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A Lagrangian formalism is developed for a general nondissipative quasiperiodic nonlinear wave

with trapped particles in collisionless plasma. The adiabatic time-averaged Lagrangian density L is

expressed in terms of the single-particle oscillation-center Hamiltonians; once those are found, the

complete set of geometrical-optics equations is derived without referring to the Maxwell-Vlasov

system. The number of trapped particles is assumed fixed; in particular, those may reside close to

the bottom of the wave trapping potential, so they never become untrapped. Then their contribu-

tions to the wave momentum and the energy flux depend mainly on the trapped-particle density, as

an independent parameter, and the phase velocity rather than on the wave amplitude a explicitly;

hence, L acquires a-independent terms. Also, the wave action is generally not conserved, because

it can be exchanged with resonant oscillations of the trapped-particle density. The corresponding

modification of the wave envelope equation is found explicitly and the new action flow velocity is

derived. Applications of these results are left to the other two papers of the series, where specific

problems are addressed pertaining to properties and dynamics of waves with trapped particles.
VC 2012 American Institute of Physics. [doi:10.1063/1.3654030]

I. INTRODUCTION

A standard approach to describing a nondissipative

wave in the geometrical-optics (GO) limit is to start with its

time-averaged Lagrangian, as proposed originally by

Whitham in Ref. 1; see also Refs. 2–9. Through that, both

the nonlinear dispersion relation (NDR) and the action con-

servation theorem (ACT) are yielded, the latter being a par-

ticularly robust way to derive the envelope equation.10

However, the existing models using the time-averaged

Lagrangian5,7,11–13 cannot account for effects caused by par-

ticles trapped in wave troughs. In particular, those effects

require special treatment for they are not necessarily pertur-

bative, i.e., may grow as the amplitude decreases.14 Hence,

describing waves such as Bernstein-Green-Kruskal (BGK)

modes15–18 has been limited to more complicated kinetic

models,17,19–23 which are specific to particular settings and

may not render the underlying physics transparent. There-

fore, it would be beneficial to generalize Lagrangian theories

to accommodate trapped-particle effects.

It is the purpose of this paper to do so. Specifically, a

Lagrangian formalism is developed here for general nondis-

sipative quasiperiodic nonlinear waves in collisionless

plasma, under the assumption that the number of trapped

particles remains fixed. This assumption is obviously satis-

fied for any stationary homogeneous wave. For nonstationary

or inhomogeneous waves, the number of trapped particles

being fixed implies that (i) those are trapped deeply, such

that they do not become untrapped when the wave parame-

ters evolve; (ii) also, it is implied that there are no passing

particles close to the resonance, so that no additional

trapping can result from the wave evolution. (As models,

corresponding distributions already proved useful for

understanding paradigmatic effects driven by trapped

particles;24–27 yet, they can also form naturally as waves

evolve.20) In particular, in the case of nonstationary or inho-

mogeneous waves, distributions smooth across the resonance

are not allowed.

Under the aforementioned assumptions, we express the

adiabatic time-averaged Lagrangian density L in terms of

the single-particle oscillation-center (OC) Hamiltonians;

once those are found, the complete set of GO equations is

derived without referring to the Maxwell-Vlasov system.

Since the number of trapped particles is fixed within our

model, their contributions to the wave momentum and the

energy flux depend mainly on the trapped-particle density, as

an independent parameter, and the phase velocity, rather

than on the wave amplitude a explicitly; hence, L acquires

a-independent terms. (Of course, taking the limit a! 0 in L

would require that the width of the trapped-particle distribu-

tion also be zero, i.e., that the distribution be d-shaped.)

Also, the wave action is generally not conserved, because it

can be exchanged with resonant waves of the trapped-

particle density. The corresponding modification of the wave

envelope equation, or the ACT, is found explicitly for one-

dimensional (1D) waves, a case in which the trapped-particle

density is expressed directly in terms of the wave variables,

thus providing an exact closure.

The results presented here extend our Ref. 14 in that we

now (i) allow plasma parameters to vary slowly in space and

time and (ii) derive the corresponding envelope equation, or

the ACT, in addition to the NDR. Applications of these

results are left to Refs. 28 and 29 (further referred to as Paper

II and Paper III), where specific problems are addressed per-

taining to properties and dynamics of waves with trapped

particles.

