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The phase-space dynamics of runaway electrons is studied, including the influence of loop voltage,
radiation damping, and collisions. A theoretical model and a numerical algorithm for the runaway
dynamics in phase space are developed. Instead of standard integrators, such as the Runge–Kutta
method, a variational symplectic integrator is applied to simulate the long-term dynamics of a
runaway electron. The variational symplectic integrator is able to globally bound the numerical error
for arbitrary number of time-steps, and thus accurately track the runaway trajectory in phase space.
Simulation results show that the circulating orbits of runaway electrons drift outward toward the
wall, which is consistent with experimental observations. The physics of the outward drift is
analyzed. It is found that the outward drift is caused by the imbalance between the increase of
mechanical angular momentum and the input of toroidal angular momentum due to the parallel
acceleration. An analytical expression of the outward drift velocity is derived. The knowledge of
trajectory of runaway electrons in configuration space sheds light on how the electrons hit the first
wall, and thus provides clues for possible remedies. © 2010 American Institute of Physics.
�doi:10.1063/1.3476268�

I. INTRODUCTION

In tokamaks, relativistic runaway electrons are often ob-
served during and after a plasma disruption or during a fast
plasma shutdown.1–4 The growth-rate of avalanche runaway
electron induced by knock-on process, synchrotron radiation,
and magnetic fluctuations has been studied extensively.5–7

Runaway electrons can hit and damage the first wall.8 In a
long-pulse discharge with nonzero loop voltage, runaway
electrons can hit and damage the wall even without disrup-
tion or fast shutdown. Also, during start-up with non-Ohmic
current-drive, runaway electrons can be produced in the di-
rection opposing the current, presenting similar issues.9 Pre-
vious research had focused on the energy limit of runaway
electrons under the influence of loop voltage, synchrotron
radiation, bremsstrahlung drag forces, and collisions.10–13

The evolution path of a runaway electron in momentum
space due to these four physical effects has been studied in
details.14,15 The effects of stochastic magnetic field on the
transport and energy limit of runaway electrons have also
been studied.16–20

On the other hand, the orbits of runaway electrons in
configuration space, even without magnetic fields fluctua-
tion, have not been thoroughly studied. However, a compre-
hensive understanding of the configuration space trajectory
of runaway electrons is important because it tells us how the
electrons hit the first wall, and thus provides clues for pos-
sible remedies. In addition, the termination of runaway elec-
tron orbits in configuration space can also modify the maxi-
mum energy, especially for those electrons originated from
the edge region. Based on the experimental observations on
the Tore Supra tokamak and relevant orbit calculations,21 it
was suggested that runaway electrons can shift far away
from magnetic surfaces within one transit period, and the
orbits will open to intersect the conducting wall. An early
study in a small tokamak indicated that there were possible

trajectories of runaway electrons which shifted tens of milli-
meters outward and expanded radially in a single toroidal
pass.22 More comprehensive theoretical and numerical stud-
ies are needed to understand the physics of runaway elec-
trons drifting away from magnetic surfaces.

In this paper, we study runaway electron orbits in the
phase space under the influences of loop voltage, synchro-
tron radiation, bremsstrahlung radiation, and collisions in
system time-scale. The loop voltage is modeled as an induc-
tive electric field. The radiation damping of synchrotron and
bremsstrahlung radiation is modeled as an effective force
acting on electrons. Collisional effect is included using the
Monte-Carlo methods. To numerically calculate the phase
space trajectories of runaway electrons, we adopt a varia-
tional symplectic integrator23–25 with good global conserva-
tive properties over long integration time. This is because we
need to guarantee that the numerical error accumulated over
this very long-time scale is less than the size of the physical
effects. For standard numerical integrators, coherent error ac-
cumulation over many time-steps can be significantly larger
than the collisional effects and the long-term runaway dy-
namics. Therefore, it is crucial that we use a variational sym-
plectic integrator for the guiding center dynamics to carry
out the numerical simulation of runaway electrons. Through
simulation studies, we discover that the circulating orbits of
runaway electrons drift outward toward the wall, which is
consistent with experimental observations. The physics of
this outward drift is analyzed. It is found that the outward
drift is caused by the imbalance between the increase of me-
chanical angular momentum and the input of toroidal angular
momentum due to the parallel acceleration. We derive an
analytical expression of the outward drift velocity, which is
able to explain the main feature of the simulation results.

