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the wave, is generalized to arbitrary Hamiltonian dipole interactions.
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1. Introduction

Understanding of the classical particle adiabatic motion in a
high-frequency wave packet is simplified within the oscillation-
center (OC) approach, as the latter maps out the quiver dynamics,
thereby introducing OC as a quasiparticle undergoing motion slow
compared to the oscillations [1–6]. Under the common assumption
that the wave field is, in some sense, weak, its effect on the OC
is then described in terms of an effective average potential, also
known as the ponderomotive potential Φ , which is quadratic in
the field amplitude [6–10]. For any given conditions, Φ can be de-
duced straightforwardly from scratch [6]. On the other hand, there
also exists the so-called K -χ theorem, which yields a general ex-
pression for Φ in terms of the readily available linear susceptibility
χ̂ (per unit density) of the particles [11]. The theorem is usually
derived by studying how the particle quiver dynamics is affected
by the wave Lorentz force [2,4,12–16]. On the other hand, its final
form suggests that the details of such interactions may be irrele-
vant; hence this Letter.

The purpose of the present work is to generalize the K -χ theo-
rem. By extending the abstract dressed-particle approach, earlier
proposed in our Ref. [10], to velocity-dependent ponderomotive
potentials, we show that the K -χ theorem is not specific to mo-
tion of plasma particles, but rather represents a general property
of Hamiltonian dynamics. As a spin-off, a nonconventional repre-
sentation of the ponderomotive potential is also reported.

The Letter is organized as follows. In Section 2, we restate the
general dressed-particle formalism of Ref. [10] with an emphasis
on velocity-dependent average forces. In Section 3, we employ this
formalism to deduce the ponderomotive potential in the dipole
approximation. In Section 4, we use that to write down the pon-
deromotive Lagrangian and, in the weak-field approximation, the
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ponderomotive Hamiltonian. In Section 5, we discuss and summa-
rize our main results.

2. Dressed-particle formalism

2.1. Particle–field system

Consider the dynamics of a classical particle traveling through
an arbitrary oscillating field. Assume that the field envelope is suf-
ficiently smooth, in both space and time, to allow for the adiabatic
approximation [6,10]. Then, the particle can be described in terms
of its OC coordinate x and the OC velocity v, whereas the particle
polarization, understood here as the shift of the charge distribu-
tion from the OC trajectory, can be interpreted in terms of the OC
having internal modes (such as due to the gyromotion in a back-
ground static magnetic field or, e.g., intra-molecular oscillations).
The particle–field interaction can then be treated as coupling of
these modes with those of the field; hence, the OC is understood
as a “dressed” particle [10].

To describe driven oscillations of, say, free electrons, we will
also allow for zero frequencies of the internal modes as a lim-
iting case. In general, though, arbitrary nonlinear frequencies are
assumed for the particle, ϕ̇ = Ω , and the field, θ̇ = ω, where ϕ
and θ are (sets of) canonical angles, with the corresponding canon-
ical actions being J and I. At adiabatic interaction, both J and I are
conserved; then, the Lagrangian of the particle–field system, L, can
be put in the following form:

L = L(ϕ̇, J; θ̇ , I;x,v; t), (1)

where the dependence on J and I is parametric, and the slow de-
pendence on x and t is henceforth omitted for brevity. Without the
particle–field coupling, L equals the sum of Lp(ϕ̇, J,v) and Lf(θ̇ , I)
that describe the particle and the field separately1; thus,

1 Lp may also account for interaction with additional slow large-scale background
fields.
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J = ∂Lp/∂ϕ̇, I = ∂Lf/∂ θ̇ . (2)

After integrating at constant J and I, one gets

L = ϕ̇ · J + θ̇ · I + L̄p(J,v) + L̄f(I), (3)

where L̄p(J,v) and L̄f(I) are some functions, which can be under-
stood also as minus the Hamiltonians of the corresponding unper-
turbed oscillations (at fixed v). In the general case, the interaction
energy U adds on:

L = ϕ̇ · J + θ̇ · I + L̄p(J,v) + L̄f(I) − U . (4)

Yet, by definition, the canonical actions still satisfy

J = ∂L/∂ϕ̇, I = ∂L/∂ θ̇, (5)

and, therefore, U is independent of ϕ̇ and θ̇ .

