for both shear and compressional waves,

one equally has

� �Bi � 1

a3
ffiffiffiffi
!

p � 1

a9=4
: (93)

Then (Prob. 6.6–8 in Ref. [38]),

E ¼ j�Bj2=ð8�Þ � a�9=2; (94)

and, since !� a�3=2 also in both cases, the action density
(23) again satisfies Eq. (22).

IV. DISCUSSION

As guaranteed by the general theorem [25], within the
model adopted here, the action must be conserved also for
any other linear waves, including those in relativistic plas-
mas. However, among the corresponding ab initio analytic
calculations that were reported [1–8], a number of scalings
are at variance with ACT. This is resolved twofold, par-
ticularly as follows.
First of all, some models used in the earlier calculations

are oversimplified, so they are inadequate even for a fixed
metric. For example, comparing Ref. [1] with
Refs. [28,46,47] shows that incorrect dispersion relations
were derived in the former for transverse electromagnetic
waves and sound waves in relativistic pair plasmas. (In
fact, the sound waves could not exist in such plasmas
[7,47].) The misconception was caused by applying the
hydrodynamic approach to study collisionless phenomena
within the ideal-fluid approximation. Already the lowest-
order thermal corrections cannot be derived consistently in
this case, requiring that the whole pressure tensor be cal-
culated rather than postulated as diagonal (compare our
Sec. III C with, e.g., Refs. [4–7]). At relativistic tempera-
tures, though, a full Vlasov treatment is needed, and it is
only recently that a suitable and sufficiently general for-
malism was developed to attack the problem [29] (but see
also Refs. [4,39,48–51]). Thus, correct ab initio calcula-
tions for relativistic plasmas in variable metric are yet to be
performed. On the other hand, for understanding the wave
evolution driven solely by metric expansion, such calcu-
lations are unnecessary due to the existence of ACT.
The second type of error, common to the earlier papers,

is caused by treating essentially collisional effects within
the collisionless approximation. For example, in Refs. [4–
7,9], it is assumed that the plasma temperature T can be
mediated by collisions with a thermostating buffer gas
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(e.g., photon gas), thereby affecting!p and VA through the

relativistic mass shift; hence, the plasma parameters, as
functions of time, are prescribed differently than would
flow from the free-particle model (Appendix B). Since the
effective collision rate � is assumed less than the wave
frequency !, it is then argued that the plasma can be
considered collisionless also for calculating the wave am-
plitude evolution. However, this statement is erroneous.
Although �=! being small is sufficient to neglect the
collisions locally, those yet influence the particle momen-
tum p on the time scale comparable to that of TðhpiÞ or, if
quasielastic, even faster; thus, � must be included in the
equation for the fluid momentum P � hpi whenever ther-
mal equilibration is assumed. Similarly, pair production
and annihilation and also ionization and recombination do
affect the wave amplitude evolution, contrary to Ref. [1];
cf., e.g., Refs. [52–54].

In general, when studying the wave amplitude evolution,
any collisions affecting P at the rate � * � must be
included explicitly, regardless of �=!. This limits the
applicability of the collisionless approximation more se-
verely than assumed in the earlier calculations. Hence, it
remains an open question whether any cosmological plas-
mas of interest actually satisfy this approximation on the
Universe expansion time scale. (Alternatively, though,
such an approximation, and therefore ACT also, could be
useful for studying wave evolution near local massive
objects which collapse or expand more rapidly.) It is not
our purpose to answer this question here; however, con-
sider the following. Compared to ab initio calculations, the
cosmological wave evolution is more easily deduced from
ACT at � � �, as illustrated by our Sec. III, and the
statistical description at � 
 �, as in Ref. [28]. Thus, using
dynamic equations may be impractical in either case, and it
is only the transitional regime (�� �) where collisional
models are necessary.

V. CONCLUSIONS

In this paper, the scalings for basic plasma modes in the
FRW model of the expanding Universe are revised.
Contrary to the existing literature, the wave collisionless
evolution must comply with the action conservation theo-
rem. The proper steps to deduce the action conservation
from ab initio analytical calculations are presented, and
discrepancies in the earlier papers are identified. In gen-
eral, the cosmological wave evolution is more easily de-
rived from the action conservation in the collisionless
limit, whereas when collisions are essential, the statistical
description must suffice, thereby ruling out the need for
using dynamic equations in either case.

