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For a classical particle undergoing nonlinear interaction with a wave in dielectric medium, a perturbation
theory is developed, showing that the particle motion can be described in terms of an effective parallel mass
which can become negative. A relativistic particle interacting with a circularly polarized wave and a static
magnetic field is studied as an example. For the three stationary orbits corresponding to the same velocity
parallel to the magnetic field, the conditions are found under which all these equilibria are centerlike, or
neutrally stable. It is shown that a negative parallel mass is realized in the vicinity of the intermediate-energy
equilibrium and can lead to a plasma collective instability.
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I. INTRODUCTION

The nonlinear resonance phenomenon, well understood
for a one-dimensional !1D" oscillator #1–3$, can exhibit in-
triguing and unexpected properties in other, yet still rela-
tively simple physical systems. For instance, the presence of
a nonlinear resonance at particle interaction with an oscillat-
ing field yields multiple branches of the ponderomotive po-
tential #4$. On the other hand, it can also effectively modify
the classical particle mass such that, for slow dynamics on
time scales larger than the oscillation period, this mass is
seen as negative #5$. !Further, we call this the “negative-mass
effect,” or NME." Hence the possibility of effects similar to
the absolute negative conductivity #6,7$, the negative-mass
instability #8–17$, and related phenomena #18–20$.

The conceptual possibility of NME was shown in Ref. #5$
by considering a sample system such as a single particle in a
static magnetic field and a circularly polarized “pump” wave
in vacuum. In this particular case, the particle dynamics is
exactly integrable, allowing one to derive NME from the
least action principle directly #5$. However, of practical in-
terest are wave interactions with particle ensembles !e.g.,
finite-density plasmas", in which case the wave dispersion
differs from that in vacuum. As a rule, the corresponding
particle trajectories cannot be found explicitly then, so the
analytical approach used in Ref. #5$ becomes virtually inap-
plicable. Thus, whether NME persists robustly in realistic
environments remains to be studied.

In this paper, we develop a formalism, based on the
Hamiltonian perturbation theory #21–23$, that is suitable for
treating general nonlinear interactions, albeit limited to suf-
ficiently weak pump waves. We apply this formalism to
study the particle effective mass and NME in a static mag-
netic field for an arbitrary refraction index n0 of the pump
wave !unlike in Ref. #5$, limited to n0=1". We show that the
effective mass can become negative for n0 within a nonzero
interval and find the limitations on this interval depending on
the wave parameters. Accordingly, the conditions are ob-

tained under which a collective instability due to the modi-
fied mass can develop.

The paper is organized as follows. In Sec. II, we formu-
late the framework for our theory, starting off with a gener-
alized Hamiltonian for a particle interacting with a wave.
Particularly, we identify the stationary orbits and outline the
approach to studying their stability. In Sec. III, we consider a
charged particle interacting with a circularly polarized wave
in the presence of a static background magnetic field. Based
on the results of Sec. II, we find the stationary orbits for this
problem and assess their stability. In Sec. III, we restate the
parallel mass concept and calculate the parallel mass m% for
the problem of interest, showing when m% can become nega-
tive. In Sec. IV, a plasma collective instability associated
with m% !0 is introduced and the corresponding conditions
are calculated. In Sec. V, we summarize our main conclu-
sions.

II. GENERALIZED WAVE-PARTICLE INTERACTION

Consider a general system governed by a Hamiltonian of
the form

H = H0!I" + "H1!I"cos!! · ! − #t" , !1"

where H0 is the Hamiltonian of the unperturbed system, H1
is the perturbation Hamiltonian describing the particle inter-
action with a wave #22$, "$1 is a small parameter, I is the
n-dimensional action vector, ! is the conjugate angle vector,
and != !"1 , . . . ,"n" is some constant integer vector. !Both H0
and H1 can also slowly depend on time t, but, since this
dependence does not affect our considerations, we will omit
it from our equations for brevity." Without loss of generality,
assume nonzero "n. Then, performing a canonical transfor-
mation to the new actions J and the new angles " via the
generating function %!J ,! , t"=&1J1+ ¯+&n−1Jn−1+ !! ·!
−#t"Jn, one can write the new Hamiltonian H&H+!% /!t as