2.2. Oscillation-center Lagrangian

Consider now the particle motion alone, that is, excluding the
oscillation modes as independent degrees of freedom. Such dy-
namics is described by a different, particle OC Lagrangian (see
Appendix A of Ref. [6])

L̄ = L − ϕ̇ · J − θ̇ · I, (6)

where ϕ̇ = Ω and θ̇ = ω are treated as functions of (J, I,v), with
the dependence on (x, t) also implied2; then,

L̄ = L̄p(J,v) + L̄f(I) − U (J, I,v). (7)

Using that L̄f(I) is constant and thereby can be omitted, and intro-
ducing L0 ≡ L̄p, an equivalent OC Lagrangian can be written as

L = L0 − U . (8)

Thus, L0 is the OC no-coupling Lagrangian, and U is the effective
potential seen by the OC. Unlike for a true potential, though, U
generally depends on v, so the translational canonical momentum
P is now given by

P = ∂L0

∂v
− ∂U

∂v
. (9)

This means that the OC motion equations,

dP

dt
= ∂L

∂x
, (10)

can feature non-potential, albeit Hamiltonian, forces; cf. Ref. [17].
As shown in Refs. [6,18–20], those can be attributed to effec-
tive modification of the particle mass, yielding most dramatic ef-
fects at near-resonant interactions. (However, too close to reso-
nances, nonadiabatic effects become essential; e.g., cf. Ref. [20] and
Refs. [21–23]; also see Refs. [24–27].)

2.3. Frequency shifts

The translational canonical momentum in the particle–field sys-
tem also equals P; hence the Hamiltonian

H = P · v + ϕ̇ · J + θ̇ · I − L. (11)

From Eq. (6), one gets that

H = P · v − L̄. (12)

2 The scalar product of any a = (a1 . . .aM ) and b = (b1 . . .bM ) is henceforth un-

derstood as a · b ≡ ∑M
i=1 aibi .
This yields an independent way of calculating the effective poten-
tial U , which is explained as follows.

Consider the canonical equations

ϕ̇ = ∂

∂J
H(J, I,P), (13)

and similarly for θ̇ . If we now treat the Hamiltonian as a function
H[J, I,v(J, I,P)], Eqs. (13) rewrite as

ϕ̇ =
(

∂ H

∂J

)
I,v

+
(

∂ H

∂v�

)
J,I

(
∂v�

∂J

)
I,P

, (14)

where summation over repeated indexes is implied, and the bold
indexes show which variables are assumed fixed at differentiation.
Then, using Eq. (12), one has(

∂ H

∂J

)
I,v

= vi

(
∂ Pi

∂J

)
I,v

−
(

∂L0

∂J

)
I,v

+
(

∂U

∂J

)
I,v

, (15)

where −L0, for fixed v, is the Hamiltonian of the particle unper-
turbed oscillations (Section 2.1), so the second term equals Ω0.
Also, from the same equation (12), one has(

∂ H

∂v�

)
J,I

= vi

(
∂ Pi

∂v�

)
J,I

+ P� −
(

∂L̄
∂v�

)
J,I

. (16)

By definition of P� , the latter pair sums up to zero, so

ϕ̇ = Ω0 +
(

∂U

∂J

)
I,v

+ vi

{(
∂ Pi

∂J

)
I,v

+
(

∂ Pi

∂v�

)
J,I

(
∂v�

∂J

)
I,P

}
. (17)

The expression in the curly brackets equals (∂ Pi/∂J)I,P ≡ 0. Then,
one obtains from Eq. (17) and a similar equation for θ̇ that the
frequency shifts δΩ = Ω − Ω0 and δω = ω − ω0 satisfy

δΩ =
(

∂U

∂J

)
I,v

, δω =
(

∂U

∂I

)
J,v

. (18)

Particularly, notice that the derivatives are taken at fixed v, not at
fixed P.