While the contribution here has been limited to the
posing of the correct equations, it is hoped that this effort
will stimulate the drawing of the appropriate cosmological
inferences.
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APPENDIX A: MAXWELL’S EQUATIONS

From Eqs. (3.4) in Ref. [34], Maxwell’s equations in the
spatial metric �ij take the following form. Gauss’s laws for

the electric field E and the magnetic field B are similar to
those in the Minkowski spacetime:

r �E ¼ 4��; r �B ¼ 0; (A1)

where � is the charge density. However, Ampere’s law and
Faraday’s law are now given by

ð@=@tþ �ÞEþ K̂ �E ¼ cr� B� 4�j; (A2)

� ð@=@tþ �ÞB� K̂ �B ¼ cr� E; (A3)

where j is the current density. Yet it is more convenient
here to rewrite these using the Lie derivative [Eq. (12)]:

ðLt þ �ÞE ¼ cr� B� 4�j; (A4)

� ðLt þ �ÞB ¼ cr� E (A5)

(cf. Ref. [41]). Then, in agreement with Ref. [55], the
coordinate form is yielded as

ð@=@tþ �ÞEi ¼ c�ijkrjBk � 4�ji; (A6)

� ð@=@tþ �ÞBi ¼ c�ijkrjEk: (A7)

APPENDIX B: PARTICLE MOMENTUM AND
TEMPERATURE IN THE EXPANDING METRIC

Consider the motion of a free particle in the flat isotropic
metric (15). As shown in Refs. [29,34], the particle rela-

tivistic momentum p ¼ m	v, with 	 ¼ ð1� v2Þ�1=2

being the Lorentz factor, in this case is governed by

_p ¼ K̂ � p ¼ �ð�=3Þp: (B1)

Using Eq. (19), one obtains _pi ¼ �ð2�=3Þpi; hence, also
with pi ¼ �ijp

j ¼ a2pi, one further gets

pi ¼ const: (B2)

The latter is understood from the fact that pi (unlike p
i) is

also a canonical momentum [29,56]; hence, pi is con-
served when the corresponding Hamiltonian is indepen-
dent of xi, which is exactly the case for a free particle in a
homogeneous metric considered here. Accordingly, the
contravariant momentum pi ¼ pi=a

2 scales as

a2pi ¼ const: (B3)

Then, for the orthonormal components, one gets
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a �pi ¼ const; (B4)

which is similar to how, in a fixed metric, the momentum
would evolve for a particle trapped in a box with the length
a varying adiabatically [57]. Hence, the temperature T of
an isotropic ultrarelativistic gas, T � h �pic, scales as

aT ¼ const (B5)

and, for a nonrelativistic gas, T � h �p2i=ð2mÞ, yielding
a2T ¼ const (B6)

(cf. Ref. [50]).
Finally, let us show how Eqs. (B5) and (B6) relate to the

evolution of the pressure tensor Pij
0 ¼ N0hpivji (with zero

average momentum and flow velocity in isotropic plasma)

that was introduced in Ref. [29] and also used in our

Sec. III C. By definition, the temperature tensor is Tij ¼
Pij
0 =N0, where N0 is the density governed by Eq. (34).

Then, the scalar temperature T must be defined through
the trace of the rank-ð1; 1Þ tensor Ti

j, invariant with respect

to the spatial metric:

T ¼ 1

3N0

�ijP
ij
0 ¼ 1

3
hp � vi: (B7)

At ultrarelativistic energies, p � v 	 �pc� a�1; hence,
Eq. (B5) is recovered. At nonrelativistic energies, p � v 	
h �p2i=m; hence, Eq. (B6) is recovered. On the other hand,
Tij � T=a2 � a�4 in the latter case, so Pij � a�7, in
agreement with Eq. (57).
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[32] É. Gourgoulhon, arXiv:gr-qc/0703035.
[33] S. Weinberg, Gravitation and Cosmology: Principles and

Applications of the General Theory of Relativity (Wiley,
New York, 1972).

[34] K. S. Thorne and D. Macdonald, Mon. Not. R. Astron.
Soc. 198, 339 (1982).

[35] C.W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation
(Freeman, San Francisco, 1973).