The paper is organized as follows. In Sec. II, we derive

the general form of L. In Sec. III, we consider 1D waves in

particular and obtain the corresponding ACT and NDR. In

Sec. IV, longitudinal electrostatic waves are studied as a spe-

cial case. For an arbitrarily nonlinear wave, the particle OC
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Hamiltonian is derived, generalizing the dipole ponderomo-

tive Hamiltonian. Then, the action density, the action flux

density, and the action flow velocity are inferred. In Sec. V,

we also calculate those quantities specifically in the small-

amplitude limit. In Sec. VI, we summarize our main results.

Some auxiliary calculations are also presented in

appendixes.

II. WAVE LAGRANGIAN

In Ref. 14, we proposed the following expression for the

Lagrangian spatial density of an adiabatic wave in collision-

less plasma:30

L ¼ hLemi �
X

s

nshHsifs : (1)

Here, hLemi is the time-averaged Lagrangian density of the

electromagnetic field, summation is taken over distinct spe-

cies s, ns are the corresponding average densities, and hHsifs
are the corresponding OC Hamiltonians averaged over the

distributions fs of canonical momenta p. The formula was

originally derived for homogeneous stationary waves,31 the

case in which p and ns are constants. What we show below is

that Eq. (1) holds also in the general case, except now one

needs to specify how ns relate to the field variables.

A. Plasma Lagrangian

Consider the Lagrangian LR ¼
Ð

LR d_, with the spatial

density LR ¼ Lem þ Lp.32 Here, Lem ¼ ðE2 � B2Þ=ð8pÞ is

the field Lagrangian density, E¼�ru� @tA=c is the elec-

tric field, B¼r�A is the magnetic field, u and A are the

scalar and vector potentials, and c is the speed of light. Also,

Lp ¼
X

i

dðx� xiÞ Liðx; vi; u;AÞ; (2)

where the summation is taken over individual particles and

Li are the Lagrangians of those particles; namely,

Li ¼ L
ð0Þ
i þ L

ðintÞ
i , where L

ð0Þ
i are independent of the field,

and L
ðintÞ
i ¼ ðei=cÞðvi � AÞ � eiu. Finally, xi(t) are the trajec-

tories of individual particles, vi ¼ _xi are the corresponding

velocities, and ei are the particle charges.

Suppose that the electromagnetic field contains a rapidly

oscillating part and consider the plasma dynamics on scales

large compared to the oscillation scales. (In the presence of

resonant or trapped particles, one of such scales is the period

of bounce oscillations sb [Ref. 33, Sec. 8-6].) Then, it is only

the time-averaged part of the Lagrangian, LR �
Ð
hLRid_,

that contributes to the system action. Hence LR plays a role

of the slow-motion Lagrangian of the system.1 Specifically,

we write

hLRi ¼ hLemi þ hLðpÞp i þ hLðtÞp i: (3)

Here, hLemi generally consists of two terms, Lem due to qua-

sistatic fields ð�u;AÞ (if any) and heLemi due to the actual

wave field. The remaining terms describe contributions of

passing particles and trapped particles, correspondingly, and

are derived as follows.

In the case of passing particles, we separate the slow,

OC motion xiðtÞ and the quiver motion exiðtÞ and notice thatð
hdðx� xi � exiÞLðpÞi ðx; viÞid_

¼
ð
hdðx� xiÞLðpÞi ðxþ exi; vi þ eviÞid_

¼
ð

dðx� xiÞ hLðpÞi ðxþ exi; vi þ eviÞid_

�
ð

dðx� xiÞ LðpÞi ðx; viÞ d_ : (4)

Here, we introduced

LðpÞi ðx; vÞ ¼ hLiðxþ exi; vþ eviÞi; (5)

which has the meaning of a single-particle OC Lagrangian.34

Hence, one can write

hLðpÞp i ¼
X

i

dðx� xiÞ LðpÞi ðx; viÞ: (6)