The paper is organized as follows. The theoretical model
of a runaway electron and the symplectic variational integra-
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tor with good global conservative properties over long inte-
gration time are developed in Sec. II. In Sec. III, numerical
results are presented and the physics of the outward drift of
the circulating orbit of a runaway electron is analyzed, along
with an analytical derivation of the outward drift velocity.
Conclusions and future work are discussed in Sec. IV.

II. THEORETICAL MODEL AND NUMERICAL
ALGORITHM

The relativistic guiding center Lagrangian, in the ab-
sence of the effects of radiation and collisions, can be written
as26

L = �eA0 + eA1 + p�b� · ẋ − �mc2, �1�

where e is the charge, A0 is the vector potential of the equi-
librium magnetic field, p� is the momentum along magnetic
fields, b is unit vector along magnetic fields, �

=�1+ p�
2 /m2c2+2�B /mc2 is the relativistic factor, B is the

magnetic fields, �= p�
2 /2mB is the magnetic momentum, p�

is the momentum perpendicular to the magnetic fields, m is
the rest mass of the electron, and c is the speed of light.
Here, the electric field due to the loop voltage is included as
an inductive field

E1 = −
�A1

�t
. �2�

We now include the effects of radiation and collisions. For
the radiation, previous studies have shown10,14,15 that the ra-
diation can be treated as a drag force in the opposite direc-
tion of the velocity of the particle, which is equivalent to an
effective inductive electric field

Eeff = −
�Aeff

�t
. �3�

The magnitude of Eeff is determined by

eEeff = FS + FB, �4�

where FS represents synchrotron radiation drag force, and FB

represents bremsstrahlung friction force. They can be ex-
pressed as10,14,15

FS =
2

3
remc2���2 − 1

�
	3

�4� 1

R0
2 +

sin4 �

rg
2 	 , �5�

FB =
4

137
ne�Zeff + 1�mc2�re

2�ln 2� −
1

3
	 , �6�

where R0 is the major radius, sin �= p� / p is the pitch angle,
rg= p� /eB0 is the electron gyroradius, re=e2 /4��0mc2 is the
classical electron radius, ne is the plasma density, and Zeff is
the effective ionic charge. Therefore, our relativistic La-
grangian for the guiding center dynamics of a runaway elec-
tron with loop voltage and radiation effects is

L = �eA0 + eA1 + eAeff,� + p�b� · ẋ − �mc2, �7�

where the magnetic momentum and relativistic factor are

� =
p�

2

2mB
+

eAeff,�p�

2mB
, �8�

� =
�

1 +
p�

2

m2c2 +

2�� −
eAeff,�p�

2mB
	B

mc2 . �9�

The collisional effects for runaway electrons are modeled by
the Monte-Carlo method, where each collision induces
changes in momentum space according to2,4,11

�p� = −
nee

4 ln �m

4��0
2 ��Zeff + 1 + ��

p�

p3�t = f�p�,p�
2 ��t ,

�10�

�p�
2 =

2nee
4 ln �m

4��0
2

�

p3 �p�
2�Zeff + 1� − �p�

2 ��t

= g�p�,p�
2 ��t . �11�

Here, ln � is the Coulomb logarithm. Note that the momen-
tum is dominant in parallel direction, and the collisional ef-
fect is mainly the averaged slowing-down and momentum
flow from the parallel direction to the perpendicular direction
due to pitch-angle scattering.

