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The effect of radiation friction is included in the Hamiltonian treatment of wave–particle interactions
with autoresonant phase-locking, yielding a generalized canonical approach to the problem of dissipative
dynamics near a nonlinear resonance. As an example, the negative-mass effect exhibited by a charged
particle in a pump wave and a static magnetic field is studied in the presence of the friction force due to
cyclotron radiation. Particles with negative parallel masses m‖ are shown to transfer their kinetic energy
to the pump wave, thus amplifying it. Counterintuitively, such particles also undergo stable dynamics,
decreasing their transverse energy monotonically due to cyclotron cooling, whereas some of those with
positive m‖ undergo cyclotron heating instead, extracting energy from the pump wave.
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1. Introduction

Wave–particle resonant interactions are conveniently ap-
proached within a Hamiltonian theory [1,2], which however ren-
ders it difficult to account for dissipative forces. In this respect,
of special interest are interactions that lie beyond the traditional
model of nonlinear resonance [3–5], particularly those where pon-
deromotive forces are essentially velocity-dependent [6]. An ex-
ample here is the particle motion in a homogeneous magnetic
field B0 and a co-propagating circularly-polarized electromagnetic
wave. Due to autoresonant phase-locking [4,7] at the cyclotron res-
onance, the wave and the magnetic field effectively modify the
inertia of the particle oscillation center (OC) with respect to low-
frequency (or static) forces applied along B0. Hence, the OC mass
m‖ along B0 may be seen as negative, thereby yielding what is
called the negative-mass effect, or NME [8–11].

Due to particle oscillations in a wave, dissipation is always asso-
ciated with ponderomotive interactions, particularly in the form of
the radiation friction, which can transfer energy from the particle
“internal” (e.g., cyclotron) motion to the outgoing waves [12,13].
Hence, it can influence possible practical applications [9] of the
NME and related effects, anticipated by analogy with other systems
where negative mass of charge carriers is realized [10]. There-
fore, a new formalism is necessary that would unite the existing
Hamiltonian theory of autoresonant effects like NME [10] with the
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description of essentially non-Hamiltonian forces like the radiation
friction.

The purpose of this Letter is, thus, twofold. First, we propose
how dissipative perturbations can be included in the canonical for-
malism for a broad class of Hamiltonian systems similar to those
yielding the NME, and also how the unperturbed phase space
structure determines the effect of weak friction on the particle av-
erage dynamics at autoresonance. In application to wave–particle
interactions, this theory, albeit quasi-Hamiltonian, allows one to
describe slow dissipative dynamics of both the wave and the par-
ticles; hence, scenarios are found in which the wave is amplified
or particles gain energy despite the fact that the system total en-
ergy decays. Second, we reconsider the NME, as produced by the
charged particle interaction with a pump wave in a static mag-
netic field, and study how this particular effect is altered by the
presence of the radiation friction. We show that particles with
negative parallel masses m‖ transfer their kinetic energy to the
pump wave, thus amplifying it. (An analogy here is how negative-
energy waves are amplified in the presence of dissipation; see, e.g.,
Refs. [14,15].) Counterintuitively, such particles also undergo stable
dynamics, decreasing their transverse energy monotonically due to
cyclotron cooling, whereas some of those with positive m‖ undergo
cyclotron heating instead, extracting energy from the pump wave.

The Letter is organized as follows. In Section 2, we describe
the general formalism showing how the effect of weak dissipation
can be understood by studying the unperturbed phase space of a
Hamiltonian system; we also explain how this formalism predicts
the direction of the energy flow in dissipative wave–particle inter-
actions. In Section 3, we study the effect of radiation friction on
the particle dynamics driven by a pump wave in a static magnetic
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field and, particularly, how the NME persists through the friction
and how the trajectories of particles with positive m‖ can become
unstable.

2. General formalism

In this section, we study the dynamics of a particle, treated as
a generalized nonlinear dynamical system, under the action of a
weak resonant wave in the presence of an even weaker dissipa-
tive force. First, in Section 2.1, we consider the direct effect of the
wave on the particle. Then, in Section 2.2, we also show how the
evolution of the wave itself can be predicted from its effect on the
particle.

