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The Langevin equations describing the average collisional dynamics of suprathermal particles in

nonstationary plasma remarkably admit an exact analytical solution in the case of recombining

plasma. The current density produced by arbitrary particle fluxes is derived including the influence

of charge recombination. Since recombination has the effect of lowering the charge density of the

plasma, thus reducing the charged particle collisional frequencies, the evolution of the current

density can be modified substantially compared to plasma with fixed charge density. The current

drive efficiency is derived and optimized for discrete and continuous pulses of current, leading to

the discovery of a nonzero “residual” current density that persists indefinitely under certain

conditions, a feature not present in stationary plasmas. VC 2011 American Institute of Physics.

[doi:10.1063/1.3646745]

I. INTRODUCTION

The theory of wave-induced current drive in stationary

plasmas is well-developed.1 Among the various methods

considered in the literature, much attention has been given to

the creation of plasma current via resonant interactions

between waves and fast particles.2,3 Many techniques have

been pursued to describe the fundamental dynamics of supra-

thermal, current-carrying particles in stationary plasma,

including analytical treatments of the Fokker-Planck equa-

tions in the high-velocity limit2–6 and numerical solutions of

the Fokker-Planck equations.7–10 Such work has almost

always focused on describing current drive performance in

the steady state, since the primary thrust of the research has

been to support and expedite the development of a steady-

state magnetic confinement fusion reactor.

Recently, however, a number of studies11–15 of wave-

particle interactions in nonstationary plasmas has revealed

previously unexplored phenomenology and potentially

useful mechanisms. Such phenomena are intrinsically non-

steady-state, and hence require a modification of the meth-

ods typically used to analyze and describe the physics in

stationary systems. In particular, Refs. 11–15 focus pri-

marily on non-steady-state effects associated with expand-

ing or compressing plasma. When a wave is embedded in

such a nonstationary plasma and is undamped initially,

modification of the bulk plasma parameters through the

nonstationary processes changes the wave dynamics and

can lead to an induced wave-particle resonance with the

fast-particles on the tail of the bulk plasma velocity distri-

bution.12 If this interaction leads to an anisotropic distor-

tion of the electron distribution function, an electric

current can result, potentially producing useful magnetic

energy. However, the evolution of this current through

collisional relaxation also depends on the time-varying

plasma parameters, and a complete analysis of the plasma

current response requires an accurate description of these

collisional dynamics.

What sets apart the physics addressed in Refs. 11–14

from the work done on current drive schemes in other time-

varying conditions, e.g., during plasma current ramp-up in

tokamaks, where the current and magnetic field are time-

varying,16–21 is the direct influence of the time-variation on

wave-particle processes in the plasma. Time variation in nei-

ther the application of rf power nor changes in the current or

poloidal magnetic field alters the underlying wave dynamics

or the particle collisionality. In contrast, the cooling, heating,

and densification associated with, for example, expanding,

compressing, and recombining plasmas, can change the

wave amplitude due to plasmon conservation11,12 or plasmon

destruction,22 change the wave phase velocity, and substan-

tially alter the particle collisionality.

Thus, the objective here is to account for time-

dependence in the bulk plasma parameters that, in particular,

complicate the description of the collisional relaxation of

fast-particles. For simplicity, the case of plasma undergoing

charged-particle recombination is addressed, which remark-

ably admits an exact analytical description of the fast-

particle average dynamics. Optimizations to maximize cur-

rent drive performance are sought for both discrete impulses

and continuous wave-particle resonances. One particularly

interesting result is that certain regimes exist in which

the plasma current saturates at a nonzero value time-

asymptotically, a feature not present in stationary plasma.

Section II describes the physical picture and introduces

the Langevin equations describing fast-particle collisional dy-

namics, modified for the case of a temporally evolving bulk

plasma. In Sec. III, a generalized fast-particle current-drive

equation is derived that accounts for any number of time- and

velocity-space-dependent particle fluxes, and the self-

consistent inductive response of the plasma is considered. In

Sec. IV, the plasma recombination model is introduced and

the plasma current response is optimized for the case of

discrete impulses, resulting in the discovery of a residual,

time-asymptotic current density. Section V examines the re-

alistic model of an embedded Langmuir wave undergoing a
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time-varying resonance in a recombining plasma. Section VI

describes some limitations of the model. Finally, Sec. VII

summarizes the main results. Certain details of the calcula-

tions are relegated to the appendices.

II. FAST PARTICLE DYNAMICS IN NONSTATIONARY
PLASMA

Consider the case of wave-induced electrical currents in

the presence of plasma recombination, where the current-

carrying electrons are suprathermal. A conceptual picture

explaining how these electrons can be produced is provided in

Fig. 1. Figure 1(a) shows a toroidal plasma permeated by a

traveling wave propagating toroidally within the plasma. Ini-

tially, the wave phase velocity vph ¼ x=k � vT , where vT is

the electron thermal velocity, x is the wave frequency, and k
is the wavenumber. Assume, for example, that the traveling

wave is a Langmuir wave, which implies x� n1=2, where n is

the electron number density. As the plasma undergoes recom-

bination, x tends to decrease, while k stays the same, causing

vph to decrease accordingly.11 However, vT is not affected by

the recombination, and thus after some time, vph becomes

comparable to a few times vT and collisionlessly damps on the

resonant tail particles (cf. Fig. 1(b)).12 An anisotropic fast par-

ticle distribution is produced subsequently, which results in a

net electric current after some degree of collisional relaxation.