To numerically solve for the phase-space dynamics of a
runaway electron, the numerical integrator we use must have
good global conservative properties over long integration
time for the following two reasons. First, the time-scale of
evolution of the runaway electrons due to loop voltage and
radiation drag is much longer than the circulating period,
typically many thousands times of the circulating period.
Standard numerical integrators, such as the fourth-order
Runge–Kutta method, cannot track the trajectory accurately
for such a long time.23–25 This is because these standard in-
tegrators only guarantee that the error is small in each time-
step. However, the errors at different time-steps often accu-
mulate coherently and result in a large error over a large
number of time-steps. Second, the collisional effects are usu-
ally small in each circulating period. To accurately simulate
the long-term dynamics of a runaway electron and the colli-
sional effects, we need to guarantee that the numerical error
accumulated over this very long-time scale is less than the
size of the physical effects. For standard numerical integra-
tors, coherent error accumulation23–25 over many time-steps
can be significantly larger than the collisional effects and the
long-term runaway dynamics. Therefore, it is crucial that we
use a variational symplectic integrator for the guiding center
dynamics23–25 to carry out the numerical simulation of run-
away electrons.

For simplicity, we consider a two-dimensional �2D� to-
kamak model with circular concentric flux surfaces. In this
geometry, there are two useful coordinate systems, the cylin-
drical coordinate system �R ,	 ,z� and the toroidal coordinate

system �r ,� , 	̄=−	�, which are illustrated in Fig. 1. The mag-
netic field is chosen to be

B =
B0r

qR
e� +

B0R0

R
e	, �12�

where B0, R0, and q are constants with their usual meanings.
The vector potentials A0, A1, Aeff,�, Aeff,�, which correspond
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to the magnetic field, loop voltage, radiation drag force, are
chosen to be

A0 =
B0r2

2Rq
e	 − ln� R

R0
	R0B0

2
ez +

B0R0z

2R
eR, �13�

A1 = E1t
R0

R
e	, �14�

Aeff,� = Eeff,�tb , �15�

Aeff,� = Eeff,�t . �16�

In this geometry, the relativistic guiding center Lagrangian is

L = �eA0 + eA1 + eAeff,� + p�b� · ẋ − �mc2

= prṙ + p��̇ + p		̇ − H , �17�

pr = − e ln� R

R0
	R0B0

2
sin � + e

R0B0z

2R
cos � , �18�

p� = − e ln� R

R0
	R0B0r

2
cos � − e

R0B0z

2R
sin �

+
�p� + eEeff,�t�r2

�r2 + R0
2q2

, �19�

p	 = 
e
B0r2

2Rq
+

�p� + eEeff,�t�R0q

�r2 + R0
2q2

+ eE1t
R0

R �R , �20�

H = mc2�1 +
p�

2

m2c2 +
2B

mc2�� −
eEeff,�tp�

2mB
	 . �21�

Because �L /�	=0, we have

p	 =
�L

� 	̇
= const. �22�

From Eq. �20�, we can solve for p� in terms of the invariant
p	

p� = �p	 − e
B0r2

2q
−

eEeff,�tR0Rq

�r2 + R0
2q2

− eE1tR0	�r2 + R0
2q2

RR0q

�23�

and substitute Eq. �23� into Eqs. �17�–�21�. The 2D dynamics
in the �r ,�� space is then determined by the Lagrangian

L = prṙ + p��̇ − H �24�

which is obtained from Eq. �17� by removing the p		̇ term.
This is the Ruth reduction. The invariant p	 enters Eq. �24�
parametrically.