H = H0!I" − #Jn + "H1!I"cos 'n, !2"

where

Ji = Ii − "iIn/"n !i ! n" , !3"
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Jn = In/"n. !4"

Since H is independent of the n−1 new angles 'i=&i for i
!n, the corresponding new actions Ji are conserved. There-
fore, the perturbed system is integrable and can be described
by just two equations,

J̇n = "H1!I"sin 'n, !5"

'̇n = #n!I" − # + "(n!I"cos 'n, !6"

where #n!I"=! ·!H0 /!I and (n!I"=! ·!H1 /!I.
The dynamics of the system described by Eqs. !5" and !6"

is determined by the types of its stationary points in !'n ,Jn"
plane !or, more precisely, cylinder", which are found from

J̇n = 0, '̇n = 0. !7"

Those include

#n!I" − # + "(n!I" = 0, 'n = 0, !8"

#n!I" − # − "(n!I" = 0, 'n = ) , !9"

and an additional family of stationary points found from

H1!I" = 0, #n!I" − # + "(n!I"cos 'n = 0. !10"

In J space, the stationary points given by Eqs. !8"–!10" form
a set of !n−1"-dimensional manifolds, which we will further
call stationary surfaces !or stationary curves, if n=2".

The stability of the stationary solutions with respect to
small perturbations is determined by the eigenvalues # of the
Jacobian matrix calculated for the linearized Eqs. !5" and !6"
in the vicinity of each stationary point s with J=Js and 'n
='n

s . For the equilibrium described by Eqs. !8" and !9", one
has

*1,2
2 = "H1! · '( !#n

!I
(

s
+ "( !(n

!I
(

s
cos 'n

s)cos 'n
s , !11"

whereas for the other type of stationary points, described by
Eq. !10", one has

*1 = "(n!Js"sin 'n
s , !12"

*2 = − "(n!Js"sin 'n
s . !13"

Since Eqs. !12" and !13" yield *1+*2=0, the equilibrium
solving H1=0 always corresponds to a saddle. Of primary
interest, however, are centerlike equilibria, which can hold
particles on larger time scales. Such stable points are only
possible via Eq. !11", and if *1,2

2 !0. The manifolds formed
in J space by these points will be called stable surfaces.

Any point on any connected stable surface can be trans-
formed into any other point on this surface, by applying ad-
ditional forces, assuming that they are sufficiently weak !so
the surface itself persists" and slow !so the perturbation is
adiabatic". To illustrate this, consider a system described by
the Hamiltonian !1" yet with an additional term of the form
−f!t" ·!. In this case, the stationary points of Eqs. !5" and !6"
are not perturbed significantly, and the adiabatic invariant
*Jnd'n associated with the rapid oscillations in !'n ,Jn" space

is conserved. Therefore, a particle located near the stable
surface Jn!J1 , . . . ,Jn−1" will remain in its vicinity, even if the
overall displacement in J space is substantial. The displace-
ment itself is governed by J̇i=gi, where gi= f i−"i fn /"n for i
!n. However, in the original I space, the drift equations for
the particle moving along the stable surface have an addi-
tional term, which originates from Eq. !3":

İi = gi + li+
k=1

n−1

gk
!Jn

!Jk
. !14"

Such a response to the external force is different from that of
a system not subjected to the weak perturbation H1.

In application to the wave-particle interaction problem,
discussed in the following sections, this means that the re-
sponse of an “oscillating” particle to an external force F can
be different from that of a particle which is at rest or under-
goes slow motion only. Specifically, an effective mass can be
assigned to the particle #5,24$, according to

m%v̇ = F . !15"

For simplicity, we only consider 1D dynamics here; hence
the index %, reflecting that v is assumed parallel to F. In the
sections to follow, we show that m% can be very different
from the particle rest mass m, even for weakly relativistic
oscillations; thus, properties of “metaplasma” composed of
such oscillation centers can be different from those of “nor-
mal” plasmas.