Eqs. (18) represent the main result of this section, showing
how the effective potential U seen by the OC can be derived
from the eigenfrequencies of the particle–field system, in analogy
with the dressed-atom approach in quantum mechanics [28–31].
In Ref. [10], we studied how this allows calculating the effective
potential for nonlinear oscillators under the assumption that U is
independent of v. Below, we focus on linear coupling but allow for
arbitrary U (v).

3. Ponderomotive potential

Suppose sufficiently weak, linear waves, so that, to the leading
order in I, Eqs. (18) yield U ≈ Φ , where

Φ = δω · I (19)

is called the ponderomotive potential. (Here δω is independent of I
but may depend on J, so δΩ = ∂Φ/∂J, in agreement with Ref. [2].)
As waves at multiple frequencies yield additive Φ , we now focus
on a single mode with some frequency ω. Suppose such a wave
propagates through plasma, of volume V , comprised of species
s with densities Ns = Ns/V . (Particles with different v are also
considered different species here.) Then, from Eq. (19), the pon-
deromotive potential on a particle of type s is Φs = I(δω/δNs) =
(I/V )(∂ω/∂Ns). On the other hand, I = E V /ω, where E is the
wave energy density. Thus,
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Φs = E
ω

∂ω

∂Ns
, (20)

with a corollary that, for a positive-energy mode (E > 0), Φs and
∂ω/∂Ns have the same sign.

One can also rewrite Eq. (20) in terms of the local field ampli-
tude as follows. Consider (Section 4.2 in Ref. [32])

E = 1

16π
E∗ · ∂(ε̂ω)

∂ω
· E + |B|2

16π
, (21)

where E and B are the complex envelopes of the wave electric and
magnetic fields.3 From the Faraday’s law, one has

|B|2 = |n × E|2, (22)

where n = ck/ω, with k being the wavevector, and c being the
speed of light. On the other hand, from the homogeneous-wave
equation (Section 1.3 in Ref. [32]),

n × (n × E) + ε̂ · E = 0, (23)

one obtains

|n × E|2 = E∗ · ε̂ · E. (24)

Then,

E = 1

16π

[
E∗ ·

(
ω

∂ ε̂

∂ω

)
· E + 2|n × E|2

]
. (25)

Notice, though, that differentiating Eq. (24) with respect to Ns at
constant k (in which case n ∝ ω−1) yields

1

ω

∂ω

∂Ns

[
E∗ ·

(
ω

∂ ε̂

∂ω

)
· E + 2|n × E|2

]

= −E∗ · ∂ ε̂

∂Ns
· E. (26)

Therefore, Φs , as given by Eq. (20), equals

Φs = − 1

16π
E∗ · ∂ ε̂

∂Ns
· E. (27)

Yet, for an ideal gas or plasma, one can write

ε̂ = 1 +
∑

s

χ̂ s, χ̂ s = 4π Nsα̂s, (28)

where α̂s(x,vs, t; Js), given by

α̂s = 1

4π

δχ̂ s

δNs
, (29)

are understood as the polarizability tensors of individual particles
of type s. Then, omitting the index s, one has

Φ = −1

4
E∗ · α̂ · E, (30)

in agreement with an alternative derivation in Ref. [10]. Corre-
spondingly, Φ can be understood as the average energy of the
particle–field dipole interaction, with one factor 1

2 in Eq. (30) be-
ing due to time averaging, and another 1

2 being due to the fact that
the particle dipole moment is linear in E. (Similarly, the pondero-
motive potential due to the particle spin [33] can be introduced.)

3 Here we used the fact that, since the wave is assumed to propagate without
dissipation, ε̂ [Eq. (28)] is Hermitian.
4. Ponderomotive Hamiltonian

Consider now how Φ enters the OC Hamiltonian

H = P · v − L, (31)

where L [Eq. (8)] is given by

L = L0(x,v, J, t) − Φ(x,v, J, t). (32)

Suppose henceforth that Φ itself is a weak perturbation to the OC
dynamics. First, this allows one to expand the dependence between
the OC velocity v and the OC canonical momentum P as

v = v0 + δv, (33)

where v0(x,P, J, t) is the corresponding dependence at zero Φ , and
δv � v0. Then, Eq. (31) rewrites as