In a recombining plasma, not only does a wave change

its phase velocity, but there is also plasmon destruction, i.e.,

nonresonant collisionless damping of the wave.22 This can

lead to production of electric current in the bulk plasma at

the expense of the wave amplitude, but that is likely to be

damped quickly compared to the current carried by supra-

thermal electrons. Therefore, we shall consider only the reso-

nant, fast-particle contribution to the current. However, this

topic will be revisited in Sec. V, which addresses plasmon

destruction in the case of a continuously time-varying wave-

particle resonance.

Following Ref. 2, the dynamical effects of the Boltz-

mann equation, written in the strict high-velocity limit (i.e.,

neglecting energy diffusion), and which describes the colli-

sional relaxation of suprathermal electrons in magnetized

plasma, can be expressed equivalently in a set of Langevin

equations:23,24

dv

dt
¼ � C

v3

� �
v; (1)

dl
dt
¼ BðtÞ; (2)

where v¼ jvj, l¼ vjj=v, C¼ 4pne4 ln K=m2, n is the charged

particle number density, e is the elementary charge, ln K is

the Coulomb logarithm, and B(t) is a stochastic term respon-

sible for pitch-angle scattering that is described statistically

by the following properties:

BðtÞh i ¼ � C
v3

� �
ð1þ ZÞl; (3)

BðtÞBðt0Þh i ¼ C
v3

� �
ð1þ ZÞð1� l2Þdðt� t0Þ; (4)

where Z is the charge state of the plasma ions, assuming

there is only one ion species present. The brackets h…i rep-

resent a statistical ensemble average, or expectation value, of

the enclosed quantity. It is assumed that collisions with neu-

tral particles are negligible in the regimes and time frames

considered. (This would happen, for example, if following

recombination the resulting neutral particles simply exit the

device.) Note that for a plasma with fixed charge carrier

density, C is a constant; however, in a recombining plasma,

the dependence of C on the number density means that it

can become time-dependent, i.e., C¼C(t), where the

time-dependence is assumed to be prescribed. In any case, it

FIG. 1. (Color online) Conceptual picture of current drive in recombining

plasma. (a) A toroidal plasma contains a fast traveling wave encircling the

plasma toroidally. (b) Plasma recombination causes the wave phase velocity

to slow down until it eventually intersects and resonates with the tail of the

electron distribution, producing an asymmetric tail distribution and a corre-

sponding electric current. The arrows indicate the temporal evolution of the

wave phase velocity (dotted lines) and the electron distribution function

(solid lines).
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can be seen that Eq. (1) is nonstochastic, meaning v¼hvi,
while the ensemble average of Eq. (2) yields

d lh i
dt
¼ � C

v3

� �
ð1þ ZÞ lh i: (5)

At this point, the notation will be simplified by eliminating

the brackets around hli ! l in the analysis that follows; the

expectation values will be the implied dynamical quantities

of interest. Combining Eqs. (1) and (5) then gives the

following exactly integrable equation relating v and l

dðln lÞ
dt

¼ ð1þ ZÞ dðln vÞ
dt

; (6)

which then leads to the relation

l
li

¼ v

vi

� �1þZ

; (7)

where the subscript “i” henceforth refers to an initial condi-

tion. In time-explicit form, the solution to Eq. (1), obtained

by direct integration, is

v

vi
¼ 1� 1

tst

ðt

ti

~Cðt0Þ dt0
� �1=3

Hðtd � tÞ � ~vðt; tiÞ; (8)

where tst ¼ v3
i =3Ci, ~C ¼ C=Ci, and

GðtdÞ ¼ GðtiÞ þ tst; (9)

with G(t) the antiderivative of ~CðtÞ with respect to t. Noting

that td is the time at which ~v! 0, the Heaviside step func-

tion, H, in Eq. (8) states explicitly that for t> td, the velocity

~v ¼ 0. Without this step function, the solution ~v would

become negative for t> td, which is unphysical, since ~v is

defined as a magnitude. By setting ~C ¼ 1, which represents

the case of a stationary plasma, Eq. (9) yields td¼ tiþ tst. In

other words, in the high velocity limit, tst is the time needed

after the initial impulse for a particle to thermalize, i.e., to

pass to the v! 0 limit.

Equation (7) then gives the results l ¼ li ~v1þZ and

hvki ¼ lv ¼ livi ~v2þZ. Similarly, the particle kinetic energy

E ¼ mv2=2 ¼ Ei ~v2. The exact determination of these

ensemble-averaged quantities allows for the calculation of

specific physical quantities of interest comprised of various

combinations of v and l. Note that Eq. (7) is exactly the

same in steady-state plasmas,2 except that l and v have

different time histories.

III. CURRENT-DRIVE IN NONSTATIONARY PLASMA

The time-evolution of the expectation value of the

current carried by a single electron, hqvjji ¼ ql(t)v(t), can be

calculated from the general solution of the Langevin equa-

tions, Eq. (8).1 This result then can be used to determine the

total plasma current induced by wave-particle interactions in

a recombining plasma. Following Ref. 1, the notation is

adopted such that vk¼ vk(t,v), where v is the initial velocity

of the electron at time t¼ 0. Henceforth, l and v will,

therefore, refer to the initial quantities li and vi, whose evo-

lution is then described by applying the appropriate factor of

~v (cf. Eq. (8) and subsequent discussion).