[36] P. Coles, Cosmology: The Origin and Evolution of Cosmic
Structure (Wiley, Chichester, 2002).

[37] The same equation holds for the particle number density
(Sec. III A), so another interpretation of J is that it equals
the density of quasiparticles such as wave quanta. Also cf.
graviton conservation; Sec. 18.3 in Ref. [35].

[38] T.H. Stix, Waves in Plasmas (AIP, New York, 1992).
[39] J. Ehlers, in General Relativity and Cosmology, edited by

B.K. Sachs (Academic Press, New York, 1971), p. 1.
[40] N. A. Krall and A.W. Trivelpiece, Principles of Plasma

Physics (McGraw-Hill, New York, 1973), Chap. 4.
[41] X.-H. Zhang, Phys. Rev. D 39, 2933 (1989).

I. Y. DODIN AND N. J. FISCH PHYSICAL REVIEW D 82, 044044 (2010)

044044-8

http://dx.doi.org/10.1103/PhysRevD.40.3809
http://dx.doi.org/10.1103/PhysRevD.40.3809
http://dx.doi.org/10.1086/169275
http://dx.doi.org/10.1103/PhysRevD.50.1161
http://dx.doi.org/10.1103/PhysRevD.50.1161
http://dx.doi.org/10.1103/PhysRevD.48.5655
http://dx.doi.org/10.1103/PhysRevD.48.5655
http://dx.doi.org/10.1103/PhysRevD.50.3847
http://dx.doi.org/10.1103/PhysRevD.52.6901
http://dx.doi.org/10.1103/PhysRevD.52.6901
http://dx.doi.org/10.1103/PhysRevD.56.7750
http://dx.doi.org/10.1103/PhysRevD.56.7750
http://dx.doi.org/10.1088/1475-7516/2008/08/032
http://dx.doi.org/10.1088/1475-7516/2008/08/032
http://dx.doi.org/10.1103/PhysRevD.48.3527
http://dx.doi.org/10.1098/rspa.1968.0034
http://dx.doi.org/10.1098/rspa.1968.0034
http://dx.doi.org/10.1098/rspa.1967.0120
http://dx.doi.org/10.1017/S0022112065000745
http://dx.doi.org/10.1098/rspa.1970.0205
http://dx.doi.org/10.1109/PROC.1974.9656
http://dx.doi.org/10.1143/JPSJ.50.642
http://dx.doi.org/10.1088/0031-8949/53/4/011
http://dx.doi.org/10.1088/0031-8949/53/4/011
http://dx.doi.org/10.1063/1.3250983
http://dx.doi.org/10.1063/1.3250983
http://dx.doi.org/10.1007/BF01034364
http://dx.doi.org/10.1007/BF01034364
http://dx.doi.org/10.1103/RevModPhys.58.117
http://dx.doi.org/10.1103/PhysRevA.27.2671
http://dx.doi.org/10.1103/PhysRevA.27.2671
http://dx.doi.org/10.1086/304107
http://arXiv.org/abs/1006.3717
http://arXiv.org/abs/gr-qc/0703035
http://dx.doi.org/10.1103/PhysRevD.39.2933


[42] I. Tokatly and O. Pankratov, Phys. Rev. B 60, 15550
(1999).

[43] C. Oberman, PPPL Technical Report No. Matt-57, 1960.
[44] I. B. Bernstein and S. K. Trehan, Nucl. Fusion 1, 3 (1960).
[45] P.M. Bellan, Fundamentals of Plasma Physics (Cambidge

University Press, New York, 2006).
[46] A. B. Mikhailovskii, Plasma Phys. 22, 133 (1980).
[47] P. A. Polyakov, Izv. Vyssh. Uchebn. Zaved., Fiz. 12, 24

(1985) [Russ. Phys. J. 28, 969 (1985)].
[48] F. Debbasch and W.A. van Leeuwen, Physica

(Amsterdam) 388A, 1079 (2009).
[49] F. Debbasch and W.A. van Leeuwen, Physica

(Amsterdam) 388A, 1818 (2009).
[50] J. Bernstein, Kinetic Theory in the Expanding Universe

(Cambridge University Press, New York, 1988).
[51] C. Cercignani and G.M. Kremer, The Relativistic

Boltzmann Equation: Theory and Applications
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