III. MAGNETIZED PARTICLE IN A WAVE

A. Basic equations

A significant effect on the particle parallel mass can be
caused, for example, by a sufficiently strong electromagnetic
wave propagating close to the nonlinear cyclotron resonance
with a charged particle in a static magnetic field. To see this,
assume homogeneous magnetic field of the form B0=B0ẑ,
governed by the vector potential A0=−x̂By, and the “pump”
wave field with circular polarization, governed by Aw
= !mc2 /q"!a0 /,2"!x̂ cos +− ŷ sin +", where m and q are the
particle mass and charge correspondingly, c is the speed of
light, a0 is the normalized wave field amplitude, x̂, ŷ, and ẑ
are unit vectors directed along x, y, and z correspondingly,
and +=#t−kz. The particle Hamiltonian reads as

H = ,m2c4 + c2!P − qA/c"2, !16"

where A=A0+Aw, and P is the particle canonical momen-
tum. We assume that the wave field is weak and hence treat
Aw as a perturbation. Therefore, after a canonical transforma-
tion to the new actions

,̃ = !P − qA0/c"2/!2m(0", m(0X = m(0x + Py !17"

and the new angle variables

'̃ = tan−1#!Px + m(0y"/Py$ + )/2, Y = − Px/!m(0" ,

!18"

similarly to Ref. #23$, H-H0+"H1 cos!'̃−#t+kz" can be
approximated as
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H = H0 −
",̃1/2

H0
cos!'̃ − #t + kz" , !19"

where H0=c!m2c2+2m(0,̃+ p%
2"1/2 is the particle Hamil-

tonian without the wave, p% & Pz is the component of the
kinetic momentum parallel to B0, "=mc3,m(0a0 is the nor-
malized amplitude playing the role of the small parameter,
(0=qB0 /mc is the nonrelativistic Larmor frequency, and ,̃
is the canonical momentum, which is related to the particle
magnetic moment ,& p!

2 / !2m(0" !here p! is the kinetic
momentum transverse to B0" as

, = ,̃ +
mc2a0

2

4(0
− a0c,m,̃

(0
cos!'̃ − #t + kz" . !20"

#Note that, unlike in Eq. !2", the small parameter " is dimen-
sional here.$

Following the general formalism of Sec. II, we introduce
the action and the angle variables of the unperturbed problem

I1 = p%/k, &1 = kz , !21"

I2 = ,̃, &2 = '̃ . !22"

Representing '̃−#t+kz as ! ·!−#t, where != !1,1", we ob-
tain then

J1 = p%/k − ,̃, '1 = kz , !23"

J2 = ,̃, '2 = '̃ − #t + kz . !24"

Hence, we put Eq. !19" in the form !2", now reading as

H = H0 − #J2 −
",J2

H0
cos '2, !25"

where

H0 = c#m2c2 + 2m(0J2 + k2!J1 + J2"2$1/2. !26"

In the sections to follow, we discuss the stationary points of
the Hamiltonian !25" and their stability, showing that unex-
pected dynamics can result in this seemingly well-studied
problem.

B. Stationary curves

The stationary points of the system governed by the
Hamiltonian !25" form two different families. The first one is
comprised of those solving H1!J1 ,J2"=0 and cos '2=0 !si-
multaneously", which corresponds to, respectively,

,̃ = 0, '2 = )/2, !27"

,̃ = 0, '2 = 3)/2. !28"

The second family, which we will focus on, is obtained by
solving Eqs. !8" and !9":

(0

-̃
+

kp%

m-̃
− # + "Q = 0, '2 = 0, !29"

(0

-̃
+

kp%

m-̃
− # − "Q = 0, '2 = ) , !30"

where we introduced

Q =
m2c2 + p%

2 − 2kp%,̃

2m3c4-̃3,,̃
, !31"

and -̃&H0 /mc2 is the Lorentz factor of the unperturbed mo-
tion.