Suppose the energy DE is expended to push an electron

from velocity v to vþD through some particular wave-

particle resonance, with

DE ¼ m v � Dþ 1

2
jDj2

� �
: (10)

The ensemble-averaged electric current difference at time t
resulting from such a push at time t0 is given by

Djðt; t0; v;DÞ ¼ q vkðt; t0; vþ DÞ � vkðt; t0; vÞ
� �

; (11)

where it is assumed the electron began with an identically

counterpropagating, nonresonant “partner” electron that does

not receive the impulse. The rate of pushing a density of

electrons in this way is given by P=DE, where P is the power

density expended in the resonant interaction. Thus, in a sta-

tionary plasma with a single stationary wave resonance, the

total current density is given by

JðtÞ ¼
ðt

0

dt0
Pðt0Þ
DE Djðt; t0; v;DÞ: (12)

Extending Eq. (12) to allow for multiple discrete

resonances, or even a continuum of resonances, becomes im-

portant when considering nonstationary plasma, since wave-

particle resonance conditions can change dynamically as the

bulk plasma changes.12 To capture this behavior, first define

the quantity P(t0,v), which has units of power density per

velocity volume and represents the power density expended

pushing particles in an infinitesimal volume of velocity space

neighboring v at time t0. Then, the generalization of Eq. (12)

including any number of resonances is

JðtÞ ¼
ðt

0

dt0
ð

d3v
Pðt0; vÞ
DEðt0; vÞDjðt; t0; v;Dðt0; vÞÞ: (13)

The quantity D(t0,v), and hence also DEðt0; vÞ through

Eq. (10), now exhibits both time- and velocity-space depend-

ence, allowing for the inclusion of non-steady-state effects

associated with embedded waves as suggested above. In the

limit of infinitesimal incremental velocity-space displace-

ments, i.e., D(t0,v)! 0, Eq. (13) can be rewritten

JðtÞ ¼
ðt

0

dt0
ð

d3vPðt0; vÞ
Swðt0; vÞ �

@

@v
qvkðt; t0; vÞ
� �

Swðt0; vÞ �
@

@v
EðvÞ

�
ðt

0

dt0
ð

d3vPðt0; vÞKðt; t0; vÞ; (14)

where the vector Sw, the wave-induced flux, is potentially

time- and velocity-space dependent and points in the direction

of velocity-space displacement of particles. Equation (14)

corresponds to Eq. (1) of reference Ref. 8.

For a pure parallel push, i.e., Sw � îk, the kernel K of

Eq. (14) can be calculated in a straightforward manner and is

given by (cf. Eqs. (7) and (8))
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Kk ¼
q

m

~v2þZ þ ð2þ ZÞl2ð1� ~v3Þ~v�1þZ

lv
: (15)

In full analogy with Eq. (5) of Ref. 2, the first term in the nu-

merator of the kernel is associated with the parallel momen-

tum transfer from the wave to the particles, while the second

term is associated with the energy transfer to the particles.

To see this, a similar expression for K can be calculated for a

pure perpendicular wave impulse, i.e., Sw � î?:

K? ¼
q

m

ð2þ ZÞl2ð1� ~v3Þ~v�1þZ

lv
; (16)

which is identical to Eq. (15) except for the absence of the

leading term in the numerator, since a perpendicular impulse

involves no direct input of parallel momentum.

This formalism was first employed to determine steady-

state current drive efficiencies in stationary plasmas.1 In gen-

eral, dynamic evolution of the plasma current density, Jtot(t),
in nonstationary systems results in an inductively driven

electric field and an associated Ohmic counter-current, JOhm,

opposing the wave-driven current. This paper shall focus pri-

marily on the dynamics of the wave-induced fast-particle

current, Jrf; for a discussion of the impact of the Ohmic

counter-current, refer to Appendix A.

IV. IMPULSE RESPONSE IN RECOMBINING PLASMA

The formulation of the current drive problem above

allows for the distinctive behavior of a recombining plasma

(compared to a plasma with fixed n) to be characterized com-

pletely by solving ~vðt; t0Þ, which, according to Eq. (8), is sim-

ply the time evolution of the magnitude of the fast-electron

velocity. Suppose the electron-ion recombination rate, �R, is

proportional to the product of the number density of each

charge-carrier species, which in general leads to an exponen-

tial recombination rate and a scaling of the collision parame-

ter C(t) that goes like CðtÞ ¼ Cie
��Rt, with �R> 0. For this

exponential recombination profile, Eq. (8) gives

~vðt; t0Þ ¼ 1þ 1

�Rtst

e��Rt � e��Rt0
� �� 	1=3

Hðtd � tÞ: (17)

Note that at t¼ t0, i.e., at the time of the initial impulse,

~v ¼ 1. Then, according to Eqs. (14) and (15), a d-function

parallel impulse, i.e., P � d (t0 � ti)d
3(v� vi) and Sw � îk,

results in an immediate finite current density at the time of

the impulse, which is due to the sudden increase of the paral-

lel momentum of the resonant particles due to the wave.

However, a similar kick in the perpendicular direction results

in no immediate current, since K\¼ 0 when ~v ¼ 1, cf.

Eq. (16).