In the case of trapped particles we proceed similarly,

except that the OC location xiðtÞ is now determined by the

motion of the wave nodes and thus cannot serve as an inde-

pendent variable. Instead, the new independent variable will

be the phase hi of bounce oscillations, possibly in multiple

dimensions. Since these bounce oscillations are assumed

adiabatic, LðtÞi will not depend on hi explicitly; rather it will

depend on _hi and, parametrically, on xi. (Remember that the

dependence on the field variables is also implied throughout

the paper.) Thus, the Lagrangian of the bounce motion, hence-

forth also called OC Lagrangian for brevity, is given by

LðtÞi ðx; _hiÞ ¼ hLiðxþ exi; uþ eviÞi; (7)

where we substituted the wave phase velocity u for the aver-

age velocity. This yields

hLðtÞp i ¼
X

i

dðx� xiÞ LðtÞi ðx; _hiÞ: (8)

B. Routhian

Below, it will be more convenient to use canonical OC

variables for particles, (qi, pi). For simplicity, let us temporarily

require that qi ¼ xi for passing particles and qi¼ hi for trapped

particles; in the latter case the canonical momentum pi will be

the action Ji of the bounce oscillations. Then, let us use35

Li ¼ pi � _qi �Hi; (9)

so Eq. (3) rewrites as

LR ¼ Lþ
X

i

pi � _qi; (10)

where L ¼
Ð

L d_, and

L ¼ hLemi �
X

i

dðx� xiÞHiðx; piÞ: (11)
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Since both qi(t) and pi(t) are now independent functions (cf.

Ref. 36, Sec. 40), field equations will be insensitive to the

second term in Eq. (10); i.e., for the purpose of finding field
equations, this term can be dropped. Therefore, L plays the

role of the adiabatic Lagrangian of the wave (and also of

quasistatic fields, if any).

Notice that, since L ¼ LR �
P

i pi � _qi, it can be consid-

ered as a Routhian of the particle-field system [Ref. 36, Sec.

41], i.e., a function that acts as a Lagrangian for the field var-

iables but as a Hamiltonian for the particle variables. As a

Routhian, the wave Lagrangian was also introduced earlier

in our Ref. 14. (However, unlike in Ref. 14, here, we do not

perform Routh reduction (Appendix A); i.e., now we allow p

to evolve.) Below, we will show how Eq. (11) corresponds

to that earlier result.

C. Locally averaged densities

In Eq. (11), the summation over all particles i can be

separated into (i) summation over species s, (ii) summation

over pj within a local elementary spatial volume D_k, and

(iii) summation over all D_k. Specifically, let us choose the

elementary volumes large enough such that both Hs and the

densities ns vary little37 within D_k. Then,X
i

dðx� xiÞHiðx; piÞ

¼
X

s

X
k

dðx� xkÞ
X

j

Hsðxk; pjÞ

¼
X

s

X
k

dðx� xkÞ nsðxk; tÞhHsðxk; pÞifsD_k

¼
X

s

nsðx; tÞhHsðx; pÞifs : (12)

This puts L in the anticipated form, Eq. (1), or

L ¼ hLemi �
X

s

nðpÞs hHðpÞs ifs �
X

s

nðtÞs hHðtÞs ifs : (13)

From now on, the specific canonical variables will not mat-

ter; i.e., further canonical transformations are allowed in

HðpÞs and HðtÞs , if necessary.

D. Independent variables

We are now to choose the independent variables that

will describe the field. [Quasistatic fields, if any, can be

described by ð�u;AÞ as usual and thus will not be considered

explicitly.] Suppose that the wave is characterized by a

smooth envelope with amplitude a(x,t), arbitrarily normal-

ized. Also suppose that the wave field, while not necessarily

monochromatic, oscillates rapidly with some canonical

phase n, the period being 2p. Hence, the local temporal and

spatial periods can be defined as T¼ 2p=x and k¼ 2p=k,

such that u¼x=k is the phase speed, u¼ uk=k,

x ¼ �@tn; k ¼ rn; (14)

and, in particular,

@tki þ @ix ¼ 0; @jki � @ikj ¼ 0; (15)

where we introduced @i � @xi
. The function L will then

depend on (@tn, rn) (Ref. 38) but not on n, for it describes

the dynamics on scales s and k such that s� T and ‘� k. 1

(In the presence of trapped particles, we also require s� sb

and ‘� usb.)