The shape of the stationary curves can be established for
sufficiently small " by neglecting the terms proportional to "
in Eqs. !29" and !30". Substituting "=0 in these equations,
one obtains two asymptotic zeroth-order solutions,

,̃ = 0, !32"

,̃ =
!n0

2 − 1"p%
2

2m(0
+

n0cp%

#
+

mc2

2(0
'(0

2

#2 − 1) , !33"

where n0&ck /# is the medium refraction index. In variables
!p% , ,̃", Eq. !33" describes a parabola, concave for n0!1 and
convex for n0.1. !One can show, however, that, in the latter
case, only one of the branches of this parabola is physically
realizable." In !J1 ,J2" space, Eq. !33" is rewritten as

(0
2

#2 − 1+
n0

2#2!J1 + J2"2!n0
2 − 1"

m2c4

+
2(0#n0

2J1 + !n0
2 − 1"J2$

mc2 = 0, !34"

which can be shown to yield a single-valued dependence
J2!J1" !dashed curves in Fig. 1" in the upper half plane J2
/0.

For nonzero ", multivalued dependence is realized !solid
curves in Fig. 1", which can be seen as follows. Rewrite Eqs.
!29" and !30" as 0!,̃ , p%"= 1" where 0= !(0+kp% /m
−#-̃" / !-̃Q" is the normalized detuning from the !Doppler-
shifted" cyclotron resonance. Since the derivative !0 /!,̃

FIG. 1. !Color online" Stationary curves solving Eqs. !29" and
!30" for "=0 !dashed" and "=0.01 !solid" for n0=0.5,1 ,1.5 and
#=0.97(0 !in units m=q=c=1".
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does not generally vanish on the curve given by Eq. !33" and
since 0!,̃ , p%".,,̃, assuming that p% avoids the vicinities of
the zeroes of Eq. !33", one can show that there will be a
single perturbed solution ,̃ corresponding to the unperturbed
solution !32" and two perturbed solutions corresponding to
Eq. !33". The same property holds for the stationary curves
in !J1 ,J2" space. Therefore, depending on p% !or J1" there are
either one, or three solutions ,̃ !or J2" of Eqs. !29" and !30".

The bifurcation, or critical points F are the points, at
which the transition between one and three solutions in
!J1 ,J2" plane occurs !Fig. 2". The critical point, which be-
comes weakly relativistic for n0-1 and #-(0 as " goes to
zero, can be found as follows. Multiply Eqs. !29" and !30" by
-̃,J2 to rewrite them as

,J2F0!J1,J2,2" 1 "F1!J1,J2,2" = 0, !35"

where 2&n0−1,

F0 = (0 +
kp%

m
− #-̃, F1 = -̃Q,J2. !36"

Assuming 2$1, we solve Eq. !35" perturbatively in both "
and 2. To do so, consider first the unperturbed solution cor-
responding to "=0 and 2=0,

J1 = J1
0 =

mc2!#2 − (0
2"

2#2(0
. !37"

Hence, the perturbation 3J1!J2" can be expressed as

3J1 - − 2
!F0/!2

!F0/!J1
−

"F1

,J2 ! F0/!J1

, !38"

where the derivatives of F0 are taken at J1=J1
0 and 2=0.

Substituting the expressions for F0 and F1 in Eq. !38", one
finally obtains

3J1 = −
,J2!" + 2J2

3/22#2"
2mc2(0

+
!1 + (0

2/#2"!" − 4J2
3/22#2"

4,J2(0
2

−
mc22!#2/(0

2 + 2 −3 (0
2/#2"

4(0
. !39"

A tedious yet straightforward calculation yields that the criti-
cal point F= !J1

" ,J2
"", where d!3J1" /dJ2 vanishes, is given by

J1
"=J1

0+3J1!J2
"",

J2
" = ' "

8/2/#2)2/3
, !40"

and resides within the validity domain of the perturbation
theory developed here for small " and 2. In other words,