One of the most interesting features of the current in an

exponentially recombining plasma turns out to be that, in

some scenarios, there exists a “residual” current, i.e., one

that persists as t!1. Following the initial impulse, ~v tends

to decrease toward zero as the velocity of the electron damps

away. However, because the plasma density is decreasing

with time due to recombination, the collision frequency

decreases accordingly, and certain conditions will lead to a

nonzero time-asymptotic value for ~v, and hence, a time-

asymptotic current (when no other damping mechanisms,

such as collisions with neutrals, are considered). Specifically,

as t!1, a residual current will persist under the condition

1� 1

�Rtst

e��Rt0 � ~v3
1 > 0; (18)

where ~v1 is the saturated value of ~v as t ! 1; otherwise,

the time required for a fast-particle to thermalize and for the

associated current to decay is given by

td ¼ t0 � ð1=�RÞ lnð1� �Rtste
�Rt0 Þ; (19)

which correctly approaches td¼ t0 þ tst in the limit as �R! 0

(cf. Eq. (9)). The persistence of a nonzero electric current

time-asymptotically is unique to the recombining plasma, for

a current carried by fast-particles will typically decay to zero

in a stationary plasma of fixed density in the absence of a dc

electric field.

With the electron average dynamics solved, it is mathe-

matically straightforward to deal first with discrete impulses,

where P ¼
P

i widðt0 � tiÞd3ðv� viÞ, and the wi are the

energy densities deposited with each discrete impulse. For

example, it might be desirable to maximize the time-

averaged current density for a single impulse, defined as hJiT
� ð1=TÞ

Ð T
0

JðtÞ dt. For a Z¼ 1 plasma, the current density

resulting from a single parallel impulse, P¼w1d(t0 � t1)

d3(v� v1), made dimensionless by the normalization
~J1 ¼ ðmv1=qw1ÞJ1, is given by

~J1 ¼
~v3 þ 3l2ð1� ~v3Þ

l

� 	
1

Hðtd1 � tÞ: (20)

Since ~J contains the quantity J=w, it can be seen as an

“efficiency” stating how effectively wave energy is con-

verted to current density.

Setting T¼ td1, we find from Eq. (20) that

h~Jitd ¼
1

l
3l2 þ ð1� 3l2Þ td � t1

td

� �
~v3
1 þ

1

�Rtd

� �� 	
; (21)

where the subscript “1” has been dropped to save space. When

the condition in Eq. (18) is satisfied and the current saturates

time-asymptotically, i.e., td!1, Eq. (21) simplifies to

h~Ji1 ¼
1

l
3l2 þ ð1� 3l2Þ~v3

1

 �

: (22)

This expression diverges as l! 0, indicating there is a sub-

stantial benefit to pushing high-pitch-angle electrons in

the parallel direction, which is similar to the result in the

steady-state case.25 However, there also exists a minimum

efficiency with respect to variation in l, when l
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~v3
1=3ð1� ~v3

1Þ
p

� lmin. If 0< lmin< 1, the impulse effi-

ciency increases monotonically for values of l> lmin, maxi-

mizing locally at l¼ 1. On the other hand, if lmin> 1, or

equivalently, if ~v3
1 > 3=4, then the impulse efficiency

decreases monotonically across the domain l: (0,1), with an
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absolute minimum at l¼ 1. The same optimization analysis

applies to the impulse efficiency when the time-asymptotic

current goes to zero; comparing Eqs. (21) and (22), it is

apparent that one need only make the replacement

~v3
1 !

td � t1

td

� �
~v3
1 þ

1

�Rtd

� �

in the equality defining lmin.

A similar analysis for a pure perpendicular d-function

impulse yields

h~Jitd ¼ 3l 1� td � t1

td

� �
~v3
1 �

1

�Rtd

� �
(23)

and

h~Ji1 ¼ 3l 1� ~v3
1


 �
: (24)

Both Eqs. (23) and (24) are well-behaved at l¼ 0, and

they are maximized at l¼ 1 for fixed v. Thus, it holds quali-

tatively that the highest impulse efficiencies for perpendicu-

lar pushing occur when l � 1, while the highest impulse

efficiencies for parallel impulses occur when l � 0. This is a

reasonable result, considering that, in both cases, v�D¼ 0 in

Eq. (10), implying a minimization of energy input per parti-

cle, while v can still be large, meaning the particles being

pushed can already have intrinsically lower collision rates

than thermal particles.

V. DYNAMICS OF AN EMBEDDED LANGMUIR WAVE

Consider now a power deposition profile that captures

the effect of a pure wave mode damping collisionlessly on

high-velocity particles

Pðt0; vÞ ¼ Pðt0Þd3 v� vrðt0Þð Þ: (25)

The region of wave-particle resonance is highly local-

ized in velocity space at any given moment, a consequence

of the presumed narrow bandwidth of the interacting wave,

and it also shifts continuously with time as the plasma den-

sity changes. At time t¼ t0, the wave deposits power density

P(t0) into the particles in the infinitesimal neighborhood sur-

rounding the resonant velocity vr(t
0) in velocity space. For

an embedded wave with finite initial energy density,Ð1
0

Pðt0Þ dt0 must also be finite.