To numerically solve for the runaway dynamics we ap-
ply the variational symplectic algorithm23–25 to this 2D rela-
tivistic guiding center Lagrangian. In the simulation, we use
the Cartesian coordinates �x ,y� instead of the polar coordi-
nates �r ,��. The first-order discretized Lagrangian corre-
sponding to L in the time interval t= �kh , �k+1�h� is23–25

Ld�k,k + 1� � px�k,k + 1�
xk+1 − xk

h
+ py�k,k + 1�

yk+1 − yk

h

− H�k,k + 1� . �25�

The iteration relations for each step are

�

�xk
�Ld�k − 1,k� + Ld�k,k + 1�� = 0, �26�

�

�yk
�Ld�k − 1,k� + Ld�k,k + 1�� = 0. �27�

Collisional effects are included according to Eqs. �10� and
�11�

�p� = f�p�,p���t , �28�

�p� = g�p�,p���t . �29�

Equations �28� and �29� give us the iteration relations

�p�
k+1 − p�

k�
�t

= f� p�
k+1 + p�

k

2
,
p�

k+1 + p�
k

2
	 , �30�

�p�
k+1 − p�

k �
�t

= g� p�
k+1 + p�

k

2
,
p�

k+1 + p�
k

2
	 , �31�

where �t is the time-step.

III. PHASE-SPACE DYNAMICS OF RUNAWAY
ELECTRONS

Using the theoretical model and variational symplectic
integrator developed in Sec. II, we now study the phase-
space dynamic of runaway electrons in a typical tokamak.
The major radius of the tokamak is taken to be R0=1 m, the
on-axis magnetic field is B0=5 T, and the safety factor is
q=2. The loop voltage is chosen to be 5 V/m. The simulation
time-step �t in Eqs. �30� and �31� is chosen to be 5
10−8 /�,
where �=nee

4 ln � / �4��0
2me

2c3� is collision frequency for
relativistic electrons. The simulation results of the phase
space trajectory are displayed in Fig. 2. Plotted in Figs. 2�a�
and 2�b� are runaway electron orbits in the configuration

r

z

R

0R θ

ξ

ξ

FIG. 1. 2D tokamak geometry with circular concentric flux surfaces.
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space projected onto a poloidal plane. Figure 2�a� is result
for an electron with collisions starting from the initial energy
E0=3.35 MeV, initial momentum p� =5mc and p�=1mc,
and initial position x0=0.1 m and y0=0 m. The circulating
orbits at different time are plotted. Figure 2�b� is the same
case as Fig. 2�a�, but without collisions. Plotted in Figs. 2�c�
and 2�d� are parallel momentum and square of perpendicular
momentum of the same electron versus time in collisional
and collisionless cases. These results show clearly that the
circulating orbit of the runaway electron drifts outward to-
ward the wall. By comparing the results with and without
collisions, we observe that collisions have no significant ef-
fects on configuration space trajectory. But in the momentum
space, collisional effects are important. Perpendicular mo-
mentum increases significantly as a result of the pitch-angle
scattering.

As mentioned in Sec. I, previous studies have been fo-
cused on the runaway dynamics in the momentum space.14,15

Here, we compare our simulation results with previous stud-
ies on momentum dynamics of runaway electrons.14,15 Figure

3�a� is the momentum trajectories of runaway electrons gen-
erated in our simulation. Different lines start from different
initial conditions as marked in the figure. Figure 3�b� is the
momentum trajectories of the same runaway electrons ob-
tained using the numerical method reported in Refs. 14 and
15. Our results agree with previous results very well. There
are some differences in the fine scale, which can be attrib-
uted to the fact that in our theoretical model, the momentum
space and the configuration space are coupled, and in previ-
ous studies the momentum dynamics is decoupled from the
configuration coordinates. The agreement displayed in Fig. 3
indicates that the previous assumption of momentum space
being decoupled from the configuration space is indeed valid
for the specific cases under investigation.