2.1. Driven system

Consider a small perturbation to a generalized dynamical sys-
tem governed by a Hamiltonian H [16],

H = H0(I) + εH1(I) cos(� · φ − ω0t). (1)

Here (I ,φ) are the action-angle variables of the unperturbed
Hamiltonian H0(I), �i = ∂ H0/∂ Ii are the unperturbed frequen-
cies, ε � 1 is a small parameter, ω0 is some constant frequency,
� = (�1, . . . , �n) is a constant n-dimensional integer vector, and
n ≡ dim I = dimφ. Without loss of generality, assume non-zero �n .
Using a generating function

Φ( J ,φ, t) = J1φ1 + · · · + Jn−1φn−1 + Jn(� · φ − ω0t), (2)

perform a canonical transformation to the new variables ( J , θ);
hence

θi<n = φi, θn = � · φ − ω0t, (3)

J i<n = Ii − �i In/�n, Jn = In/�n. (4)

The new Hamiltonian H ≡ H +∂Φ/∂t depends on only one canon-
ical coordinate θn:

H = H0( J ) − ω0 Jn + εH1( J ) cos θn. (5)

Therefore, all J i with i < n are constants, and Eq. (5) can be treated
as a Hamiltonian of the motion in ( Jn, θn) plane. The stationary
points of this two-dimensional system are located near the reso-
nance surface � · � = ω0 and are said to form stationary surfaces
J 0
n( J1, . . . , Jn−1) in the n-dimensional J space (see also Ref. [17]).

Let us also introduce stable surfaces J∗
n( J1, . . . , Jn−1) formed by

the stable stationary points of the system. The particle trajectories
in the vicinity of a stable stationary point ( J∗

n , θ∗
n ) are periodic or-

bits with some characteristic period T . For a stable stationary point
with sin θ∗

n = 0 [10], one has a real

T ≈ 2π

(
−εH1

∂Ω

∂ Jn
cos θ∗

n

)−1/2

, (6)

where Ω = ∂ H0/∂ Jn − ω0 + ε (∂ H1/∂ Jn) cos θ∗
n , and all functions

of J are evaluated at ( J i<n, J∗
n).

Consider a perturbation to the system (5) by a weak dissipative
force ξ( J ,φ) = (G, K ), i.e.,

J̇ i = εδin H1( J ) sin θn + Gi, (7)

θ̇i = ωi( J ) − δinω0 + ε
∂ H1

∂ J i
cos θn + Ki, (8)

where δi j is the Kronecker symbol, and ωi = ∂ H0/∂ J i . Assume ini-
tial conditions such that the system is close to an unperturbed
stable surface S , that ξ( J ,φ) is not resonant to the oscillations
at frequencies �i , and that T is much larger than all 2π/�i and
the corresponding beat frequencies. Then, for i < n, one can aver-
age Eqs. (7) and (8) over the fast oscillations in φ to get

J̇ i<n = 〈Gi〉, θ̇i<n = ω̄i, (9)

where ω̄i = ωi + ε (∂ H1/∂ J i) cos θn + 〈Ki〉, and 〈. . .〉 denotes aver-
aging over the phases φi . Therefore, the effect of friction on the
degrees of freedom corresponding to i < n consists in adding a
slow drift in J i and slightly modifying the frequencies to ω̄i .

Now let us consider the remaining degree of freedom, ( Jn, θn).
Recalling that the dynamics in these variables is slow compared to
the dynamics in φ, average Eqs. (7) and (8) for i = n over the fast
oscillations in φ:

J̇ n = εH1( J ) sin θn + 〈Gn〉, (10)

θ̇n = ωn( J ) − ω0 + ε
∂ H1

∂ Jn
cos θn + 〈Kn〉. (11)

Unlike for i < n [Eqs. (9)], the average friction force can now be
compensated by Hamiltonian forces. This means that the dissipa-
tion does not destroy the equilibrium in ( Jn, θn) plane but rather
shifts it to a new location ( J̄∗

n , θ̄∗
n ) given by

εH1
(

J i<n, J̄∗
n

)
sin θ̄∗

n = −〈Gn〉, (12)

ωn
(

J i<n, J̄∗
n

) − ω0 + ε
∂ H1

∂ Jn
cos θ̄∗

n = −〈Kn〉, (13)

which drifts slowly due to J i<n following Eqs. (9). Hence, we
consider this (quasi-) equilibrium as a local stationary point of
the system. The surface formed by the local stationary points
J̄∗

n( J1, . . . , Jn−1) will be further called a local stationary surface S̄ .
From expanding Eqs. (10) and (11) in the vicinity of the new

stable stationary point ( J̄∗
n, θ̄∗

n ), it follows that the effect of friction
is determined by derivatives of 〈Gn〉 (and 〈Kn〉) rather than 〈Gi〉 it-
self [unlike in Eqs. (9)]. To see this, consider the normalized phase
space area that the particle orbit encircles in ( Jn, θn) plane:

Λ = 1

2π

∮
Jn dθn. (14)

Without friction Λ would be an adiabatic invariant [18], i.e., Λ̇ ≈ 0,
as shown in Ref. [2]. The conservation of Λ causes the autoreso-
nant phase-locking effect [4,7] when the system state “sticks” to
the local stationary surface S̄ . With the friction, however, an argu-
ment similar to that in Ref. [2] yields

2πΛ̇ ≈
∮
l

〈Gn〉dθn −
∮
l

〈Kn〉d Jn, (15)

where l is the periodic orbit of the Hamiltonian system (5). Using
the Stokes theorem, Eq. (15) can then be transformed to

2πΛ̇ ≈
∫
M

(
∂〈Gn〉
∂ Jn

+ ∂〈Kn〉
∂θn

)
d Jn dθn, (16)

where M is the oriented area of the phase space ( Jn, θn) encircled
by l. (The area sign is positive for clockwise-rotating orbits and
negative otherwise.) Assuming that the system oscillates in a small
vicinity of the stable point ( J̄∗

n, θ̄∗
n ), and neglecting the variations

of ∂〈Gn〉/∂ Jn on this scale, one can approximate:

Λ̇

Λ
≈ ∂〈Gn〉

∂ Jn
, (17)

where we used Λ = (2π)−1
∫

M d Jn dθn . This shows that the phase
space within the ( Jn, θn) orbit grows or shrinks depending on the
sign of ∂〈Gn〉/∂ Jn . If ∂〈Gn〉/∂ Jn > 0, a particle perturbation from
the stable stationary surface grows exponentially, thus indicating
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dissipation-induced instability as introduced in the general theory of
dynamical systems [19,20].

The subset of the local stationary surface S̄ close to the sta-
tionary surface S of the original Hamiltonian system, for which
∂〈Gn〉/∂ Jn < 0, is an attractor of the system with friction. Specif-
ically, trajectories are pulled toward this surface due to friction,
and further motion along S̄ is determined by the properties of
the dissipation function ξ . Notice also that the attracting part of
S̄ is generally characterized by a specific value of θ∗

n , therefore
indicating the phase bunching occurring in the system. At inter-
sections of S̄ with 〈Gi<n〉 = 0 (which is, generally, a set of one-
dimensional curves in n-dimensional space J ), the attractor has
stationary points. The stability of these points in the J i<n subspace
can be determined by calculating the eigenvalues of the matrix
Dij ≡ ∂〈Gi〉/∂ J j . Specifically, if there is at least one eigenvalue of
Dij with a positive real part, the corresponding stationary point is
unstable.

2.2. Wave–particle system

Suppose now that the generalized dynamical system that we
introduced above actually describes the interaction between a par-
ticle and a wave, with ω0 being the wave frequency; hence, one
may ask what happens to the wave action I w as the friction force ξ
is applied to a particle. Despite the total action in the particle-field
system decays (by definition of ξ ), I w may, in fact, grow, meaning
that the wave is amplified through dissipation. Below, we derive
the general conditions under which such a dissipative amplifica-
tion of the wave is possible.

Consider system where the wave is treated as a single indepen-
dent degree of freedom. The corresponding Hamiltonian then reads
as

H ′ = H0(I) + εH1(I , E ) cos(� · φ − ψ) + ω0 I w , (18)

where ψ is the wave canonical phase, and I w is the action variable
conjugate to ψ [21]. Instead of the generating function (2), take

Φ = J1φ1 + · · · + Jn−1φn−1 + Jn(� · φ − ψ) + Iψ, (19)

so I = I w + Jn is the new action representing the total number of
quanta in the two resonant degrees of freedom, θn and ψ . Then,
( J i, θi) are the new actions and angles correspondingly, defined, as
before, through Eqs. (3) and (4), and

θn = � · φ − ψ. (20)

Since the new Hamiltonian, H′ = H ′ , or

H′ = H0( J ) + εH1( J , I) cos θn + ω0(I − Jn), (21)

does not depend on ψ or θi<n , one concludes that J i<n and I are
constants of motion.