For example, consider the effect of an embedded

Langmuir wave driving electrons in the parallel direction

due to Landau resonance,26 which can be described using

the kernel Kjj (cf. Eq. (15)). To simplify the problem,

take l¼ 1, which is a reasonable approximation when

driving particles with high parallel velocities, and it

reduces the problem to one effective velocity-space

dimension. Additionally, take Z¼ 1. The phase velocity of

a Langmuir wave changes proportionally to the square

root of the plasma density, so the resonant velocity

jvrj � vr ¼ v exp � vR

2
t0


 �
, where v is the initial wave phase

velocity. Then, plugging Eq. (25) into Eq. (14), and

including a Heaviside step function H(td(t0)� t) in the

kernel K (cf. Eq. (20) and subsequent discussion), the

result is

JðtÞ ¼ q

m

ðt

0

dt0Pðt0Þ 3� 2~v3ðt; t0Þ
vrðt0Þ

H tdðt0Þ � tð Þ

¼ q

m

1

v

ðt

0

dt0Pðt0Þ
h
e
�Rt0

2 þ 2

�Rtst

� e�Rt0
�

�e��Rte2�Rt0
�i

H tdðt0Þ � tð Þ; (26)

where tst¼ v3=3Ci, as usual. It must be emphasized that the

purpose of the step function H is to exclude unphysical con-

tributions to the integral occurring where ~vðt; t0Þ takes on

negative values in the kernel K, or equivalently, where t
exceeds the damping time for current driven at time t0, given

by td(t0). The definition of td(t0) is restated as follows:

tdðt0Þ ¼ t0 � ð1=�RÞ lnð1� �RTste
�Rt0 Þ;

where now the function Tst is the analog of the stationary

plasma thermalization time tst in the case where the resonant

velocity vr(t
0) is shifting with time, or for the Langmuir

waves considered in this example,

Tst ¼
v3

r ðt0Þ
3Ci

¼ tste
�3�Rt0

2 : (27)

Then, we have

tdðt0Þ ¼ t0 � 1

�R
ln 1� �Rtste

��Rt0
2

� �
: (28)

Equation (28) illustrates the complexity involved in correctly

assessing the long-time behavior of the current, and three

unique regimes exist in which the integral in Eq. (26) must

be calculated differently. The proper method for handling

the step function in calculating the integral is addressed in

Appendix B.

The most general solution of Eq. (26) would describe

the plasma response to an arbitrary complex Fourier mode in

the place of P(t0)

Pðt0Þ ¼ Pd < ei xt0þgð Þ�ct0
h i

¼ Pd e�ct0 cos xt0 þ gð Þ; (29)

with Pd, x, g, and c all real constants, and c is presumed pos-

itive so that
Ð1

0
Pðt0Þ dt0 remains finite. Then, the response to

any smooth, continuous power deposition profile could be

calculated by integrating (or summing) over the response

functions corresponding to the appropriate Fourier modes

comprising P(t0). However, due to the complexity of the

result and its limited usefulness in the discussion that fol-

lows, the general solution can be found in Appendix C.

A more illuminating example makes the following sim-

plification: take x¼ 0 and g¼ 0 in Eq. (29). Then, the total
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wave energy density deposited into particles is given by

W ¼
Ð1

0
Pðt0Þ dt0 ¼ Pd=c. This non-oscillating, decaying ex-

ponential, P(t0)¼Pde�ct0, approximates the resonant linear

wave power deposition profile in a recombining plasma, as

will be explained below.

Suppose a linear wave resonant with the suprathermal

tail of a Maxwellian distribution undergoes exponential col-

lisionless damping at the effective rate cL.26 Although a

time-varying resonance could result in a change in cL as the

wave samples different parts of the tail of the distribution, it

will be assumed here that Landau damping is characterized

by an average, constant timescale. Furthermore, the wave

also undergoes collisional damping at some effective rate

�c,
27 which is also assumed to be constant. Since the plasma

is undergoing a reduction in the characteristic collision rates

due to recombination, the assumption �c¼ const will result

in an overestimate of the amount of collisional wave damp-

ing that occurs when the recombination rate is appreciable.

Thus, the calculation of the residual current that follows will

represent a lower bound. Since the wave energy density Uw

is proportional to the square of the field amplitude,12 we

have dUw��2(cL þ �c)Uwdt.
Additionally, from Ref. 22, recombination results in the

conservation of the invariant Uw=x, so dUw�Uw(dx=x).

Since x � xp ! n1=2, one finds dUw��(�R=2)Uwdt. Com-

bining the effects of Landau damping, collisional damping,

and recombination leads to

dUw

dt
¼ � 2ðcL þ �cÞ þ

�R

2

� �
Uw; (30)

which implies c¼ 2(cLþ �c)þ �R=2. On the other hand, only

the wave energy lost to Landau damping is deposited reso-

nantly onto suprathermal particles, so P(t
0
)¼ 2cLUw(t0)

implies Pd¼ 2cLUw(0), and thus,

W ¼ 2cL

2ðcL þ �cÞ þ �R=2
Uwð0Þ

¼ 1

1þ 1

4

2�c þ �R

cL

Uwð0Þ

� eUwð0Þ:

(31)

Hence, e represents the efficiency with which the wave

energy density is channeled resonantly into suprathermal

electrons compared to the energy lost to bulk electrons

through nonresonant processes.

With the assumption x¼ 0 and g¼ 0 in Eq. (29), the

expression for the total dimensionless current density ~J,

which is normalized according to ~J ¼ ðmv=qUwð0ÞÞJ, is

found to be

~J ¼ �h t;�ecð Þ

þ 2e
�Rtst

1

1� 2e
h t; c 1� 2eð Þð Þ � e��Rt

3� 4e
h t; c 3� 4eð Þð Þ

� 	
;

(32)

where

h t; Xð Þ ¼ eXt þ eXtlðtÞH t�td;minð Þ � eXtuðtÞH t�td;minð Þ � 1: (33)

The Heaviside step functions in the two middle terms in

Eq. (33) cause the terms to cancel when t< td,min, allowing

for a complete solution to be expressed in a single expression

for all t: [0,1]. For a description of the notation used in

Eq. (33), please refer to Appendix B.