The outward drift of circulating orbits of runaway elec-
trons is mainly due to the parallel acceleration induced by
loop voltage and radiation damping. We now analyze the
physics of this outward drift and develop an analytical model
for it. Let us consider a guiding center orbit in a tokamak
with the circular concentric flux. Assume that we select a

FIG. 2. �Color online� �a� Runaway electron drift orbits with collisions starting from the initial energy E0=3.35 MeV, initial momentum p� =5mc, p�=1mc,
and initial position x0=0.1 m, y0=0 m. �b� The same case as �a�, but without collisions. �c� Parallel momentum vs time for the same runaway electron with
and without collisions. �d� Perpendicular momentum squared vs time for the same electron.
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fixed vertical position y=r sin �. At the moment the guiding
center is crossing the height of y, we measure its horizontal
position, toroidal angle, and parallel momentum to be
�x ,	 , p��. The guiding center comes back to the same height
from the same side after one poloidal period �t, and the
phase space coordinates are shifted to �x+�x ,	+�	 , p�

+�p��. Our objective is to calculate �x, and �x /�t measures
the outward drift velocity of the circulating orbit of the run-
away electron. To calculate �x, we use the conservation of
toroidal angular momentum Eq. �22�, and the energy equa-
tion

���mc2� = e�E1 + Eeff� · ds . �32�

Equation �32� states that the increase of guiding center en-
ergy equals the work done by the loop voltage and radiation
drag force. From Eq. �22� we have

�p	 = 0. �33�

The parallel momentum is always much larger than the per-
pendicular momentum, so for simplicity we only consider
the radiation drag in the toroidal direction. Because the ef-
fects of the loop voltage and radiation drag in each poloidal
period is small, we further assume that they can be treated as
constants within each poloidal period. With these approxima-
tions, Eqs. �32� and �33� can be expressed as

���mc2� = e�E1 + Eeff� · ds

� − e�E1 + Eeff,�� R	̇dt , �34�

e
B0x�x

q
+ �p�

RR0q

�x2 + y2 + R0
2q2

+ p��� RR0q

�x2 + y2 + R0
2q2	

+ e�E1 + Eeff,��R0�t = 0. �35�

The integration in Eq. �34� is the toroidal precession of the
circulating guiding center.27 It can be carried out along the
unperturbed circulating orbit without outward drift. The

quantities 	̇ and ṗ� needed in the integration are obtained
from the unperturbed relativistic guiding center Lagrangian
L0 without loop voltage and radiation drag force

L = �eA0 + p�b� · ẋ − �mc2 = prṙ + p��̇ + p		̇ − H , �36�

pr = − e ln� R

R0
	R0B0

2
sin � + e

R0B0z

2R
cos � , �37�

p� = − e ln� R

R0
	R0B0r

2
cos � − e

R0B0z

2R
sin � +

p�r2

�r2 + R0
2q2

,

�38�

p	 = �e
B0r2

2Rq
+

p�R0q

�r2 + R0
2q2	R , �39�

H = mc2�1 +
p�

2

m2c2 +
2�B

mc2 . �40�

The Euler–Lagrangian equations are

d

dt

�L0

� ẋi

=
�L0

�xi
�xi = r,�,	,p�� . �41�

From Eqs. �36�–�41� we have

	̇ = 	̇�0� + 	̇�1� cos �� + O��2� , �42�

ṗ� = ṗ�
�1� sin �� + O��2� , �43�

where 	̇�0�= p� /R0m�1+ p�
2 /m2c2+2�B0 /mc2 and �=r /R0 is

the inverse aspect ratio. From Eq. �42� and �43�, it is clear
that to calculate the integration in Eq. �34� to O���, we can

use R	̇=R0	̇�0�, and p� =const. Therefore the toroidal preces-
sion is

FIG. 3. �Color online� �a� Momentum space trajectories for runaway elec-
trons starting from initial momenta �p� /mc , p� /mc�= �15,3� , �20,4� ,
�25,5� , �30,6� , �35,7� , �40,8�. �b� Momentum space trajectories for the
same runaway electrons using the method reported in Refs. 14 and 15.
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 R	̇dt � R0	̇�0��t =
p��t

m�1 +
p�

2

m2c2 +
2�B0

mc2

. �44�

Substituting Eq. �44� into Eq. �34� and keeping only the lead-
ing terms in terms of �, we can solve for �p�

