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It was proposed recently that powerful optical laser pulses could be efficiently compressed

through backward Raman amplification in ionized low density solids, in spite of strong damping

of the resonant Langmuir wave. It was argued that, even for nonsaturated Landau damping of the

Langmuir wave, the energy transfer from the pump laser pulse to the amplified seed laser pulse

can nevertheless be highly efficient. This work numerically examines such regimes of strong

damping, called quasitransient regimes, within the simplest model that takes into account the

major effects. The simulations indicate that compression of powerful optical laser pulses in

ionized low density solids indeed can be highly efficient. VC 2011 American Institute of Physics.

[doi:10.1063/1.3650074]

I. INTRODUCTION

The technique of resonant backward Raman amplifica-

tion (BRA) of laser pulses in plasmas1 may make feasible

exawatt and zetawatt optical laser pulses in reasonably com-

pact devices.2–4 Key features of the BRA technique were

verified experimentally in small aperture devices.5–9 Much

larger aperture and higher power experiments are contem-

plated now. In particular, there is a possibility of backward

Raman amplification of powerful laser pulses mediated by

low density solids.10 Crude analytical estimates indicate that

such BRA can be highly efficient, in spite of strong damping

of the resonant Langmuir wave (which mediates energy

transfer from a pump laser pulse to the amplified seed laser

pulse). Numerical examination of these interesting BRA

regimes within the simplest model is presented below. The

model includes the following effects:

• The resonant Raman backscattering of the pump laser

pulse into the counterpropagating short amplified seed

laser pulse.
• Collisional and Landau damping of the resonant Langmuir

wave (which mediates energy transfer from the pump laser

pulse to the amplified seed laser pulse).
• The inverse bremsstrahlung of the pump and seed laser

pulses.
• Plasma heating through the inverse bremsstrahlung of the

pump and seed laser pulses and through the collisional and

Landau damping of Langmuir wave.
• Relativistic electron nonlinearity of the amplified pulse,

which imposes an upper limit on the allowed amplification

length.
• Dispersion of the group velocity of the amplified pulses,

which imposes a lower limit on the allowed duration of the

input seed pulse.

In treating these effects, the current work employs the

basic equations of the backward Raman amplification,

including terms describing the last two effects, the relativis-

tic electron nonlinearity and group velocity dispersion,11 and

including the above-mentioned collisional effects that char-

acterize the quasitransient regime.10 In particular, the Lan-

dau damping of the Langmuir wave mediating the resonant

energy transfer is modeled here by the formula for the linear

Landau damping in Maxwellian plasmas. As explained pre-

viously,10 this is not to imply that the actual Landau damping

is not saturated but to verify that the BRA indeed can be effi-

cient even for non-saturated linear Landau damping. In addi-

tion to the factors analyzed in Ref. 10, the current work

crudely takes into account, in the manner similar to Refs. 12

and 13, the effect of strong fields on the collisional damping

and inverse bremsstrahlung.

The model employed is 1-D but it captures the major

effects. The amplification length, in practice, is limited by

the relativistic electron nonlinearity of the amplified pulse.

This cubic nonlinearity tends to cause filamentation of the

pulse both in the longitudinal and transverse directions. To

avoid the degradation of the pulse, the plasma length is taken

short enough that the pulse is amplified and compressed only

prior to the onset of these instabilities.1 The forward Raman

instability could also have been included within the 1D

framework of equations that we consider. However, this

instability can similarly be avoided by taking the plasma

short enough, or by other means of suppression, such as

through detuning.2 The 1D equations that we employ thus

describe well the plasma prior to the onset of these instabil-

ities. It should be noted that, although the starting equations

also describe compression of shorter wavelength pulses, like

in the x-ray regime, we confine our specific illustrative

examples to the optical regime.