FIG. 2. !Color online" Stationary curves plotted for the same parameters as in Fig. 1 for n0=1.5 #!a" and !c"$ and n0=0.5 #!b" and !d"$
in coordinates !kJ1 ,J2= ,̃" #!a" and !b"$ and in coordinates !p% , ,̃" #!c" and !d"$. Unstable branches !dashed" lie above the critical points
!dots", at which dJ2 /dJ1 is infinite. Stable branches !solid" are those below the critical points and also those corresponding to single-valued
J2!J1". Here F= !J1

" ,J2
"" is the critical point where dJ2 /dJ1 is infinite; G is the critical point where d,̃ /dp% is infinite; J1= p% /k− ,̃, J2= ,̃.
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infinite dJ2 /dJ1 corresponds to ,̃=,", where

,"
3/2 = 'mc2

#
)3/2 a0

8/1 − n0/
,(0

#
. !41"

C. Stability of the stationary points

By definition, each of the points on the stationary curves
J1!J2" found in Sec. III B, corresponds to a stationary orbit
with fixed actions J1 and J2 !or, alternatively, fixed ,̃ and p%".
While those corresponding to H1!J2"=0 are always saddles
!Sec. II", the stability of the stationary trajectories corre-
sponding to '2=0 and '2=) may vary and can be assessed
as follows.

The Hamiltonian flow on the phase cylinder !'2 ,J2" can
exhibit only two types of equilibria, namely, centers which
are stable stationary points with Poincaré index 4=1, and
saddles, which are unstable points with index 4=−1 #25,26$.
It turns out that, for the Hamiltonian !19", this fact is suffi-
cient to predict the type of stationary points without calcu-
lating the eigenvalues #. Specifically, one can do this by
using the Poincaré-Hopf theorem #25–27$, for which to be
applicable we will need to transform the phase cylinder into
a compact orientable differentiable manifold. The latter is
done as follows.

Using the asymptotic expansions of H0 and H1 and their
derivatives near J2=0 and at J2→5, choose some Ĵl and
Ĵu. Ĵl for which the Hamiltonian vector field governed by
Eq. !19" is continued smoothly to the cylinder “caps” at J2

= Ĵl and J2= Ĵu !Fig. 3". Specifically, assuming that #.(0,
choose Ĵu such that Ĵu6J1, Ĵu6mc2 /(0, and Ĵu

3/2

6"!2n0/2/#2"−1. In this case, the Hamiltonian equations fol-
lowing from Eq. !19" can be approximated by

J̇2 - − "!n0
2#2Ĵu"−1/2sin '2, !42"

'̇2 - #!n0 − 1" + "!2n0#Ĵu
3/2"−1cos '2. !43"

Hence, the flow on the upper rim of the cylinder is as shown
in Fig. 3!b", meaning that the cap has the index 4u=1 #Fig.
3!c"$.

Similarly, consider the vicinity of J2=0. For Ĵl$mc2 /(0,
the canonical equations read as

J̇2 - − "Ĵl
1/2!m2c4 + n0

2#2J1
2"−1/2sin '2, !44"

'̇2 - − "!4Ĵl"−1/2!m2c4 + n0
2#2J1

2"−1/2cos '2. !45"

Hence, the flow on the lower rim is different from that on the
upper rim #Fig. 3!b"$, yielding the index 4l=0.

The cylinder considered together with the two caps forms
a compact manifold #Fig. 3!d"$ diffeomorphic to a sphere, to
which the Poincaré-Hopf theorem can be applied. Specifi-
cally, the latter states that all the equilibrium indexes on the
manifold sum up to 2. Subtracting the contribution from the
caps !4u+4l=1", one gets

+
s

4s = 1, !46"

for the stationary points with J2.0 on the original cylinder
without the caps. Recall now that there exist either one or
three solutions for a stationary point at nonzero J2 !Sec.
III B; having two solutions is the intermediate degenerate
case". In the former case, Eq. !46" yields that the only equi-
librium is a center, whereas in the latter case there must exist
two centers and one saddle #30$.