In the presence of a dissipative force ξ on the particle, one then
obtains, like in Section 2.1:

〈
Ḣ′〉 = ∑

i<n

〈
∂H′

∂ J i
Gi

〉
+

〈
∂H′

∂ Jn
Gn

〉
+

〈
∂H′

∂θn
Kn

〉
+

〈
∂H′

∂I
G I

〉
, (22)

where the effective dissipative force G I corresponding to I [in
the sense of Eq. (7)] satisfies G I = Gn . (Remember that, with-
out interacting with the particle, the wave is assumed undamped.)
Close to S̄ , the second and the third terms are negligible; then,
〈Ḣ ′〉 ≈ Ω · 〈G〉, where Ω = (ω1, . . . ,ωn−1,ω0). Therefore, the force
ξ dissipates energy if [22]

Ω · 〈G〉 < 0. (23)
Even when the latter is satisfied, though, the wave energy does
not necessarily decay. Indeed, consider the evolution of the wave
action I w :

İ w = 〈Gn〉 − J̇ n. (24)

Assuming, as before, that the system operates near S̄ , one obtains:

İ w = 〈Gn〉 −
∑
i<n

∂ J̄∗
n

∂ J i
〈Gi〉. (25)

The same can be written as

İ w =
∑
i≤n

〈Gi〉 ∂ R

∂ J i
, (26)

where R( J1, . . . , Jn) = Jn − J̄∗
n( J1, . . . , Jn−1). Hence, İ w equals the

derivative of R along 〈G〉 in J space:

İ w = 〈G〉 · ∇ J R. (27)

On the other hand, since R is constant (zero) on the station-
ary surface, the gradient of R in J space, ∇ J R , is orthogonal to
S̄ . Particularly, since ∂ R/∂ Jn > 0, the vector ∇ J R points toward
larger Jn . Thus, the dissipation causes the wave energy to decrease
( İ w < 0) only if 〈G〉 at S̄ points toward the lower one of the two
halves of the Jn space separated by S̄ .

In principle, though, 〈G〉 can also point in the opposite di-
rection, causing wave amplification; that is, I w increases in this
case through dissipation, apparently, at the expense of the parti-
cle internal energy. (Notice that this effect is different from the
conventional dissipation-induced instabilities [23–26]; in particu-
lar, the wave energy growth may not be exponential.) In Section 3,
we illustrate how this effect is possible in a specific physical sys-
tem.

3. Example: wave-driven particle in a magnetic field

3.1. Basic equations

Assume a homogeneous magnetic field of the form B0 = B0 ẑ,
governed by the vector potential A0 = −x̂B y, and a wave field
with circular polarization, governed by Aw = (mc2/q)(a0/

√
2 )×

(x̂ cos ξ − ŷ sin ξ), where m and q are the particle mass and charge,
c is the speed of light, a0 is the normalized wave amplitude, x̂, ŷ,
and ẑ are unit vectors directed along x, y, and z correspondingly,
and ξ = ω0t − kz. The particle Hamiltonian reads as

H =
√

m2c4 + c2(P − q A/c)2, (28)

where A = A0 + Aw , and P is the particle canonical momentum.
After a series of canonical transformations, Eq. (28) can be cast
[10] into the form of Eq. (5):

H ≈ H0 − ω J2 − ε
√

J2

H0
cos θ2, (29)

with

H0 = c
[
m2c2 + 2mΩ0 J2 + k2( J1 + J2)

2]1/2
, (30)

J1 = p‖/k − μ̃, θ1 = kz, (31)

J2 = μ̃, θ2 = θ̃ − ωt + kz. (32)

Here p‖ ≡ P z is the component of the particle kinetic momentum
parallel to B0, ε = mc3√mΩ0a0 is the normalized (yet dimen-
sional) amplitude playing a role of the small parameter, Ω0 =
qB0/mc is the nonrelativistic Larmor frequency, and μ̃ is the
canonical momentum, which is related to the particle magnetic
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moment μ ≡ p2⊥/(2mΩ0) (here p⊥ is the kinetic momentum
transverse to B0) as

μ = μ̃ + mc2a2
0

4Ω0
− a0c

√
mμ̃

Ω0
cos(θ̃ − ωt + kz). (33)