The question that remains is how to treat ns when vary-

ing L. For passing particles, the OC densities n
ðpÞ
s are deter-

mined by xi ¼ qi, which are independent variables; thus,

n
ðpÞ
s ðx; tÞ are also independent of the field variables. For

trapped particles, however, n
ðtÞ
s ðx; tÞ are determined by xi

which may be tied to the wave troughs; then, n
ðtÞ
s ðx; tÞ is con-

nected with the wave phase. In particular, for 1D waves this

connection can be implemented as an exact closure, which is

done as follows.

III. ONE-DIMENSIONAL WAVES WITH TRAPPED
PARTICLES

A. Extended Lagrangian

First of all, notice that, in a 1D system, trapped particles

travel at the wave phase velocity u. Hence, the corresponding

continuity equations read as

@tns þ @xðnsuÞ ¼ 0; (16)

where we introduced ns � n
ðtÞ
s to shorten the notation. One

can embed Eq. (16) in the formalism by considering a new,

extended Lagrangian density

K ¼ Lþ
X

s

ls @tns þ @xðnsuÞ½ �: (17)

Here, ls are Lagrange multipliers,39 i.e., new independent

functions of (t,x), yet to be found. In particular, varying K
with respect to ns yields

@tls þ u @xls þ hHðtÞs ifs ¼ 0; (18)

whereas Eq. (16) flows from varying K with respect to ls.

Further, notice that

K̂ ¼ L�
X

s

ns @tls þ ðx=kÞ @xls½ � (19)

is a Lagrangian density equivalent to K, yet with an advant-

age that K̂ depends on only38 the first-order derivatives of n
[cf. Eq. (14)],

K̂ ¼ K̂ða; @tn; @xn; n; @tl; @xlÞ: (20)

Then, varying K̂ with respect to n is as usual and yields

@tK̂x � @xK̂k ¼ 0. 1 (We henceforth use indexes x, k, and a
to denote the corresponding partial derivatives.) On the other

hand,

K̂x ¼ Lx �
1

k

X
s

ns @xls; (21)

K̂k ¼ Lk þ
x
k2

X
s

ns @xls; (22)
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where the derivatives are taken, in particular, at fixed n.

Thus, one obtains

@tLx � @xLk ¼
X

s

Ms; (23)

Ms ¼ @tðrs @xlsÞ þ @xðrsu @xlsÞ: (24)

Here, we introduced rs ¼ ns=k, which is proportional to the

number of trapped particles (of type s) within the local wave-

length. For adiabatic waves this number is constant in the

frame moving with the phase velocity; i.e.,

@trs þ u @xrs ¼ 0; (25)

which is also obtained from Eqs. (15) and (16). (Notice that

the equation for rs does not have a form of a continuity equa-

tion, unlike that for ns.) Then,

Ms ¼ rs @
2
xtls þ @xðu @xlsÞ

� �
¼ �rs @xhHðtÞs ifs ; (26)

where we used Eq. (18). Hence, one gets

@tLx � @xLk ¼ �
X

s

rs @xhHðtÞs ifs ; (27)

or, equivalently,

@tLx þ @x �Lk þ
X

s

rshHðtÞs ifs

" #
¼
X

s

hHðtÞs ifs @xrs: (28)

Further notice that ðLkÞr ¼ ðLkÞn þ
X

k

rsð@ns
LÞk, so

ðLkÞr ¼ ðLkÞn �
X

k

rshHðtÞs ifs ; (29)

where we substituted ns ¼ rsk, in the left-hand side; simi-

larly, ðLxÞr ¼ ðLxÞn. (Here, the external subindexes show

variables kept fixed at differentiation.) Thus, it is convenient

to consider L as a function of rs rather than of ns, specifi-

cally as follows.

B. Action conservation and wave dispersion

From now on, let us consider L as38

L ¼ Lða; @tn; @xn; rÞ: (30)

Using Eq. (29), one can hence write Eq. (28) as

@tLx � @xLk ¼
X

s

hHðtÞs ifs @xrs: (31)

Equation (31) represents a generalization of the well-known

ACT for 1D waves,1 reproduced in the limit rs¼ 0 (also see

Appendix B). Thus, we interpret

I ¼ Lx; J ¼ �Lk (32)

as the new action density and the new action flux density,

correspondingly. Notice, however, that Eq. (31), or

@tI þ @xJ ¼
X

s

hHðtÞs ifs @xrs; (33)

does not have a conservative form in general, due to the nonzero

right-hand side. This is because the wave of the trapped-particle

density is, by definition, always resonant with the electric field,

so the two can exchange quanta whenever rs are modulated.

