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A nonlinear dispersion of a general stationary wave in collisionless plasma is obtained in a non-

differential form expressed in terms of a single-particle oscillation-center Hamiltonian. For electrostatic

oscillations in nonmagnetized plasma, considered as a paradigmatic example, the linear dielectric function

is generalized, and the trapped particle contribution to the wave frequency shift �! is found analytically

as a function of the wave amplitude a. Smooth distributions yield �!� a1=2, as usual. However,

beamlike distributions of trapped electrons result in different power laws, or even a logarithmic

nonlinearity, which are derived as asymptotic limits of the same dispersion relation.
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Introduction.—Nonlinear stationary waves, such as
Bernstein-Green-Kruskal (BGK) modes, remain of con-
tinuing interest [1,2], including recently in connection
with Raman backscattering [3] and new methods of
phase-space manipulation [4]. However, essential proper-
ties of these waves are not apparent, because they are
derived directly from the Vlasov-Maxwell system. The
nonlinear dispersion relations (NDR) are obtained then in
a differential form [2,5], which is specific to particular
settings and may be analytically intractable, thus obscuring
the underlying physical picture.

Here, we offer a universal nondifferential NDR [Eq. (2)]
with a transparent physical meaning. The new NDR reveals
that the nonlinear properties of a wave in collisionless
plasma are entirely determined by one function, namely,
the single-particle oscillation-center (OC) HamiltonianH
[6]. Once H is found, one can study the nonlinear effects
systematically and hence keep track of effects that are
easy to miss in ad hoc calculations. Electrostatic waves
in nonmagnetized plasma are considered as a paradigmatic
example. For those, we show how various types of kinetic
nonlinearities, previously known from different contexts,
and also a new logarithmic nonlinearity are derived as
asymptotic limits of the same dispersion relation [Eq. (6)].
Besides that, the fundamental linear dielectric function is
generalized [Eqs. (12) and (14)], and the friction drag on
trapped particles is predicted to affect the wave frequency
sweeping in collisional plasmas.

Basic equations.—To start, consider the plasma
Lagrangian L� ¼ Lem þP

iLi, where Lem is the electro-
magnetic field Lagrangian, and Li are the Lagrangians of
individual particles, also accounting for the interaction
with the field. The plasma adiabatic dynamics on time
scales large compared to the period of any oscillations in
the system is then governed by the time-averaged
Lagrangian, L� ¼ hL�it [9]. Notice further that, in a sta-
tionary wave, particles can be described by some general-
ized canonical coordinatesQ i and momentaP i, referred to

as OC variables [10], such that _Q i and P i remain constant.

Since the particle dynamics is trivial in these variables,
let us exclude them as separate degrees of freedom. This
is done using Routh reduction [11], which yields the

Lagrangian L ¼ L� �P
iP i � _Q i that describes the wave

only. Further, since

P i � _Q i � hLiit ¼ H i (1)

is ith particle OC Hamiltonian, one obtains L ¼ hLemit �P
iH i [12]. Hence, the wave Lagrangian L per unit spatial

volume is given by L ¼ Lem �P
snshH si, where Lem ¼

hE2 � B2ix;t=ð8�Þ (with averaging performed over both

time and space), E and B are the electric and magnetic
fields, summation is taken over different species s, ns are
the corresponding space-average densities, and hH si is the
OC energy averaged over Ps.
Assuming the wave spatial profile is prescribed, the

dynamics of the wave is fully characterized by its ampli-
tude a (arbitrarily normalized) and canonical phase �; by

definition, the latter increases at some constant rate _� � !,
by 2� per the oscillation period T ¼ 2�=!. Hence,

L ¼ Lða; _�Þ, where we used that L cannot depend on �
explicitly for it describes the dynamics on time scales
t � T; cf. Ref. [9]. In particular, varying L with respect
to a at fixed ! yields @aL ¼ 0 [13], or

1

8�

@

@a
hE2 � B2ix;t �

X
s

ns
@hH si
@a

¼ 0: (2)

The latter, complemented with Eq. (1) to find H i [14],
represents the sought NDR, with advantages that it
(i) applies to any stationary wave in collisionless plasma,
(ii) has a nondifferential form, (iii) is nonperturbative in a,
(iv) allows understanding the wave properties by studying
just H s, and also (v) each of the terms in Eq. (2) has a
transparent physical meaning. Below, examples are given
that illustrate the power of this main result.
First, we revisit linear waves, in which case there must

exist modes of the form E;B / eik�x; then the commonly
known dispersion relation for linear waves without trapped
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particles [17] should follow. To confirm this, substituteH s

in the dipole approximation [7], namely,

H s ¼ H ð0Þ
s þ�s; �s ¼ �E� � �̂s �E=4; (3)

where H ð0Þ
s is some function of P (and static fields, if

any), �s is the ponderomotive potential, and �̂s is the
particle linear polarizability. Take E ¼ ae, where e deter-
mines polarization; then @aH s ¼ � 1

2 ðe� � �̂s � eÞa and

also B ¼ jn� eja, where n � ck=!, and c is the speed
of light. Hence, Eq. (2) gives ðe� � �̂ � eÞ � jn� ej2 ¼ 0,
where �̂ � 1þP

s4�nsh�̂si equals the linear dielectric
tensor. Thus, our result coincides with the known disper-
sion relation [17] at prescribed e, whereas the equation for
e also can be recovered, by varying L with respect to e�.