Thus, this simple model captures the key features of the

quasitransient backward Raman amplification (QBRA)

regimes and can be used to verify when these regimes can be

efficient. This may be particularly useful for modeling BRA

of powerful optical pulses in ionized low-density solids, or
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for BRA of intense x-ray pulses in denser plasmas, such as at

solid densities.14,15 While many of the BRA features were

described computationally in previous studies (see for

instance, Refs. 16–28), it is only here that a simple computa-

tional model is employed to study the major physical proc-

esses that are associated specifically with the QBRA regime.

The paper is organized as follows: Sec. II introduces the

basic QBRA equations employed here, Sec. III describes

simulations of the QBRA in a regime of particular practical

interest, and Sec. IV summarizes the results.

II. BASIC EQUATIONS

Equations for BRA, taking into account the above listed

effects, can be presented in the form

at þ caaz ¼ V3fb� �aa; ft ¼ �V3ab� � �f f ;

bt � cbbz ¼ �V3af � � ıc0bbtt=2cb þ ıRjbj2b� �bb:
(1)

Here a, b, and f are envelopes of the long pump pulse, coun-

terpropagating short pumped pulse (or seed pulse), and the

resonant Langmuir wave, respectively; subscripts t and z sig-

nify time and space derivatives; ca and cb are group veloc-

ities of the pump and pumped pulses; c0b is the derivative of

the pumped pulse group velocity over the frequency; V3 is

the 3-wave coupling constant (real for appropriately defined

wave envelopes), R is the coefficient of nonlinear frequency

shift due to the relativistic electron nonlinearity; �a and �b

are rates of the inverse bremsstrahlung for the pump and

seed laser pulses, respectively; �f is the Langmuir wave

damping. The dispersion and self-nonlinearity are taken into

account only for the pumped pulse which is shorter and

grows to intensities greater than that of the pump.

The group velocities ca and cb are expressed in the terms

of the respective laser frequencies xa and xb as follows:

ca ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

e

x2
a

s
; cb ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

e

x2
b

s
; (2)

where c is the speed of light in vacuum,

xe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pnee2

me

s
(3)

is the electron plasma frequency, ne is the electron plasma

concentration, me is the electron mass, and e is the electron

charge. Note that

c0b
cb
¼ x2

e

xbðx2
b � x2

eÞ
; (4)

which exhibits the group velocity dispersion of the seed

pulse that becomes important at higher plasma density. The

dominance at high density of this linear dispersion effect

enables the neglect of nonlinear dispersion effects even

when the seed pulse is only several optical cycles long.29

The pump pulse envelope, a, will further be normalized

such that the average square of the electron quiver velocity

in the pump laser field, measured in units c2, will be jaj2

v2
ea ¼ c2jaj2: (5)

Then, the average square of the electron quiver velocity in

the seed laser field and in the Langmuir wave field will be

given by the formulas

v2
eb ¼ c2jbj2 xa

xb
; v2

ef ¼ c2jf j2 xa

xf
: (6)

The respective value of the 3-wave coupling constant is30

V3 ¼
kf c

2

ffiffiffiffiffiffiffiffi
xe

2xb

r
; (7)

where kf is the wave number of the resonant Langmuir wave

kf ¼ ka þ kb; kac ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

a � x2
e

q
; kbc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

b � x2
e

q
: (8)

The frequency resonance condition is

xb þ xf ¼ xa; (9)

where xf is the Langmuir wave frequency. For Maxwellian

plasma of electron temperature Te,

xf ¼ xe 1þ 3

2
qT

� �
; (10)

assuming

qT ¼
k2

f Te

x2
eme
¼ Te

Tm
� 1: (11)

The satisfaction of this inequality suggests that the frequency

of the plasma wave may be approximated as just the plasma

frequency; small deviations from the plasma frequency

would be masked by other detuning effects such as pump

chirping and plasma density gradients.