For comparison, a similar expression for the total

dimensionless current density for a stationary plasma, ~Jst,

subject to the same exponential power deposition profile,

P(t0)¼Pde�ct0, can also be obtained from Eq. (26). In this

case, �R¼ 0, e¼ 1, ~v3ðt; t0Þ ¼ 1� ðt� t0Þ=tst (cf. Eq. (8)),

and the damping time td(t0)¼ t0 þ tst (cf. Eq. (19)), leading to

the solution

~Jst¼
1�e�ctð Þþ 2

ctst

e�ctþ ct�1ð Þ; t	 tst

e�ct ectst �1ð Þþ 2

ctst

e�ctþ ctst�1ð Þe�cðt�tstÞ
h i

; t> tst

8><
>: ;

(34)

From Eq. (34), one observes that in the limit t!1, the cur-

rent density in a stationary plasma always decays to zero de-

spite the fact that no wave energy is lost due to

recombinational plasmon destruction. However, in a recom-

bining plasma, there exists an interval of time, t: [0,t1],

when the condition in Eq. (18) is satisfied, and any current

driven during this interval saturates at some finite value (cf.

Eq. (B1) in Appendix B for the definition of t1). In fact, this

residual current can be extracted from Eq. (32) in the limit

t!1:

lim
t!1

~J¼1� �Rtstð Þ
e

e�1 þ 1

�Rtst

2e
1�2e

�Rtstð Þ
1�2e
1�e � 1

� �

� ~J1; (35)

where the condition t1> 0 implies �Rtst> 1 for this solution

to be valid, as outlined in Appendix B. To arrive at this

expression, note that as t!1, tl! t1 and tu!1 (cf.

Fig. 3(a) in Appendix B).

Figure 2 shows ~J1 plotted over the intervals e: [0, 1] and

�Rtst: [1, 10]. One observes the threshold of the onset of

FIG. 2. (Color online) Plot of the time asymptotic normalized current den-

sity, ~J1 (cf. Eq. (35)), vs. e and �Rtst.

102102-6 P. F. Schmit and N. J. Fisch Phys. Plasmas 18, 102102 (2011)

Downloaded 17 Oct 2011 to 198.35.3.38. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



nonzero ~J1, when �Rtst¼ 1. Additionally, as e! 0, signifying

very fast recombination compared to the collisionless damping

rate (�R � cL, cf. Eq. (31)), enhanced plasmon destruction

also eliminates the residual current. From Fig. 2, it is apparent

that a regime exists in which ~J1 is maximized. This regime

calls for e to be very close to its maximum value of 1, signify-

ing a relatively strong collisionless damping rate compared to

the collsional and recombination rates. On the other hand, val-

ues of �Rtst close to its minimum value of 1 are also ideal,

implying that the recombination rate is comparable to the ini-

tial fast particle thermalization rate. In other words, driving

maximum residual current requires �L � �c � �R � ðtstÞ�1
.

This optimal regime is somewhat remarkable, considering the

ideal value of �Rtst is very close to the region in which ~J1 dis-

appears altogether; indeed, as e, �Rtst! 1, @ ~J1=@ð�RtstÞ
becomes infinitely steep. The maximum value of ~J1 is found

by taking the limit as both parameters go to 1:

lim
e;�Rtst!1

~J1 ¼ 3: (36)

Considering values of �Rtst> 1, it is interesting to note that

the maximum residual current for a particular value of �Rtst

is not produced simply by maximizing the resonant power

deposition efficiency e; indeed, the maximum residual cur-

rent requires intermediate values of e< 1. In other words, it

turns out to be better to sacrifice some wave energy to plas-

mon destruction due to recombination such that the fast par-

ticles produced by the remaining wave energy experience

slower damping as the collision frequency is dynamically

reduced. It is also worth pointing out that the apparent singu-

larity at e¼ 1=2 in Eq. (35) is removable, as is evidenced by

the smooth, continuous behavior of ~J1 across the line

e¼ 1=2 in Fig. 2.

VI. DISCUSSION

The existence of a time-asymptotic current in Eq. (35)

deserves further inspection. After a lapse of time of approxi-

mately ��1
R , the neutral particle density nn produced through

recombination is expected to be comparable to ne, and colli-

sions between electrons and neutral particles could become

significant if neutrals are permitted to remain within the

system. The model assumes that the collision frequency of

electrons with other charged particles, �e, is greater than the

electron-neutral collision frequency, �n. The ratio of these

two quantities can be expressed approximately as

�e

�n

� 8� 102 ne

nn

ln K
T2

e

; (37)

with Te the electron temperature (expressed in eV). Here, the

electron-neutral collision frequency is estimated as

�n � nnðpa2
0Þ�T , with vT the electron thermal velocity and a0

the Bohr radius.28 Since ln K � Oð10Þ, it is apparent that

electron-neutral collisions in substantially recombined

plasma, i.e., ne� nn, become important for electron tempera-

tures above approximately 100 eV if all neutrals are retained

within the system. Note that there is some reduction in the

scattering cross section of electrons from neutrals at higher

velocities, which will attenuate electron-neutral collisions to

some extent as this approximate threshold is reached, since

the current-carrying electrons are suprathermal.

In the event that neutrals are lost from the system

quickly, as was originally presumed in Sec. II, then Eq. (35)

is in fact the correct time-asymptotic fast particle current.