H ≈ P · (v0 + δv) − L0(v0) − δv · ∂L0(v0)

∂v0
+ Φ, (34)

where we can take Φ ≈ Φ(x,v0, J, t), neglecting higher-order cor-
rections. The combination

H0(x,P, J, t) ≡ P · v0 − L0(x,v0, J, t) (35)

is the Hamiltonian function evaluated at P(x,v0, J, t). Thus,
∂L0/∂v0 = P in Eq. (34), so the latter yields

H ≈ H0(x,P, J, t) + Φ(x,P, J, t), (36)

implying Φ[x,v0(x,P, J, t), J, t]. [When Φ is independent of v,
Eq. (36) also holds for arbitrarily large Φ .]

Finally, consider the particle–field Hamiltonian H [Eq. (11)]. Us-
ing Eq. (12) together with Eqs. (7), (8), and (31), one gets H =
H + E0, where E0 ≡ −L̄f(I) is the energy of the unperturbed field
(Section 2.1). For linear field modes, one has E0 = ω0 · I; hence,

H = ω0 · I + Φ(x,P, J, t) + H0(x,P, J, t). (37)

On the other hand, Eq. (19) permits rewriting the sum of the two
former terms as ω · I, which equals the wave total energy E = E V ;
then,

H = E + H0(x,P, J, t). (38)

In other words, in the weak-field limit considered in this section,
the total energy of the particle–field system is a sum of the wave
energy E and the OC kinetic energy defined as K = H0(x,P, J, t).
Correspondingly, for multiple particles, one gets

H = E +
∑

i

Ki . (39)

In the continuous limit, the sum can be replaced with an integral
over the OC distribution function; then, a result reported in Ref. [4]
is reproduced.

5. Discussion

Eq. (36) states that the second-order (in E) “ponderomotive
Hamiltonian” K (2) ≡ H − H0 satisfies K (2) = Φ , with the latter
proportional to α̂ ∝ δχ̂/δN [Eq. (30)]. For specific H0 and wave–
particle interactions via Lorentz forces, this result has been known
as the K -χ theorem [2,4,11–16]. However, what we showed here
is that the properties of the Lorentz force are irrelevant to Eqs. (30)
and (36) and that these equations hold equally for arbitrary dipole
interactions and any H0. (For how to produce exotic H0, see, e.g.,
Refs. [6,18,19].) Hence, the K -χ theorem is not specific to motion
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of plasma particles, yet is a general property of Hamiltonian dy-
namics.4

Notice also that, behind the K -χ theorem, there exists a
stronger statement, Eq. (32); as it describes the “ponderomotive
Lagrangian” L(2) ≡ L − L0, we call this result the L-χ theorem.
For Eq. (32) to be valid, even v-dependent Φ is not required to
be a small perturbation to the OC motion; instead, it is only the
dipole approximation (i.e., that U is quadratic in E) that needs to
hold. Unlike in Ref. [4], where the L-χ theorem is derived from
the motion equations, it is seen now that the details of the particle
motion are irrelevant to this result as well.

In summary, the main points of this Letter are in generaliz-
ing the K -χ theorem [the combination of Eqs. (36) and (30)]
and the L-χ theorem [the combination of Eqs. (32) and (30)]
to any Hamiltonian dipole interactions. The generalization is per-
formed by extending the classical dressed-particle approach [10]
to velocity-dependent ponderomotive potentials. As a spin-off, we
also put forth Eq. (20), which yields a nonconventional representa-
tion of the ponderomotive potential.

Acknowledgements

This work was supported by the NNSA under the SSAA Program
through DOE Research Grants Nos. DE-FG52-04NA00139, DE-FG52-
08NA28553.

References

[1] R.L. Dewar, Phys. Fluids 16 (1973) 1102.
[2] J.R. Cary, A.N. Kaufman, Phys. Fluids 24 (1981) 1238.
[3] G.W. Kentwell, D.A. Jones, Phys. Rep. 145 (1987) 319.