Interestingly, the effect of r-waves, which are described by Eq.

(25), is similar to the effect of entropy waves on magnetohydro-

dynamic oscillations reported in Refs. 40 and 41.

Finally, we can complement the ACT with the NDR, by

varying L with respect to the wave amplitude. Within the

lowest-order (in s�1 and ‘�1) GO approximation, to which

we adhere throughout the paper, L depends on the local am-

plitude a but not on its derivatives [Eq. (30)], as usual

[Refs. 1 and 42]. Remember also that rs are introduced as in-

dependent functions and thus do not depend on a by defini-

tion. Hence, the NDR attains the same general form as for

adiabatic waves without trapped particles, namely,

La ¼ 0: (34)

IV. LONGITUDINAL WAVES

Now let us consider the specific case of 1D longitudinal

waves as a paradigmatic example. To do so, we will need to

construct the Lagrangian density L for such waves, which, in

turn, requires calculating the single-particle OC HamiltoniansHs

first. For linear waves, this is done in Appendix B. For nonlinear

waves, this also can be done straightforwardly, at least to the zer-

oth order in s�1 and ‘�1, as discussed in the following sections.

A. Single-particle OC Hamiltonians

Consider the Lagrangian of a single particle in a station-

ary homogeneous electrostatic wave in nonmagnetized

plasma. It is only the 1D motion along the wave field eE that

matters for us; thus, we take

L ¼ mv2=2� e ~uðx� utÞ; (35)

where m and e are the particle mass and charge, v is the ve-

locity in the laboratory frame K, and the potential ~u is peri-

odic yet not necessarily sinusoidal. (A quasistatic potential �u
can be included straightforwardly and will not be discussed

here explicitly.) Rewrite L as

L ¼ mu2=2þ muwþ mw2 � E; (36)

where y¼ x� ut, so _y � w ¼ v� u, and also

E � mw2=2þ e ~uðyÞ; (37)

which is the energy in the moving frame K̂ where ~u is static.

Then, time-averaging yields

hLi ¼ mu2=2þ muhwi þ mhw2i � E; (38)

where we used that E is conserved on the oscillation scale.

To proceed, it is convenient to introduce the angle h and

the action J of the oscillations in K̂; in particular,

J ¼ m

2p

þ
w dy: (39)
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Then the oscillation period can be expressed in terms of the

corresponding canonical frequency X, yielding hwi ¼ 1X=k,

where 1 � sgnhwi ¼ sgn w (for trapped particles 1 ¼ 0), and

mhwi2 ¼ JX. Then,

hLi ¼ muV � mu2=2þ £; (40)

where we used that the average velocity V : hvi equals

V ¼ uþ 1X=k (41)

and introduced £ ¼ JX� E.

In particular, notice the following. Since the generating

function of the transformation (y,mw) ! (h, J) clearly does

not depend on time explicitly, E acts as a Hamiltonian in

(h, J)-representation (cf. Ref. 14), and thus £ is the corre-

sponding Lagrangian; then,

@JE ¼ X; @J£ ¼ J@JX: (42)

[Partial derivatives are used because E and £ can also depend

parametrically on (a,x,k); cf. Sec. IV B.]

First, let us consider a passing particle. In this case, for

the canonical momentum p one can take P � @VhLi
[Refs. 34 and 43]. Assuming J¼ J(V), one thereby obtains

P¼muþ @J£ @VJ, or, using Eq. (42), P¼muþ J@VX.

Hence, from Eq. (41), we get

P ¼ muþ 1kJ: (43)

Then the OC Hamiltonian H ¼ PV � hLi reads as

H ¼ E þ Pu� mu2=2: (44)

In particular, notice that Eq. (44) can be understood as a gen-

eralization of the nonrelativistic dipole ponderomotive Ham-

iltonian [Eq. (B1), with Us from Eq. (B13)] to the case of

fully nonlinear particle motion in an arbitrary longitudinal

electrostatic wave.

In case of a trapped particle, the average coordinate is

fixed, yielding V¼ u, so now those are (h, J) that we choose

to serve as (q,p). Hence,H ¼ JX� hLi, and thus

H ¼ E � mu2=2: (45)

B. Parametrization. Wave Lagrangian

Although a can be defined as an arbitrary measure

of the field amplitude, now it is convenient to introduce it

specifically as the amplitude of the wave electric field ~E.