For finite sg¼L=RSp, where L is the torus inductance and

RSp is the torus resistance, the total plasma current will

approach this value within time sg after Jrf has asymptoti-

cally approached its limiting value (cf. Appendix A). In the

high-L limit, with sg ! 1, the time-asymptotic picture is

more complicated. As the electron density falls off, the

remaining electrons will be Ohmically accelerated to higher

velocities to maintain the perfectly cancelling counter-

current. At sufficiently low electron density, it would no lon-

ger be appropriate to consider the plasma consisting of a

thermal “bulk” plasma and a small fast particle population,

but rather one consisting of two counterpropagating particle

beams, which would then result in instability.

Nevertheless, for large enough recombination rates, i.e.,

�Rtst> 1, charged-particle collisions are found to be insuffi-

cient to cause Jrf to disappear time-asymptotically. This anal-

ysis has critical implications for the alternate scenario in

which electric current is carried by plasma undergoing

expansion, which similarly results in a reduction of the

plasma density with time without necessarily increasing the

neutral density commensurately. In this case, there also

exists the potential for a robust time-asymptotic current den-

sity, which will be the subject of a future publication; how-

ever, the model of a recombining plasma studied here offers

great insight into the impact of densification on the dynamics

of charged particle collisions and plasma current evolution.

VII. SUMMARY

In this paper, fast-particle collisional dynamics and cur-

rent drive in nonstationary plasma has been calculated using

the Langevin formalism to model the Boltzmann equation in

the strict high-velocity limit. The particular model of a

recombining plasma was chosen as a case of fundamental

scientific interest and for its analytical tractability. Solutions

were derived for the Langevin equations containing time-

dependent parameters associated with plasma densification.

A general expression for the current density produced by ar-

bitrary time- and velocity-space-dependent particle fluxes

was also derived.

Since recombination has the effect of lowering the

charge density of the plasma, and, consequently, reducing

the charged particle collision frequencies, the temporal evo-

lution of the current density can be modified substantially

compared to the case of a plasma with fixed charge density.

Conditions for maximizing current drive efficiency for dis-

crete and continuous wave-particle resonances were found,

leading to the discovery of a nonzero time-asymptotic,

“residual” current density in recombining plasma, corre-

sponding to Eqs. (22) and (24) for discrete impulses and

Eq. (35) for an embedded Langmuir wave. Maximizing this

residual current turns out to require an optimal and unex-

pected compromise between wave energy loss due to

recombination-driven plasmon destruction and more efficient
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current drive efficiency as the collisionality of the plasma is

dynamically reduced.
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APPENDIX A: INDUCTIVE EFFECTS

Following Sec. V B in Ref. 1, the total plasma current

density Jtot obeys the equation

dJtot

dt
¼ � Jtot � Jrf

sg
; (A1)

where Jrf is the wave-driven fast particle current contribu-

tion, and Jtot¼ Jrfþ JOhm. Here, sg¼ L=RSp, where L is the

torus inductance and RSp is the torus resistance. The resulting

Ohmic electric field induced in the plasma is given by

E ¼ gJOhm; (A2)

where g � m�ei=nee
2 is the plasma resistivity, �ei is the

electron-ion collision frequency, and ne is the electron num-

ber density. Because L is determined by the geometry of the

torus and the plasma resistivity is only weakly dependent on

the charge-carrier density, it can be assumed that sg does not

change dramatically even after a substantial percentage of

charge-carriers have recombined.

The impact of this dc electric field on the particle trajec-

tories in the Langevin equations is minimal, so Jrf can be

treated as a prescribed term in Eq. (A1) once the wave-

driven current in the absence of any dc fields, Eq. (14), is

found. To see this, note that in the presence of a dc electric

field E, the system of Langevin equations, Eqs. (1) and (5), is

modified, becoming1

dv

dt
¼ � C

v3

� �
vþ qE

m

� �
l; (A3)

dl
dt
¼ � C

v3

� �
ð1þ ZÞlþ ðqE=mÞð1� l2Þ

v
: (A4)

The collisional terms on the right-hand-side (RHS) of

Eqs. (A3) and (A4) are generally much larger than the terms

involving E. For example, noting that C / �eiv
3
T , the ratio of

the first and second terms on the RHS of Eq. (A3) goes like

C=v2

eEl=m
� �eiv

3
Tm

eEv2l
� genev3

T

Ev2l
¼ 1

l
enevT

JOhm

v2
T

v2
� 1; (A5)

where Eq. (A2) was used along with the definition of the

plasma resistivity. The first factor in the expression to the

right of the equals sign in Eq. (A5), 1=l, is always greater

than 1. Since the current-carrying particles are suprathermal,

the last factor is typically of the magnitude 1=a2, where

a � Oð1Þ. However, the current density in the numerator of

the middle factor is enormous compared to the Ohmic cur-

rent density, since JOhm cannot be larger than Jrf� dnevT,

with dn
 ne. Thus, the product of the factors is large, and

the factor involving E in Eq. (A3) is negligible. A similar

conclusion can be deduced for Eq. (A4).

The general solution of Eq. (A1) is given by

JtotðtÞ ¼ Jtotð0Þe�
t

sg þ 1

sg

ðt

0

dt0e
�t�t0

sg Jrfðt0Þ: (A6)

While a closed form solution of Eq. (A6) is not easy to

obtain, there are limits where the result is simple. For exam-

ple, when sg ! 0, the inductive response of the plasma is

weak. Then, Eq. (A1) states Jtot � Jrf, and the inductive

counter-current disappears. Similarly, in the opposite limit,

sg !1, one has dJtot=dt � 0. So for a plasma starting with

zero current, Jrf is exactly cancelled by JOhm; however,

according to Eq. (A2), there still exists a dc electric field,

and thus, a loop voltage exists around the plasma.