It now remains to figure out which of the points corre-
sponds to the saddle. Since the latter appears only when
J2!J1" becomes double-valued at one of the branches !as we

FIG. 3. !Color online" Construction of a compact manifold with a continuous vector field from a part !Ĵl!J2! Ĵu" of the original
Hamiltonian vector field defined for J2.0 !a". The latter is considered on a cylinder !b" to which we add two “caps,” one at the top and one
at the bottom !c". Using the asymptotic behavior of the original field at large and small J2, the vector field is continued analytically to the
caps, resulting in the upper cap Poincaré index 4u=1 and the lower cap index 4l=0, assuming n0 is not equal to unity. The resulting manifold
!d" is compact; hence, the Poincaré-Hopf theorem can be applied, allowing to formally deduce the stability of the equilibria on the plot !a"
without calculating the corresponding eigenvalues #, otherwise found from Eqs. !11"–!13".
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just showed", consider a pair of equilibria corresponding to
the double-valued J2!J1" at fixed J1 !Fig. 2". The related
eigenvalues # are given by

*2 = "H1
dR

dJ2
cos '2, !47"

where R!J2"=#n!J2"−#+"(0!J2"cos '2 is such that it equals
zero at each of the equilibria. Due to the latter, dR /dJ2 must
have different signs at the two stationary points correspond-
ing to a given J1 and '2. And since H1.0, the sign of *2 has
to be different in these points as well. Therefore, the saddle
always corresponds to one of the branches of the double-
valued J2!J1". Since at 2→0 the critical point F, which
separates the two branches, goes to infinity, we further con-
clude that it must be the intermediate branch that is unstable
#Figs. 2!a" and 2!b"$.

D. Tristability

Now consider the same stationary curves in coordinates
!p% , ,̃" #Figs. 2!c" and 2!d"$. In this case, the curves look
similar to those in coordinates !J1 ,J2" #Figs. 2!a" and 2!b"$ in
that they also exhibit a bifurcation point !one or two", further
called G, where d,̃ /dp% is infinite. As follows from Eq. !23",
this new point G corresponds to dJ2 /dJ1=−1, and therefore
does not map to the bifurcation point F !corresponding to
infinite dJ2 /dJ1", where the stability is lost !Sec. III C". Par-
ticularly, for n0.1, G falls below F, i.e., into the interior of
the stability region, whereas for n0!1, there are two points
G, exactly one of which falls into the stability region. Hence,
in either case, there can be up to three different stable sta-
tionary points for a given p%.

In other words, unlike a “normal” 1D nonlinear oscillator
undergoing near-resonant interaction with an external force,
where only up to two stable stationary orbits are possible
#1,2$, a wave-driven particle in a magnetic field is tristable.
Previously, this tristability was demonstrated for the degen-
erate case n0=1, by exact integration of the particle motion
equation #5$. The perturbative analysis offered above shows
that the tristability is a robust effect, also holding for n0 other
than unity, and therefore could be observed in real physical
systems. In what follows, we show that this effect yields
important implications regarding the particle response to
fields additional to B0 and the wave; particularly, negative m%

can result.

E. Effective parallel mass

Suppose an additional low-frequency perturbation force F
along z, so the Hamiltonian !25" can be written as

H = H0 − #J2 −
",J2

H0
cos '2 − F'1/k , !48"

where we used that z='1 /k #Eq. !23"$. Due to the oscillations
in the high-frequency field and the static magnetic field, the
particle mass is effectively modified, yielding that the paral-
lel mass

m% & F/v̇ , !49"

which can further be rewritten as

m% - mF0 d

dt
' p%

-̃
)1−1

, !50"

no longer equals the rest mass m !Sec. II". By analogy with
the particle dynamics in a crystal #29$, the particle motion
along z corresponding to Eq. !48", can then be described by
the Hamiltonian

Heff!p,z" = K!p" + U!z" . !51"

Here U!z" is the potential energy satisfying F=−U!!z"; K!p"
is the effective kinetic energy, or “quasienergy,” related to m%

through

m%
−1 = d2K/dp2; !52"

and p is the canonical momentum, or the “quasimomentum,”
related to v& ż through v=dK /dp !see also Sec. IV". Since
ṗ=kJ̇1=F, one has p=kJ1, not to be confused with p%.