Hence, we can write Eq. (13) explicitly as

L ¼ Lem þ
a2

16p
�
X

s

nðpÞs hHðpÞs ifs �
X

s

nðtÞs hHðtÞs ifs ; (46)

with HðpÞs to be taken from Eq. (44), and HðtÞs to be taken

from Eq. (45).

Notice also that, once we have adopted a � ~E, the

bounce-motion energy E can depend parametrically on a and

k but not on x, because the particle motion in K̂ is entirely

determined by the spatial structure of the wave potential,

which is static there. In other words,

E ¼ EðJ; a; kÞ: (47)

Yet note that J¼ J(P,x,k) for passing particles [see

Eq. (43)], whereas for trapped particles J is an independent

variable. In particular, this yields the following equalities

that we will use below. First of all,

@xEðpÞ ¼ @JEðpÞ @xJðpÞ ¼ �m1X=k2; (48)

where we substituted Eq. (42) for @JE and Eq. (43) for

@xJ(P,x,k); also, @xEðtÞ ¼ 0. Hence, one obtains

@xHðpÞ ¼ ðP� mVÞ=k; @xHðtÞ ¼ �mu=k: (49)

C. Action density

Now we can calculate the wave action density I
[Eq. (32)], namely, as follows. Since the first two terms in

Eq. (46) are independent of x and k, one gets

I ¼ IðpÞ þ IðtÞ; IðbÞ ¼ �
X

s

nðbÞs h@xHðbÞs ifs ; (50)

with b¼ p,t. Hence, Eq. (49) yields

IðpÞ ¼ k�1
X

s

nðpÞs hmsV � Pifs ; (51)

IðtÞ ¼ k�1
X

s

nðtÞs msu: (52)

One may say that IðpÞ is proportional to (the density of) the

ponderomotive momentum carried by passing particles (cf.

Appendix B 2), and IðtÞ is proportional to the kinetic mo-

mentum carried by trapped particles. Also, notice that the

two can be combined as

kI ¼
X

s

nsmshVifs �
X

s

nðpÞs hPifs : (53)

The right-hand side here equals the difference between

the system total kinetic momentum [ns � n
ðpÞ
s þ n

ðtÞ
s being

the total density of species s] less the momentum stored

in particles, i.e., that of the untrapped population. Therefore,

by definition, kI represents the wave total momentum,

in agreement with Ref. 2, Sec. 15.4 (see also Paper III).

Notice that a part of this momentum [namely, kIðtÞ] is inde-

pendent of a, because it is stored in the trapped-particle

translational motion with velocity u ¼x=k. However,

remember that we still assume that a must remain large

enough, such that detrapping does not occur (Sec. I).

D. Action flow

The action flux density J [Eq. (32)] can be found simi-

larly from Eq. (46) and reads as J ¼ J ðpÞ þ J ðtÞ, where

J ðbÞ ¼
X

s

nðbÞs @khHðbÞs ifs ; (54)
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again with b¼ p,t. In particular, notice that a part of J is

also independent of a, like IðtÞ. This is because J ¼ P=x,

where P is the energy flux density [Ref. 2, Sec. 15.4] (see

also Paper III), a part of which is determined by the trapped-

particle average velocity u rather than a. Notice also that

vI � J =I has the meaning of the action flow velocity and

reads as

vI ¼
J ðpÞ þ J ðtÞ

I ðpÞ þ IðtÞ
: (55)

In particular, with . � IðtÞ=IðpÞ and vðbÞI ¼ J ðbÞ=IðbÞ, one

gets

vI ¼
vðpÞI þ .vðtÞI

1þ .
: (56)

V. DISCUSSION

Now that we have developed the general formalism, it is

instructive to consider 1D longitudinal electrostatic waves at

small a in particular. Then, one can use Eq. (B1) for HðpÞs ,44

so

L � Lð0Þ þ �a2

16p
�
X

s

nðtÞs hHðtÞs ifs ; (57)

where Lð0Þ is independent of the field variables and � is the

longitudinal dielectric function (Appendix B). Also,

IðpÞ � �xj ~Ej2=ð16pÞ, and thus vðpÞI equals the linear group

velocity vg0¼xk (Appendix B 2). Further, let us neglect EðtÞs

compared to msu
2=2 in Eq. (45). Then, HðtÞs � �msx2=ð2k2Þ,

so one obtains

J ðtÞ �
X

s

nðtÞs msu
2=k ¼ uIðtÞ; (58)

which is independent of a, as expected. This yields vðtÞI � u,

and, therefore,

vI �
vg0 þ .u

1þ .
: (59)