The nonlinear frequency shift coefficient R, correspond-

ing to the above normalization of wave envelopes, is31–33

R ¼ x2
exa

4x2
b

: (12)

The inverse bremsstrahlung rates �a and �b are expressed in

the terms of the electron-ion collision rate �ei by formulas34

�a ¼ �ei
x2

e

2x2
a

; �b ¼ �ei
x2

e

2x2
b

: (13)

The Langmuir wave damping consists of the collisional and

Landau damping

�f ¼ �ei=2þ �Lnd: (14)

The Landau damping is crudely modeled by the linear Lan-

dau in Maxwelliam plasma35

�Lnd ¼
xe

ffiffiffi
p
p

ð2qTÞ3=2
exp � 1

2qT
� 3

2

� �
: (15)
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Formula (15) is quantitatively justified under conditions

when Maxwellization has time enough to occur for the reso-

nant electrons responsible for the Landau damping. Other-

wise, this formula overestimates the Landau damping

because of flattening the resonant electron distribution. In

transient BRA regimes, where collisions have not enough

time to occur within the amplified pulse duration even for

the thermal electrons, the faster resonant electron apparently

are not Maxwellian. The model can be used nevertheless to

verify that highly efficient BRA can be sustained even for

the overestimated Landau damping.

The field-affected rate of electron-ion collisions is

crudely modeled by the formula12,13

�ei ¼
2

3

ffiffiffiffiffiffi
2p
me

r
ZKnee4

T
1=2
e Te þ Tenlð Þ

; (16)

where K is the Coulomb logarithm, Z is the plasma ion

charge, and

Tenl ¼ mec2 jaj2 þ jbj2 xa

xb
þ jf j2 xa

xf

� �
: (17)

The electron plasma heating is modeled by equation

@Te

@t
¼ 2

3
�ei Tenl þ 2mec2�Lndjf j2

xa

xf

� �
: (18)

III. NUMERICAL RESULTS

Consider BRA in a uniform plasma layer of width L. The

duration of pump interacting with seed within such a layer is

Lpmp¼L(1þ ca=cb). For the pump of constant amplitude a0,

it is convenient to measure wave amplitudes in units of a0.

This means the following redefining of wave amplitudes:

a! a0a; b! a0b; f ! a0f : (19)

By measuring the time t in units 1=V3a0, distance z in units

ca=V3a0, damping rates �a, �b, and �f in units V3a0, nonlinear

frequency shift coefficient R in units V3=a0, the basic equa-

tions (1) can be rewritten in the form

at þ az ¼ fb� �aa ; ft ¼ �ab� � �f f ; (20)

FIG. 1. (Color online) Dynamics of BRA in plasma with ion charge Z¼ 6 for several initial plasma temperatures: 32 eV (a), 320 eV (b), 1.8 keV (c), and 3.2

keV (d). Black solid line shows the seed pulse amplitude, gray (blue online) solid curve is the pump pulse amplitude, light gray (magenta online) solid line is

the Langmuir wave amplitude, and red dashed curve is the temperature profile.
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bt � bzcb=ca ¼ �af � � ıjbtt þ ıRjbj2b� �bb;

j ¼ c0b=2cbV3a0

(21)

(and complemented by the, respectively, transformed Equa-

tion (18)).

Let the pump wavelength be k¼ 0.351 lm, like for NIF

laser pulses.36 Let the ratio of the plasma frequency to the

pump laser frequency be 0.3, qL¼xe=xa¼ 0.3, correspond-

ing to the electron plasma density ne¼ 8.2 � 1020 cm�3, like

that for the lowest density solids. Let the width of the plasma

be L¼ 25 linear Raman lengths, 25ca=V3a0. This is 87.5 lm

for a0 ¼ 6 � 10�10k½lm�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ia½W=cm

2�
q

¼ 00411, correspond-

ing to the pump intensity of 38 PW=cm2 (which is below the

wave-breaking threshold equal to 61 PW=cm2). The respec-

tive length of the pump pulse is 25(1þ ca=cb)¼ 51.41¼Da

linear Raman lengths. The initial seed pulse is taken to be

Gaussian with the maximum intensity of 2.5 PW=cm2 and

full width at half maximum (FWHM) of 2p=xe¼ 3.89 fs.