Using Eqs. !23" and !26" to represent p% and -̃ as func-
tions of J1 and J2, Eq. !50" can be written as

m%

m
= F0 d

dt
', m2c2k2!J1 + J2"2

m2c2 + 2m(0J2 + k2!J1 + J2"2)1−1

.

!53"

From Eq. !48", one has J̇1=F /k. To find J̇2, for simplicity,
suppose a particle in the vicinity of a stationary state and
recall !Sec. II" that it will remain in this vicinity as long as
the perturbation force F is adiabatic. As the stationary state
itself evolves in response to F, the particle will follow the
stationary curve J2!J1"; thus,

J̇2 = !dJ2/dJ1"J̇1. !54"

Using these, we now rewrite Eq. !53" as

m%

m
= 01 + dJ2/dJ1

-̃
'1 −

p%

-̃

!-̃

!p%
) −

p%

k-̃2

!-̃

!,̃

dJ2

dJ1
1−1

. !55"

After simplification, one finally obtains

m% = m-̃301 +
2,̃(0

mc2 + '1 −
p%(0

mc2k
+

2,̃(0

mc2 )dJ2

dJ1
1−1

.

!56"

As seen in Fig. 4, Eq. !56" agrees with the results of Ref. #5$,
where a different derivation for m% was proposed, limited to
n0=1.

From Fig. 4 !and Ref. #5$", one can conclude that m% ex-
hibits multiple branches and can become negative; we now
explore more generally when this happens. The sign of m%

changes where m% becomes zero or infinite. The first case is
realized when dJ1 /dJ2=0, which is exactly the bifurcation
point F !Sec. III B". The second one corresponds to the zero
of the denominator in Eq. !56". Assuming that the particle is
weakly relativistic, or p% $mc and ,̃$mc2 /(0, one con-
cludes that dJ2 /dJ1-−1. Therefore, m% is singular at the
point G!, which is close to the point G, where d,̃ /dp% is
infinite. Hence, the negative-mass region is located on the
stationary curves between the points with zero and infinite
m%, corresponding to F and G!-G, respectively.
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If n0!1, the points F and G! belong to the same branch
of the stationary curve with 'n=0; then, m% can be observed
for ,̃!,", where ," is given by

,"
3/2 = 'mc2

#
)3/2 a0

8!1 − n0"
,(0

#
. !57"

On the other hand, if n0.1, the points F and G! belong to
different branches of the stationary curve; then, the negative-
mass region is not limited at high energies !Fig. 5". In either
case, NME is due to particle sticking to the resonance curve,
which makes the pump wave !with the help of B0" produce
an average ponderomotive force overcompensating the per-
turbation F.

Finally, notice that Eq. !56" was derived under the as-
sumption that the particle is initially in a stationary state and,
hence, remains restricted to the stationary curve J2!J1". If,

however, the particle is initially displaced from this curve, it
will undergo oscillations in !J2 ,'2" space !rather than remain
at a fixed location". However, the corresponding oscillation
orbit will still remain centered around a stationary point
mapping to the stationary curve J2!J1". Assuming the oscil-
lations are almost linear, the average J2!J1" would be the
same in this case, meaning that the above derivation for m%

holds also for particles that were not necessarily at a station-
ary state initially. Hence, away from the bifurcation points F,
corrections to Eq. !56" can result only from large-amplitude
oscillations in !J2 ,'2" space, i.e., at essentially relativistic
transverse energies. #This conclusion also agrees with Eq.
!38" of Ref. #5$, from where it follows that m% is not affected
by the displacement from the stationary point, unless the
parameter s introduced there is comparable to or larger than
unity.$

IV. PARALLEL MASS INSTABILITY

At negative m%, particles are accelerated in the direction
opposite to the external force F. Should F be the electrostatic
force qE due to space-charge fluctuations in plasma, the
charge will not be compensated by the induced motion of the
oscillation centers but rather amplified; hence a collective
instability.