Electrostatic wave.—Now let us apply Eq. (2) to derive
the dispersion of a nonlinear electrostatic wave in non-
magnetized plasma. Assume that ions are fixed; hence,
only electron motion will be addressed, and the species
index s is dropped. Also, neglect fluid nonlinearities,
which are of higher order in a than the kinetic nonlineari-
ties discussed below. Then, treating the wave as monochro-
matic is anticipated to yield asymptotically precise
description at small amplitudes [15,18]. We hence intro-
duce the wave number k and the phase velocity u ¼ !=k.
(Both u and electron velocities will be assumed nonrela-
tivistic.) From Eq. (1), it is seen then that H is conserved
to a u-dependent term �H when transferring from the

laboratory frame K to the reference frame K̂ where the
wave field is static. Since �H is independent of a, for

the purpose of using Eq. (2) it only remains to findH in K̂,
which is done as follows.

First consider the electron true Hamiltonian in K̂,

Hðx; pÞ ¼ p2=ð2mÞ þ e’0 cosðkxÞ; (4)

where m and e are the particle mass and charge, p ¼
mðv� uÞ is the corresponding momentum (v being the
velocity in K), and, for clarity, the amplitude of the poten-
tial energy is defined such that a � k2e’0=ðm!2Þ> 0.
Governed by Eq. (4), both passing and trapped particles
will undergo oscillations which are convenient to describe
in terms of the action J / H

pdx and the conjugate canoni-
cal phase �, which will serve as P and Q in this case.
Specifically, choose the coefficient in the expression for
the passing-particle action such that J ¼ jpj=k for large p
(we assume k > 0) and for trapped particles such that J is

continuous across the separatrix [16]. Then, J ¼ Ĵa1=2jðrÞ,
where Ĵ ¼ m!=k2, and [Fig. 1(a)]

jðrÞ ¼ 4

�

�
EðrÞ þ ðr� 1ÞKðrÞ r < 1
r1=2Eðr�1Þ r > 1

(5)

is a continuous function of the normalized energy r �
ðH þ e’0Þ=ð2e’0Þ, such that j ¼ 0 for a particle resting
at the bottom of the potential trough (r ¼ 0), with the
corresponding value at the separatrix (r ¼ 1) being

j� ¼ 4=�. (Here K and E are the complete elliptic integrals
of the first and second kind, respectively; cf., e.g.,
Ref. [19].)
Since the generating function of the canonical trans-

formation ðx; pÞ ! ð�; JÞ clearly does not depend on

time explicitly, one gets H ðJÞ ¼ Hðx; pÞ, or H ðJ; aÞ ¼
ð2ar� aÞĴ!, where the dependence on a is parametric,

r ¼ rðjÞ is determined by Eq. (5), and j ¼ a�1=2J=Ĵ, as
defined above. Then, Eq. (2) can be rewritten as

!2 ¼ !2
p

2

a

Z 1

0
GðjÞFðJÞdJ: (6)

Here !p is the plasma frequency, FðJÞ is the action distri-

bution normalized to one, andGðjÞ � ½@aH ðJ; aÞ�=ðmu2Þ,
i.e., GðjðrÞÞ ¼ 2r� 1� jðrÞ=j0ðrÞ, so

GðjÞ ¼
��1þ jþ � � � j 	 1

1
2j2

þ 5
16j6

þ � � � j � 1: (7)

[Notice that GðjÞ is continuous at the separatrix, with
Gðj�Þ ¼ 1, yet with a discontinuous infinite derivative;
Fig. 1(b).] In particular, when plasma is cold and a ! 0,
then all particles are passing and J ¼ jpj=k, so

v
 ¼ u
 kJ=m; (8)

where the sign index denotes sgnðv� uÞ. Yet vþ are not
present then, and v� 	 u, in which case Eq. (8) gives

J � Ĵ [in other words, one may assume FðJÞ � �ðJ � ĴÞ].
Since Gðj � 1Þ � 1=ð2j2Þ, one thereby obtains g ¼ a=2,
meaning that Eq. (6) predicts !2 ¼ !2

p, as expected.