�p� = − e�E1 + Eeff,���t +
m�B0�x

p�R0
. �45�

Plugging Eq. �45� into Eq. �35� to eliminate �p� and keeping
the leading terms in terms of �, we have

eB0x

q
�x − e�E1 + Eeff,��x�t = 0. �46�

In above derivation, we have assumed � /r to be small, where
� is the gyroradius. This is true even for a highly relativistic
electron. For example, for an electron with momentum p�

� p��100mc and total energy E�70 MeV, its gyroradius
in a 5T magnetic field is only about 3 cm, which is smaller
than the minor radius. Equation �46� states that the outward
drift velocity of the circulating orbit of a runaway electron is

vdr =
�x

�t
=

q�E1 + Eeff,��
B0

�47�

which is in the x-direction. This agrees exactly with the nu-
merical results shown in Fig. 2. From above analysis, we
note that this outward drift is caused by the imbalance be-
tween the increase of mechanical angular momentum and the
input of angular momentum due to the toroidal acceleration.
The conservation of canonical angular moment in the toroi-
dal direction requires the radial position of the electron to
change to compensate for the imbalance.

The trajectories of runaway electron on poloidal plane
have been discussed with details in previous work.28 The
orbits are treated as closed orbits, which are described by the
equation28

�R − R0 − dnet-drift�2 + z2 = const, �48�

where R is the horizontal position of runaway electrons, R0 is
the magnetic axis position, dnet-drift is the net-drift, i.e., the
distance between the drift orbit and the flux surface, and z is
the vertical position of runaway electrons. The net-drift is a
constant. The typical value of the net-drift is the safety factor
q times the gyroradius. However, the discussion does not
include the effects of toroidal electric fields, radiation, and
collisions. We have found that, under the influence of toroi-
dal electric fields, radiation, and collisions, the orbits of run-
away electrons are not closed. They cannot be described by
the above equation. The orbits of runaway electron drift
away from flux surfaces toward to the first wall. The net drift
is not a constant. It increases as time before the force balance
of toroidal electric fields, radiation, and collisions is reached.
Eventually, the net-drift can be comparable to the minus ra-
dius. Generally speaking, the overall trajectories of runaway
electrons on poloidal plane are determined by the physics of
radiation, collisions balancing with toroidal electric fields.
However, collisions are less important than radiation since
runaway electrons are relativistic.

Equation �47� looks similar to the Ware pinch velocity29

vware =
E1

B�

. �49�

However, they are not the same. The Ware-pinch is the pinch
due to the effect of the toroidal electrical fields on trapped
particles. Equation �47�, on the other hand, describes the drift
of circulating orbits induced by the effective toroidal electri-
cal fields. Previously, the effect of toroidal electrical fields on
circulating particles was thought to be the usual E
B
drift,29 i.e.,

vdr0 =
E 
 B

B2 . �50�

In tokamaks, it can be written as

vdr0 =
EB�

B0
2 , �51�

which is smaller than the Ware pinch velocity by O��2�.
However, our analysis leading up to Eq. �47� shows that the
drift velocity of circulating orbits due to toroidal electric
field is actually one order larger than the E
B drift. It is
smaller than the Ware pinch velocity by O��� instead of
O��2�. It is not small enough to be neglected in the study of
relativistic runaway electrons dynamics in tokamaks. The
outward drift of circulating orbits is smaller than the Ware
pinch because it is impossible to accelerate a trapped elec-
tron in the toroidal direction. All of the input of toroidal
angular momentum needs to be balanced by the change of
radial position. For circulating electrons, most of the angular
momentum input is balanced by the increasing of mechanical
angular momentum, and the imbalance is O��� smaller,
which results in an outward drift smaller than the Ware pinch
velocity by O��� in amplitude.