The instability growth rate is found from the longitudinal
wave dispersion relation. Assuming E.exp!−i#0t+ ik0z",
this dispersion relation may be written as #28$

1 − +
s

4)nsqs
2

k0
2

−5

+5 dp

#0 − k0v
! fs

!p
= 0, !58"

where ns is the plasma density, and fs!p" is the unperturbed
distribution function of species s. Further assuming that the
plasma is cold #i.e., the characteristic width of each fs!p" is
much smaller than #0 /k0$, Eq. !58" can be rewritten as

1 + +
s

4)nsqs
2

#0
2 2

−5

+5

dp v
! fs

!p
= 0. !59"

Using that dv=dp /m%, one can also express Eq. !59" as

FIG. 4. !Color online" m%!p%" calculated for n0=1, #=0.97(0,
and "=0.02 !in units m=c=q=1": the exact expression from Ref.
#5$ !solid" and the approximate expression !56" !dashed".

FIG. 5. !Color online" A schematic plot of the stationary curves in !p% , ,̃" coordinates with the regions of positive and negative parallel
mass for !a" n0!1 and !b" n0.1. The parts of the curves with the negative parallel mass are shown with the solid lines, while the
positive-mass parts are shown with the dashed lines. The unstable parts of the plot are shown with the zig-zag lines. The points of zero and
infinity m% are denoted by F and G! correspondingly.
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1 + +
s

4)nsqs
2

#0
2 2

−5

+5

dp'2p dp0

m%s!p0") ! fs

!p
= 0. !60"

where m%s is the parallel mass of the species s. Hence, Eq.
!60" can be put in the form

#0
2 = +

s

4)nsqs
2

m̄%s
, !61"

where we introduced the parallel mass m̄%s averaged over the
particle distribution,

m̄%s
−1 = 2

−5

+5

dp m%s
−1!p"fs!p" . !62"

Depending on fs!p", the frequency #0 can be either real or
imaginary. In the former case, when particles with positive
m%s dominate, one recovers the electrostatic Langmuir oscil-
lations, with the energy density given by /E/2 / !8)" as usual.
However, when dominant are particles with m%s!0, the field
E will not oscillate but rather grow exponentially. The energy
that supports the instability is the quasienergy 7K that is
released when negative-mass particles leave the vicinity of
the unstable equilibrium at the local maximum of K!p" !Fig.
6". On the other hand, one can equivalently say that 7K is
drawn from the pump wave #which is what shapes K!p"$,
whereas negative-mass particles act as mediators connecting
the pump energy reservoir with the wave field E. Corre-
spondingly, for n0!1, the instability can occur only when
,̃!," #Eq. !41"$, which is the condition under which m%

!0 is possible. !For n0.1, there is no such condition for
negative-mass particles; however, at ,̃.,", one of the
positive-mass branches becomes unstable; see Sec. III E."

V. CONCLUSIONS

In this paper, we develop a perturbation theory for a clas-
sical particle undergoing nonlinear interaction with a wave in
dielectric medium and show that the particle motion can be
described in terms of an effective parallel mass which can
become negative. As an example, we study a relativistic par-
ticle interacting with a circularly polarized wave propagating
in a medium with refractive index n0 close !yet not equal" to
unity in the presence of a static magnetic field. We show that,

when ,̃ #Eq. !17"$ is smaller than ," #Eq. !41"$, there can
exist up to three stationary orbits with different magnetic
moments ,̃, all of which are stable !centerlike". We predict
that a negative parallel mass m% can be realized in the vicin-
ity of the intermediate-energy equilibrium, and report a
plasma collective instability which can develop for low-
frequency electrostatic waves in an oscillation-center plasma
where particles with m% !0 dominate.
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