This corresponds to the initial integrated amplitude

� ¼
Ð

bdt ¼ 0:15. The Coulomb logarithm in Eq. (16) is

taken to be K¼ 3.14. For these initial conditions, one obtains

Tm¼ 18.72 keV. Hence, for temperatures below about 1

keV, the detuning of the plasma wave frequency can be

neglected. For higher initial temperatures, the detuning

might be important, but the temperature grows less since the

heating is smaller (because of the lower electron-ion colli-

sion rate). This means that the detuning is approximately

constant and can be compensated by chirping either the

pump or seed pulses or by introducing gradients in the

plasma density.

Figure 1 shows evolution of the seed, pump and Lang-

muir wave amplitudes, and plasma temperature in plasma

with ion charge Z¼ 6 for several initial plasma temperatures

32 eV (1a), 320 eV (1b), 1.8 keV (1c), and 3.2 keV (1d).

At smaller initial plasma temperatures, shown in Figs.

1(a) and 1(b), the Langmuir wave damping appears to be

negligible. This is because the Landau damping in inher-

ently small in this region, while the collisional damping is

reduced due to the high quiver velocity of electrons in

strong electromagnetic field. As a result, BRA resembles

that in the transient regime.1,37 The beginning of the leading

spike splitting seen at the final BRA stages indicates that

the amplification length cannot be increased, because of

self-phase modulation instability associated with the rela-

tivistic electron nonlinearity.

At larger initial plasma temperatures, shown in Figs.

1(c) and 1(d), the Langmuir wave appears to be noticeably

damped even within the leading amplified spike duration

due to the strong Landau damping. Therefore, the BRA

occurs in quasitransient regimes.10,38 In these regimes, the

secondary spikes are suppressed, and the plasma is clearly

heated within the amplified spike duration, which makes

the Landau damping even stronger. It can extend the lin-

ear BRA stage and delay the pump depletion as seen from

Fig. 1(d).

Figure 2(a) shows the maximal output pulse intensity

G ¼ xb

xa
maxt bðz ¼ 0; tÞj j2; (22)

and Fig. 2(b) shows the fraction of the pumped energy con-

taining in the output pulse,

g ¼ xb

xa

Ð1
�1 bðz ¼ 0; tÞj j2dt

Da
; (23)

FIG. 2. (Color online) Maximal output

pulse intensity G (a) and BRA efficiency

g (b) as functions of the initial plasma

electron temperature for plasma ion

charges Z¼ 1 (red cross solid line),

Z¼ 6 (blue circle solid line), Z¼ 10

(black square solid line), and Z¼ 14

(magenta triangle solid line).
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as functions of the initial plasma electron temperature for

several different plasma ion charges: Z¼ 14 (silicon, Si),

Zeff¼ 10 (silica, SiO2), Z¼ 6 (carbon, C), and Z¼ 1 (hydro-

gen, H).

As seen, the results are nearly the same for all these

values of Z. The results also appear to be not sensitive

(g � 65% and G � 19) to the initial plasma temperature

up to about 1 keV. At initial temperatures exceeding

1 keV, the Langmuir wave Landau damping becomes im-

portant. Some increase of the maximal output pulse inten-

sity in this regime (Fig. 2(a)) is associated with the

Langmuir wave suppression which prevents energy flowing

back from the leading spike to the pump. This effect also

causes a decrease of the efficiency g (Fig. 2(b)) due to the

suppression of the secondary spikes and trailing part of the

leading spike.

Figure 3 shows how BRA dynamics is affected by the

Langmuir damping �f within even a simpler model where

relativistic electron nonlinearity and dispersion effects are

absent. Fig. 3(a) shows the classical p-pulse regime corre-

sponding to �f¼ 0. For the Langmuir damping 3 times larger

than the linear Raman growth rate (Fig. 3(b)), the amplified

pulse has already just a single spike. For the Langmuir

damping 10 times larger than the linear Raman growth rate

(Fig. 3(c)), the pump depletion is delayed so much that

longer plasma length (66.75 linear Raman lengths) is needed

to obtain the same output pulse maximal intensity as in

Fig. 3(b).