3.2. Radiation friction

The radiation reaction four-force on a particle reads as [27]:

gi = 2q3

3mc3

∂ F ik

∂xl
ukul − 2q4

3m2c5
F il Fklu

k

+ 2q4

3m2c5

(
Fklu

l)(F kmum
)
ui, (34)

where Fik is the electromagnetic four-tensor, and ui is the particle
four-velocity. Since the dominant motion in our case is assumed
[10] to be the cyclotron motion (rather than the wave-driven os-
cillations), keep only the terms due to the static field B0; then,

gx = − 2q4

3m2c5
B2

0

[(
ux)2 + (

u y)2 + 1
]
ux, (35)

g y = − 2q4

3m2c5
B2

0

[(
ux)2 + (

u y)2 + 1
]
u y, (36)

gz = − 2q4

3m2c5
B2

0

[(
ux)2 + (

u y)2]
uz. (37)

Using an approximate relation μ̃ ≈ (p2
x + p2

y)(2mΩ0)
−1 and

Eqs. (35) and (36), one obtains

〈G2〉 ≈ −κ J2

γ̃

(
2 J2 + mc2

Ω0

)
, (38)

where κ = (4q2Ω3
0 )(3m2c5)−1, and γ̃ = H0/(mc2). To find 〈G1〉,

recall that J1 = pz/k − J2, and thus G1 = ṗz/k − G2, where ṗz can
be taken from Eq. (37):

ṗz ≈ cgz

γ̃
= − 4q2Ω3

0

3m2c5γ̃
k( J1 + J2) J2. (39)

Therefore,

〈G1〉 = −κ J2

γ̃

(
J1 − J2 − mc2

Ω0

)
. (40)

3.3. Stationary points and dissipative dynamics

Consider now how the dissipative force G affects the average
dynamics, taking into account that the particle remains attached
to the stationary curve S̄ , or J̄∗

2( J1), that we found in Ref. [10]
(Fig. 1). Since

∂〈G2〉/∂ J2 < 0, (41)

the dissipation makes this curve an attractor (as discussed in Sec-
tion 2), in contrast to some other dynamical systems, in which
the radiation friction can lead to an instability [13]. The station-
ary points A( j) ≡ ( J ( j)

1 , J ( j)
2 ) on this attractor are found from its

intersection with the curve 〈G1〉 = 0, which, according to Eq. (40),
represents a straight line in ( J1, J2) space, given by

J1 − J2 = mc2/Ω0. (42)

Depending on the wave refraction index, n0 ≡ kc/ω0, there can
be one or two stable stationary points, as seen in Fig. 1 [10]. Using
Eq. (42) together with the equation for S [10], one can find A( j)

explicitly to the leading order in ε, at least for ω0 close to Ω0 and
Fig. 1. (Color online.) Two stationary curves plotted for n0 = 0.5 and n0 = 1.5 for
ε = 0.01, ω = 0.98Ω0 (in units m = q = c = 1). The stable parts of the curves
are solid and the unstable parts are dashed. The curve G1( J1, J2) = 0, which is a
straight line here, intersects the stationary curves for n0 = 1.5 and n0 = 0.5 in one
and two points correspondingly. The direction of the dissipation-driven drift along
the stationary curves is shown with arrows.

|n0 − 1| � 1. Specifically, at n0 > 1, there is only one stationary
point, A(1) = ( J (1)

1 , J (1)
2 ), with

J (1)
1 ≈ mc2/Ω0, (43)

J (1)
2 ≈ ε2(3 + 2

√
2 )

8m2c4Ω2
0

, (44)

whereas at n0 < 1, there exist two such points, A(2) ≈ A(1) and
A(3) = ( J (3)

1 , J (3)
2 ), with:

J (3)
1 ≈ mc2Ω0

4ω2(1 − n0)
, (45)

J (3)
2 ≈ mc2

Ω0

[
Ω2

0

4ω2(1 − n0)
− 1

]
. (46)

Since

∂〈G1〉/∂ J1 < 0, (47)

each of the stationary points A( j) ( j = 1,2,3) is stable, i.e., at-
tracts trajectories lying in its vicinity (Fig. 2). Hence, the particle
response to the radiation friction in the system considered here
can be summarized as follows: First, the particle is picked up by
the wave and is accelerated by the light pressure. Yet, the altered
longitudinal velocity affects the detuning from the cyclotron res-
onance and, thus, also the energy of wave-driven oscillations. On
the other hand, the latter energy can either decrease or increase,
depending on the initial conditions, because the stationary curve
J∗

2( J1) is a multi-valued function (Fig. 1). Specifically, if a parti-
cle is originally closer to the branch connected to A(1) (at n0 > 1)
or A(2) (at n0 < 1), then it will be further attracted to this branch
and follow it toward the equilibrium, losing the transverse energy.
On the other hand, if a particle is instead closer to the branch con-
nected to A(3) (this is only possible at n0 < 1), it will follow the
branch toward higher J2, thereby increasing the transverse energy
(Figs. 1 and 2).