APPENDIX B: THE STEP FUNCTION

Equation (28) illustrates the difficulty one encounters in

keeping track of the long-time behavior of the current, and

three unique regimes exist in which different intervals of the

domain of integration in Eq. (26) are excluded by the step

function, as will be explained below. The critical dimension-

less parameter in this particular problem is �Rtst, which com-

pares the initial stationary thermalization time to the density

e-folding time due to recombination.

Case 1, �Rtst> 1: The behavior of td(t0) is uniquely

determined by the magnitude of �Rtst. When �Rtst> 1, the

condition in Eq. (18) is satisfied for all current driven during

the times t0: [0,t1], with t1 given by

t1 ¼
2

�R
ln �Rtstð Þ: (B1)

This implies that td ! 1 and some time-asymptotic current

remains for any current driven during this time period, as

can be seen in Fig. 3(a), which depicts the main features of

td(t0) in this regime.

Equally important, for t0> t1, td is initially decreasing

and possesses an absolute minimum, designated as td,min, at

t0 ¼ tmin, with

tmin ¼
2

�R
ln

3

2
�Rtst

� �
(B2)

and

td;min ¼
2

�R
ln

3
ffiffiffi
3
p

2
�Rtst

� �
: (B3)

For all values of t0> tmin, td is monotonically increasing.

When the upper limit t of the integrand in Eq. (26) is

such that t> td,min, there exists an interval t0: (tl,tu),

marked by the double arrows in Fig. 3, for which
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td(t0)< t, and hence the current driven during these times

has damped away by time t. Within this interval, the

Heaviside step function H¼ 0, and thus, it is this interval

that is effectively removed from the domain of integra-

tion, so we have

ðt

0

dt0 !
ðtl

0

dt0 þ
ðt

tu

dt0
� �

:

One can find the limits tl,u by solving the equation

t¼ td(tl,u), which has two unique solutions for all t> td,min

when �Rtst> 1. Unfortunately, from Eq. (28), we see that this

equation is transcendental, and thus, tl,u must be found

numerically.

In summary, this regime is characterized both by a time-

asymptotic current density resulting from current driven dur-

ing the times t0: [0,t1], and also by the exclusion of the inter-

val t0: (tl,tu) from the domain of integration in Eq. (26) when

t> td,min, corresponding to unphysical contributions from the

kernel K when t> td(t0).
Case 2, 2=3 <�Rtst< 1: In this regime, shown in

Fig. 3(b), t1< 0, meaning that the condition in Eq. (18) is

no longer satisfied for any value of t0 in the domain of

integration of the integral in Eq. (26), and thus, no current

persists time-asymptotically. On the other hand, there is

still an absolute minimum td,min when t0 ¼ tmin, cf.

Eqs. (B2) and (B3). Note in Fig. 3(b) that within the inter-

val t: (td,min,td(0)), there still exists two unique positive

solutions to the equation t¼ td(tl,u), but for t> td(0), one

finds that the lower limit of the interval to be excluded

from the integral in Eq. (26) is simply tl¼ 0. One still

must solve for the upper limit tu(t) numerically, since

Eq. (28) is transcendental.

Case 3, �Rtst< 2=3: In this regime, depicted in Fig. 3(c),

both t1, tmin< 0 (cf. Eqs. (B1) and (B2)), meaning that, like

case 2, this regime exhibits no time-asymptotic current

density, and additionally, the absolute minimum of td(t0) is

simply td,min¼ td(0). Thus, when t> td(0), the interval t0:
[0,tu] is excluded from the domain of integration by the

Heaviside step function H(td(t0)� t).

APPENDIX C: CURRENT PRODUCED BY ARBITRARY
COMPLEX FOURIER MODE

The solution to the arbitrary complex Fourier mode

power deposition profile, Eq. (29), is presented. Plugging

Eq. (29) into Eq. (26), the indefinite integral, which will be

called J ðt0Þ, is found to be

J ðt0Þ ¼ q

m

Pd

v

�
gðt0; �R=2� c;x; gÞ þ 2

�Rtst

ðgðt0; �R � c;x; gÞ

� e��Rtgðt0; 2�R � c;x; gÞÞ
	
; (C1)

anywhere that H= 0, with

gðt0; X;x; gÞ ¼ eXt0 X cos xt0 þ gð Þ þ x sin xt0 þ gð Þ½ �
X2 þ x2

: (C2)

FIG. 3. Plots of the damping time td(t0) (solid) and related functions (dot-

ted), normalized to tst, are plotted vs. t0 for three unique cases defined by dif-

ferent values of �Rtst. Example values t for the upper limit of the integrand

in Eq. (26) are shown (dashed-dotted) for several cases where part of the do-

main of integration must be excluded to eliminate unphysical contributions

to the total current. The interval to be excluded from the domain for each

particular t is spanned by the associated double arrow coinciding with the

line td¼ t.
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The general solution can be stated as

JðtÞ ¼ J tð Þ � J 0ð Þ; t 	 td;min

J tð Þ � J tuðtÞð Þ½ � þ J tlðtÞð Þ � J 0ð Þ½ �; t > td;min;

�

(C3)

where tl(t) and tu(t) are the unique solutions to the equation

td(tl,u)¼ t, with tu> tl (cf. Eq. (28) and Appendix B). In gen-

eral, these two quantities must be obtained numerically. The

parameter td,min is given by Eq. (B3) in Appendix B.
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