Fig. 4 shows BRA dynamics within the model neglect-

ing the relativistic electron nonlinearity and dispersion

effects, like Fig. 3, but using the above formulas for the

Langmuir wave damping (rather than the constant damping

used in Fig. 3). The plasma ion charged is taken to be Z¼ 6.

At temperatures of 32 and 320 eV (Figs. 4(a) and 4(b)), the

amplified pulse has a p-pulse profile, like in Fig. 3(a),

because of the smallness of the Langmuir wave damping at

such temperatures. For higher temperatures, Te¼ 1.8 keV

(Fig. 4(c)), and even more Te¼ 3.2 keV (Fig. 4(d)), the Lan-

dau damping becomes important and suppresses secondary

amplified spikes. The case of 10 times more intense initial

FIG. 3. (Color online) BRA dynamics neglecting the relativistic electron nonlinearity and dispersion effects, for the Langmuir damping to 0 (a), 3 (b), and 10 (c)

linear Raman growth rates. The solid line depicting the traveling spike (red online) shows the seed pulse amplitude, the solid line with magnitude of 1 at the left

boundary (blue online) is pump pulse amplitude. Note that a longer BRA length is used in case (c)
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FIG. 4. (Color online) BRA dynamics

neglecting the relativistic electron nonli-

nearity and dispersion effects, in plas-

mas with ion charge Z¼ 6 and initial

temperatures of 32 eV, 0.32, 1.8, and 3.2

keV. The solid line with magnitude of 1

at the left boundary (magenta online) is

pump pulse amplitude, spike (red online)

is the seed pulse amplitude. Dashed lines

show the same for the 10 times more

intense initial seed pulse.

FIG. 5. (Color online) Effects of the rel-

ativistic electron nonlinearity and disper-

sion on BRA in plasma with ion charge

Z¼ 6 and initial electron plasma temper-

ature 0.32 keV. Both the relativistic

electron nonlinearity and dispersion

turned off (a), the relativistic electron

nonlinearity turned on and the dispersion

turned off (b), the relativistic electron

nonlinearity turned off and the disper-

sion turned on (c), and both the relativis-

tic electron nonlinearity and dispersion

turned on (d). Dashed lines show BRA

for the 10 times more intense initial

seed.
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seed pulse (25 PW=cm2) is also shown in Fig. 4 (dashed

lines). As seen, the results are not very sensitive to the initial

pulse intensity.

Figure 5 shows how the relativistic electron nonlinearity

and dispersion affect BRA dynamics in plasma with the ini-

tial temperature 0.32 keV and ion charge Z¼ 6. Figure 5(a)

shows the amplified pulse evolution neglecting both the rela-

tivistic electron nonlinearity and dispersion effects. The

effect of the relativistic electron nonlinearity (without disper-

sion) is shown in Fig. 5(b). The effect of the dispersion

(without relativistic electron nonlinearity) is shown in Fig.

5(c). The joint effect of the relativistic electron nonlinearity

and dispersion is shown in Fig. 5(d). The case of 10 times

more intense initial seed pulse (25 PW=cm2) is shown in Fig.

5 by dashed lines. As seen, the dispersion effect merges few

leading amplified spikes into a single one. It is also seen that

the results are not very sensitive to the initial seed intensity.

IV. CONCLUSION

Numerical modeling was performed describing QBRA

in plasmas within the simplest model taking into account the

major effects, such as, Raman backscattering, relativistic

electron nonlinearity, dispersion of the laser group velocities,

collisional and Landau damping of the resonant Langmuir

wave, inverse bremsstrahlung of the pump, and seed laser

pulses and plasma heating through these effects. In particu-

lar, the QBRA regime was explored for 351 nm light, like

the NIF laser, in plasmas of electron concentration

ne¼ 8.2 � 1020 cm�3, corresponding to the density in the

range of the lowest density solids. The simulations show that

QBRA in this important regime can indeed be efficient.
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