The analytical result in Eq. �47� is compared with the
simulation result in Figs. 4�a� and 4�c�. Plotted in Fig. 4�a� is
the theoretical and simulated outward drift distance versus
time for the case of Fig. 2�a�. Plotted in Fig. 4�c� is the
theoretical and simulated outward drift distance versus time
for the case of Fig. 2�b�. These comparisons show that the
analytical model leading to Eq. �47� captures the basic fea-
ture of the outward drift of the runaway electron. The effec-
tive electric fields of the loop voltage and radiation drag for
the same electron are plotted in Figs. 4�b� and 4�d� for the
cases corresponding to Figs. 4�a� and 4�c�, respectively. We
observe that when the effective electric field of radiation
damping is approaching to that of the loop voltage, the drift
motion slows down. This is consistent with the analytical
result of Eq. �47�. Again, by comparing the results with and
without collisions, we observe that collisions have no signifi-
cant effects on the outward drift. This is consistent with the
results in Fig. 2.

Finally, we emphasize that it is easy to verify that the
outward drift of runaway electrons is indeed important for
future tokamaks operated in steady state. For nonrelativistic
particles, the gyrocenter orbit is typically close to a flux sur-
face. The fact that circulating orbits of runaway electrons
drift away from flux surfaces may raise the question whether
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this kind of orbit is consistent with the gyrocenter approxi-
mation. In order for the gyrocenter approximation to be cor-
rect, we only need the gyroradius to be smaller than the
scale-length of the magnetic field. As calculated before, even
for a 70 MeV runaway electron with a large perpendicular
momentum p� �140mc and p��40mc in a 2T magnetic
field, the gyroradius is 3 cm. Therefore, for typical relativis-
tic runaway electrons, the gyrocenter approximation is valid.
To estimate the net departure of the orbit, we address the
definition of the departure first. If the displacement is defined
as the maximum displacement of a runaway electron relative
to the closed flux surface that it starts from in one poloidal
period, then it can be estimated as

d1 �
2q�p�

eB0
. �52�

The following is a simple derivation of this estimate. In one
poloidal period of the circulating orbit, the total distance that
the electron travels along the field line is 2�R0q. The time

for this one poloidal period is therefore 2�R0q /v�. Because
the drift velocity relative to the closed flux surface is vd

� p�
2 /�meeBR, with assumption that the drift velocity is a

constant, the maximum displacement relative to the closed
flux surface in one poloidal period can be estimated as d1

��2�R0q /v���p�
2 /�meeBR��2q�p� /eB0. If the displace-

ment is defined as the distance between the center of the
runaway orbit and the magnetic axis, then it is estimated to
be28

d2 �
qp�

eB0
. �53�

This estimate is a result of toroidal angular momentum con-
servation. The difference between the above two estimations
is caused by how the displacement is defined. There is no
real difference in terms of physics. However, we believe that
Eq. �53� should be used when assessing whether or not the
runaway electron reaches the wall because Eq. �53� measures
the net displacement of runaway electron away from mag-

FIG. 4. �Color online� �a� The theoretical and simulated drift motion for a runaway electron which starts from the initial energy E0=3.35 MeV, initial
momentum p� =5mc, p�=1mc, and initial position x0=0.1 m, y0=0 m with collisions. �b� The effective electric field of the loop voltage and radiation for the
same electron as in �a�. �c� The theoretical and simulated drift motion for the same runaway electron without collisions. �d� The effective electric field of the
loop voltage and radiation drag for the same runaway electron as in �c�.
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netic axis. Now we will use Eq. �53� to estimate how large
this displacement can be. Considering a tokamak machine
that can maintain a steady state for 10 s with magnetic field
B�2 T, safety factor q�2, Zeff�2, and loop voltage V�0,
1 V. A runaway electron in this tokamak can easily gain an
energy above 75 MeV in 2–3 s which corresponds to p�

�150mec. The total displacement is d2�26 cm. The minor
radii of Alcator C-Mod, EAST, and DIII-D are 21, 45, and 50
cm, respectively. The toroidal magnetic fields of these three
tokamaks are about 5T, 2T, and 2T.30–32 The estimation of
d2�26 cm is comparable to the minor radii listed above.
Therefore, the drift motion of runaway electron under the
influence of the toroidal electric field is indeed important.