The time scale for these processes can be estimated as follows.
To the stationary curve, a particle is attracted on the time scale
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Fig. 2. (Color online.) Two trajectories of a particle in ( J1, J2) space obtained by
numerical integration of the motion equations corresponding to the Hamiltonian H
[Eq. (28)] and added radiation friction g [Eqs. (35)–(37)]. In this example, n0 = 0.5,
ω = 0.97Ω0, ε = 0.01, and m = c = q = 1. Two initial particle states are shown
with solid disks at J1 = 0.8 and J1 = 2.0. Both particle trajectories asymptotically
converge (see the arrows) to the intersection (circle) of the stationary curve and the
curve given by G1 = 0 (dashed), yielding a stationary point A(3) [cf. Fig. 1].

δtΛ derived from Eq. (17), with 〈G2〉 ≈ −κ J2mc2/Ω0 [Eq. (38)],
where we assumed, for simplicity, that the particle motion is non-
relativistic. Then,

δtΛ ∼ Ω0

mc2κ
≈ 2.6 s × M3

Z 4 B0[T]2
, (48)

where M is the particle mass in the units of the electron mass, Z is
the particle charge in the units of the electron charge, and B0[T] is
the static magnetic field measured in Teslas. For the motion along
the curve, the time scale δt is found from:

J̇ 2

J2
= d J̄∗

2

d J1

J̇1

J2
= − κ

γ̃

d J̄∗
2

d J1

(
J1 − J2 − mc2

Ω0

)
≈ d J̄∗

2

d J1

mc2κ

Ω0γ̃
. (49)

When |d J̄∗
2/d J1| ∼ 1 (on the negative-mass branch), one has δt ∼

δtΛ; however, on the low-energy, quasi-flat branch J̄∗
2( J1), δt can

be much larger.

3.4. Negative-mass effect with radiation friction

Now let us study whether the wave–particle interaction leads
to wave damping or amplification. As shown in Section 2.2, the
wave–particle interaction in the presence of friction can lead to
wave damping ( İ w < 0) or wave amplification ( İ w > 0). Assuming
that the particle is nonrelativistic (or weakly relativistic), one can
rewrite the condition for amplification, İ w > 0 using Eq. (25) as
d J̄∗

2/d J1 < 〈G2〉/〈G1〉. Using Eqs. (38) and (40), this also rewrites
approximately as

d J̄∗
2

d J1
<

2 J2 + mc2/Ω0

J1 − J2 − mc2/Ω0
. (50)

Interestingly, Eq. (50) coincides with the necessary and sufficient
condition for the particle “effective parallel mass” m‖ to be nega-
tive; cf. Eq. (56) in Ref. [10]. Hence, we can summarize the results
of this section also as follows. All particles with negative parallel
mass exhibit slow drift along the stable stationary curve, driven
by the light pressure and accompanied by the wave amplification.
The corresponding dynamics turns out to be “stable”, in respect
that the particle transverse energy is monotonically decreasing due
to cyclotron cooling. On the other hand, some of particles with
positive parallel mass exhibit “unstable” dynamics, i.e., while the
particles are accelerated by the light pressure, their transverse en-
ergy also grows due to cyclotron heating. The characteristic time
of the particle drift along the stable stationary surface S̄ is given
by Eq. (49). At B ∼ 1 T, it is of order of seconds for electrons
and 109 s for ions. Hence, we can conclude that the NME pre-
dicted in Refs. [8] and [10] persists through dissipation and thereby
represents a robust physical effect, potentially observable in exper-
iment.

4. Conclusions

In this Letter, we showed that the effect of radiation friction
can be included in the Hamiltonian treatment of wave–particle
interactions with autoresonant phase-locking, yielding a general-
ized canonical approach to the problem of dissipative dynamics
near a nonlinear resonance. As an example, the negative-mass ef-
fect exhibited by a charged particle in a pump wave and a static
magnetic field is studied in the presence of the friction force due
to cyclotron radiation. Particles with negative parallel masses m‖
are shown to transfer their kinetic energy to the pump wave, thus
amplifying it. Counterintuitively, such particles also undergo stable
dynamics, decreasing their transverse energy monotonically due to
cyclotron cooling, whereas some of those with positive m‖ un-
dergo cyclotron heating instead, extracting energy from the pump
wave.
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