4 Also notice the connection with the generalized Madey’s theorem [34,35]; cf.
Ref. [15], or Ref. [34] combined with either Ref. [36] or Ref. [37].
[4] P.L. Similon, A.N. Kaufman, D.D. Holm, Phys. Fluids 29 (1986) 1908.
[5] B. Weyssow, R. Balescu, J. Plasma Phys. 39 (1988) 81.
[6] I.Y. Dodin, N.J. Fisch, Phys. Rev. E 77 (2008) 036402.
[7] A.V. Gaponov, M.A. Miller, Zh. Eksp. Teor. Fiz. 34 (1958) 242, Sov. Phys. JETP 7

(1958) 168.
[8] H.A.H. Boot, R.B.R.-S. Harvie, Nature 180 (1957) 1187.
[9] H. Motz, C.J.H. Watson, Adv. Electron. Electron Phys. 23 (1967) 153.

[10] I.Y. Dodin, N.J. Fisch, Phys. Rev. E 79 (2009) 026407.
[11] J.R. Cary, A.N. Kaufman, Phys. Rev. Lett. 39 (1977) 402.
[12] S. Johnston, A.N. Kaufman, Phys. Rev. Lett. 40 (1978) 1266.
[13] A.N. Kaufman, D.D. Holm, Phys. Lett. A 105 (1984) 277.
[14] A.N. Kaufman, Phys. Rev. A 36 (1987) 982.
[15] G.W. Kentwell, Phys. Rev. A 35 (1987) 4703.
[16] M.M. Skoric, M. Kono, Phys. Fluids 31 (1988) 418.
[17] T. Hatori, H. Washimi, Phys. Rev. Lett. 46 (1981) 240.
[18] I.Y. Dodin, N.J. Fisch, in: Frontiers in Modern Plasma Physics, AIP, New York,

2008, AIP Conf. Proc. 1061 (2008) 263.
[19] A.I. Zhmoginov, I.Y. Dodin, N.J. Fisch, Phys. Rev. E 81 (2010) 036404.
[20] D. Bauer, P. Mulser, W.H. Steeb, Phys. Rev. Lett. 75 (1995) 4622.
[21] D.L. Bruhwiler, J.R. Cary, Phys. Rev. Lett. 68 (1992) 255.
[22] D.L. Bruhwiler, J.R. Cary, Phys. Rev. E 50 (1994) 3949.
[23] D.L. Bruhwiler, J.R. Cary, Part. Accel. 43 (1994) 195.
[24] I.Y. Dodin, N.J. Fisch, Phys. Plasmas 14 (2007) 055901.
[25] I.Y. Dodin, N.J. Fisch, Phys. Lett. A 349 (2006) 356.
[26] I.Y. Dodin, N.J. Fisch, Phys. Lett. A 372 (2008) 6112.
[27] I.Y. Dodin, A.I. Zhmoginov, N.J. Fisch, Phys. Lett. A 372 (2008) 6094.
[28] C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom–Photon Interactions, Wi-

ley, New York, 1992.
[29] J. Dalibard, C. Cohen-Tannoudji, J. Opt. Soc. Amer. A 2 (1985) 1707.
[30] P.R. Berman, R. Salomaa, Phys. Rev. A 25 (1982) 2667.
[31] E. Courtens, A. Szöke, Phys. Rev. A 15 (1977) 1588.
[32] T.H. Stix, Waves in Plasmas, AIP, New York, 1992.
[33] G. Brodin, A.P. Misra, M. Marklund, arXiv:1003.5162, 2010.
[34] G.M. Fraiman, I.Y. Kostyukov, Phys. Plasmas 2 (1995) 923.
[35] G.M. Fraiman, I.Yu. Kostyukov, Physica D 87 (1995) 295.
[36] A.J. Lichtenberg, M.A. Lieberman, Regular and Chaotic Dynamics, 2nd ed.,

Springer-Verlag, New York, 1992 (Section 2.5c).
[37] G.W. Kentwell, R.L. Dewar, Phys. Rev. A 33 (1986) 3440.


	On generalizing the K-chi theorem
	Introduction
	Dressed-particle formalism
	Particle-field system
	Oscillation-center Lagrangian
	Frequency shifts

	Ponderomotive potential
	Ponderomotive Hamiltonian
	Discussion
	Acknowledgements
	References