In addition, even for a large tokamak such as ITER, the
displacement of d2�26 cm can result in important effects.
For a tokamak operated in steady state, high power RF
waves will be injected into the tokamak to maintain a pre-
ferred current profile. rf waves can pump electrons from
lower energy region to higher energy region in which run-
away electrons can be generated easily. Therefore runaway
electrons can be born at the location where rf wave power is
absorbed, for example, at some off-center location. For these
runaway electrons born at off-center location, the displace-
ment of d2�26 cm is large enough for them to hit the first
wall.

IV. DISCUSSION AND CONCLUSIONS

The phase-space dynamics of runaway electrons in toka-
maks has been studied in this paper. We developed a physical
model for runaway electrons under the influence of the loop
voltage, radiation drag and collisions. In this model, we treat
the loop voltage and radiation drag as inductive electric
fields. The collisions are modeled by the Monte-Carlo
method. To numerically simulate the long-term dynamics of
a runaway electron, we applied a variational symplectic al-
gorithm for the guiding center of electrons. The variational
symplectic algorithm adopted has good global conservative
properties over long integration times and thus is more suit-
able for simulating the runaway dynamics, compared with
standard integrators which often have coherent error accu-
mulation over a large number of time-steps. The physics of
this outward drift is analyzed. It is found that the outward
drift is caused by the imbalance between the increase of me-
chanical angular momentum and the input of toroidal angular
momentum due to the parallel acceleration. An analytical
expression of the outward drift velocity is derived. The
knowledge of trajectories for runaway electrons in configu-
ration space sheds light on how the electrons hit the first wall
and thus provides clues for possible remedies.

Note that, in this paper, we considered only the phase-
space dynamics of an electron after it becomes a runaway
electron, or, in other words, we considered only those elec-
trons whose initial coordinates in phase space are such that
the probability of it running away �that is to reach un-
bounded energy� is essentially unity. More generally, we
could have considered with the same formalism those elec-
trons whose probability of running away is not necessarily
unity, that is, that there is a finite chance that the electron

might reach zero velocity due to collisional effects before it
reaches unbounded energy.33 Such electrons are particularly
important to consider in the case of rf heating or current
drive, where the presence of the rf waves can produce run-
away electrons by accelerating particles to regions in phase
space of higher runaway probability.

In addition, we further restricted our present attention to
electrons whose runaway dynamics is immediate or prompt,
rather than after spending some time as thermal electrons.
Thus we excluded the so-called backward runaways, which
are produced during noninductive start-up but change direc-
tion before running away. We also excluded those electrons
that are initially trapped, and then only after several bounce
periods become runaways. Note that the physical process
associated with such electrons can be both complex and in-
teresting. For example, the simulation result plotted in Fig. 5
shows how a trapped thermal electron with an initial energy
17 keV first undergoes the Ware pinch under a loop voltage
of 5 V, and then it is untrapped at a smaller radius. It subse-
quently becomes a runaway electron under the effect of the
same loop voltage and the circulating orbit moves outward
toward the wall. The energy of the electron reaches 52 MeV
at t=0.24 s. Such electrons, and for that matter the backward
runaway electrons as well, may strike the tokamak limiter at
a different time and at a different location than would the
runaway electrons that we considered, thus leaving a unique
signature. The exploration of the paths in the configuration
space of the electrons that are not prompt runaways is, how-
ever, left to a future study, where it is anticipated that the
symplectic algorithms developed here will be usefully appli-
cable.
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FIG. 5. �Color online� Path in the configuration space of an initially trapped
thermal electron being accelerated to become a runaway electron under a
loop voltage of 5 V.
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