Equation (6) describes all kinetic corrections (to the
extent that the monochromatic-wave approximation ap-
plies), and it readily shows how particles with given j
affect the wave frequency. In particular, it shows that
deeply trapped particles (j & 0:96) reduce !2, for the

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

2.5

z

j

a

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1.0

0.5

0.0

0.5

1.0

z

G

b

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

0.5

z

c

0.0 0.5 1.0 1.5 2.0
0.2
0.0
0.2
0.4
0.6
0.8
1.0

z

Q

d

FIG. 1. Auxiliary dimensionless functions (solid lines):
(a) jðzÞ, (b) GðzÞ, (c) �ðzÞ, (d) QðzÞ. The vertical dashed lines
show where the functions are nonanalytic. Also shown are
asymptotes and asymptotic approximations (dashed lines) flow-
ing from Eq. (7), except in (a), where the approximations used
are jðz 	 1Þ � zþ z2=8 and jðz � 1Þ � 2z1=2 � ð2z1=2Þ�1.
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corresponding g is negative; yet those near the separatrix
and untrapped ones have positive g and thus increase !2

(cf. Ref. [20]). Below, we explicitly calculate !2 for a
number of representative cases, by formally considering
various asymptotic expansions of the integral in Eq. (6).

Smooth distribution FðJÞ.—First, let us assume that the
distribution function FðJÞ remains finite at small J or, at
least, diverges less rapidly than J�1. Then, one can take the
integral in Eq. (6) by parts and obtain

1� 2!2
p

a!2

Z 1

0
�ðJ; aÞF0ðJÞdJ ¼ 0; (9)

where we introduced � � �R
J
0 GðjÞdJ ¼ Ĵa1=2�ðjÞ and

�ðjÞ � �Rj
0 Gð|Þd| [Fig. 1(c)], so

�ðJ; aÞ ¼
(
J � J2

2Ĵa1=2
þ � � � J 	 Ĵa1=2

aĴ2

2J þ a3Ĵ6

16J5
þ � � � J � Ĵa1=2:

(10)

At a 	 1, � changes rapidly with J compared to FðJÞ,
if the distribution is smooth, e.g., thermal. Then, without
using the explicit form of �ðJ; aÞ but rather drawing on
the leading terms in Eq. (10), one can put Eq. (9) in the
following asymptotic form:

�ð!; kÞ þ !2
p

2k2
C1 lnaþ!!2

p

k3
ßC2a

1=2 ¼ 0: (11)

Here we introduced

� ¼ 1�m2!2
p

k6

Z 1

0

�
F0ðJÞ � F0ð0ÞQ

�
J

Ĵ

��
dJ

J
; (12)

QðzÞ ¼ 1� 2z�ðzÞ [Fig. 1(d)], C1 ¼ ðm=kÞ2F0ð0Þ, C2 ¼
ðm=kÞ3F00ð0Þ, and ß ¼ R1

0 QðzÞdz � 0:544. [Notice that,

although determined by essentially nonlinear dynamics in
the narrow vicinity of the resonance, QðzÞ nevertheless can
affect the integrand on the thermal scale.] In particular,
when F0ð0Þ ¼ 0, the nonlinear part of Eq. (11) is small,
yielding that the nonlinear frequency shift �! is also
small; hence,

�! ¼ �
�
@�

@!

��1 ß!2
p

k2

ffiffiffiffiffiffiffiffiffi
e’0

m

r
C2: (13)

Yet, at nonzero F0ð0Þ, the nonlinear part of Eq. (11)
diverges logarithmically at small a; i.e., wave interaction
with resonant particles has a strong effect on !.

Equations (11)–(13) generalize the existing NDR
for eigenwaves in plasmas with smooth distributions
[16,21,22], namely, as follows. First of all, notice that �,
serving as a generalized linear dielectric function, is a
functional of the action distribution. Unlike the commonly
used distribution of ‘‘unperturbed’’ velocities f0ðvÞ, which
depends on how the wave was excited [21], FðJÞ is defined
unambiguously; thus, the above equations hold for any
excitation scenario [while finding FðJÞ itself is kept as a
separate problem]. Second, even if put in terms of f0ðvÞ,

Eqs. (11)–(13) cover a wider class of particle distributions.
The latter is seen as follows.
For example, consider a wave developed slowly from

zero amplitude, so each J is conserved, even through
trapping and untrapping [16,19,23]. Then FðJÞ ¼ F0ðJÞ,
index 0 henceforth denoting the initial state. Yet, since
there was no wave in that state, Eq. (8) applies, so each

‘th derivative of F0ðJÞ reads as Fð‘Þ
0 ðJÞ ¼ ðk=mÞ‘ �

½fð‘Þ0 ðvþÞ þ ð�1Þ‘fð‘Þ0 ðv�Þ�. Let us use bars to denote lim-

its fð‘Þ0 ðv ! u
Þ, so that �fð‘Þ0 ðvÞ is defined as a piecewise-

constant function equal to the left and right limits for
v < u and v > u correspondingly. Then, C1 ¼ �f00ðuþÞ �
�f00ðu�Þ, C2 ¼ �f000 ðuþÞ þ �f000 ðu�Þ, and

� ¼ 1�!2
p

k2

Z 1

�1
f00ðvÞ �Q �f00ðvÞ

v� u
dv; (14)

where Q � Qðjv=u� 1jÞ. First, let us compare Eq. (14)
with the usual �L ¼ 1� ð!2

p=k
2ÞPR1

�1ðv� uÞ�1

f00ðvÞdv, P denoting the principal value [17]. For smooth

f0ðvÞ, our � can be put in the same form as �L, because
P
R1
�1ðv� uÞ�1Q �f00ðvÞdv ¼ 0. However, Eq. (14) is

valid also when f00ðvÞ is discontinuous across the reso-

nance, a case in which �L is undefined. This is because
the integrand in Eq. (14) is finite (piecewise-continuous),
so the integral converges absolutely rather than existing
only as a principal value (like �L does). Second, for smooth
f0ðvÞ, when C1 ¼ 0 and C2 ¼ 2f000 ðuÞ, Eq. (13) for �!
matches that in Ref. [21], including the coefficient. Yet,
unlike the existing theory, our Eqs. (11)–(14) apply just as
well for arbitrary C1 and C2, in which case f0ðvÞ may not
be smooth while FðJÞ is.
Beam nonlinearities.—Suppose now that, in addition to

a smooth distribution F ðJÞ, near the resonance there is a
phase-space clump or a hole, further termed uniformly as a
beam with FbðJÞ _ 0 and some average spatial density
nb _ 0; namely, FðJÞ ¼ F ðJÞ þ FbðJÞ. For example,
take FbðJÞ ¼ ðnb=n0Þ�ðJÞ, where n0 is the bulk density
that enters here due to normalization. Since Gð0Þ ¼ �1,
Eq. (6) yields then, with !2

b ¼ 4�nbe
2=m,

!2 ¼ !2
L � 2!2

b=a (15)

[here nonlinearities due to F are neglected, and !2 ¼
!2

Lð!; kÞ corresponds to the linear equation], or, more
specifically, �ð!; kÞ þ 2!2

b=ða!2Þ ¼ 0. These equations

agree with the known NDR for modes with deeply trapped
particles [24,25] and lead to �! ¼ Oða�1Þ, such that
�!< 0 for a clump and �!> 0 for a hole.
Now let nb itself depend on the wave amplitude. For

example, a Van Kampen mode would have 2!2
b=ða!2

LÞ �
� of order 1 [26]; in this case, by adjusting a, any! can be
produced for a given k, in agreement with the linear theory
[17,27]. Also, consider the case when Fb is constant across
the trapping width: FbðJÞ ¼ Fb�ðJÞ�ðJ� � JÞ, with �
being the Heaviside step function. Then nb is proportional
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to the separatrix action J� [i.e., nb ¼ Oða1=2Þ], and one
gets

!2 ¼ !2
L � ½8=ð3�Þ�a�1=2!2

pĴFb; (16)

since �ðj�Þ ¼ 4=ð3�Þ. Equation (16) also matches the
result found previously, e.g., in Ref. [28].

Finally, consider dissipation-driven effects in collisional
plasmas. Since ! changes rapidly with small a in the
presence of a phase-space clump or a hole, slow decay of
a will cause frequency down-shifting or up-shifting, cor-
respondingly. Yet, since the power index � in the scaling
�! / a�� depends on how localized FbðJÞ is, another
effect is anticipated, namely, as follows. Notice that a
friction drag (say, proportional to the particle velocity)
can cause condensation of the trapped distribution near
the bottom of the wave potential trough [29]. Hence,
peaking of FðJÞ can occur, and � can increase gradually
up to unity. This represents a frequency sweeping mecha-
nism additional to those considered in Refs. [30].

Conclusions.—In summary, we show here that knowing
the appropriate single-particle OC Hamiltonian is suffi-
cient to derive the fully nonlinear dispersion of a stationary
wave in collisionless plasma without solving Vlasov’s or
Maxwell’s equations. We illustrate how our theory reduces
to results previously known from separate contexts, recov-
ering them within a single NDR. In particular, for longitu-
dinal electron oscillations in nonmagnetized plasma,
various types of kinetic nonlinearities are derived, includ-
ing a new logarithmic nonlinearity, simply by substituting
appropriate distributions FðJÞ into Eq. (6). Also, the linear
dielectric function is generalized, and the friction drag on
trapped particles is predicted to affect the wave frequency
sweeping in collisional plasmas.
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