Equation (59) should not be confused with a similar

expression in Ref. 45 derived for what is called there the

nonlinear group velocity. The effects addressed in Ref. 45

result in a nonconservative form of the envelope equation,

i.e., violate the ACT; hence, they are dissipative by defini-

tion. In contrast, our formulation does not account for colli-

sionless dissipation (except at inhomogeneous rs); thus, in

Eq. (59) the difference between vI and vg0 is entirely due to

adiabatic effects.47

In addition to vI that we presented, one can also define

the velocities of the energy and momentum flows.1 For a

nonlinear wave, those will be different from each other and

from the true nonlinear group velocities vg, at which the

modulation impressed on a wave propagates adiabatically.46

The effect of trapped particles on those true vg will be dis-

cussed in Paper III.

VI. SUMMARY

In this paper, a Lagrangian formalism is developed for

general nondissipative quasiperiodic nonlinear waves in col-

lisionless plasma. Specifically, the time-averaged adiabatic

Lagrangian density is derived in the following form:

L ¼ hLemi �
X

s

nshHsifs : (60)

Here, hLemi is the time-averaged Lagrangian density of the

electromagnetic field, summation is taken over distinct spe-

cies s, ns are the corresponding average densities, and hHsifs
are the corresponding OC Hamiltonians averaged over the

distributions fs of canonical momenta. Once Hs are found,

the complete set of GO equations is derived without referring

to the Maxwell-Vlasov system.

For the first time, the average Lagrangian accounts also

for particles trapped by the wave, under the assumption that

the number of these particles remains fixed (Sec. I). In partic-

ular, 1D waves are considered, in which case

L ¼ Lða;x; k; rÞ; here, x and k are the wave local frequency

and the wave number, and rs � n
ðtÞ
s =k are proportional to the

number of trapped particles within the local wavelength.

Correspondingly, the GO equations are summarized as fol-

lows. The first one is the consistency condition,

@tkþ @xx¼ 0, due to x¼�@tn and k¼ @xn; here, n is the

wave canonical phase. The second one is the NDR, given by

La ¼ 0. The third GO equation is a modified ACT,

@tI þ @xJ ¼
X

s

HðtÞs @xrs; (61)

with I � Lx and J � �Lk being the action density and

the action flux density, correspondingly. Because of the

source term on the right-hand side, the wave action may

not be conserved then, due to the fact that it can be

exchanged with resonant waves of the trapped-particle den-

sity (r-waves).

Since the number of trapped particles is fixed within our

model, their contributions to the momentum density q and

the energy flux density P depend mainly on rs and the phase

velocity u, rather than on the wave amplitude a explicitly.

Hence, I and J (and thus L too) may contain a-independent

terms, because

I ¼ q=k; J ¼ P=x: (62)

Particularly, in the limit of small a, the action flow velocity

is obtained,

vI �
vg0 þ .u

1þ .
; (63)

where vg0¼xk is the linear group velocity, and

. ¼ IðtÞ=IðpÞ. The difference between vI and vg0 here is

entirely due to adiabatic effects, so Eq. (63) should not be

confused with a seemingly akin formula in Ref. 45.

Applications of these results are left to Papers II and III,

where specific problems are addressed pertaining to proper-

ties and dynamics of waves with trapped particles.
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APPENDIX A: ROUTH REDUCTION

In this appendix, we restate the concept of Routh reduc-

tion,48 complementing the derivation of the wave Lagrangian

that we reported earlier in Ref. 14.

Consider a dynamical system described by generalized

coordinates q : (q1,…qN), so the corresponding Lagrangian

has a form Lðq; _q; tÞ, t being the time. The original least-

action principle is then formulated as follows [Ref. 36, Sec.

II]: among trajectories q(t) starting at q1 at time t1 and end-

ing at q2 at time t2, realized is the one on which the action

S ¼
Ð t2

t1
L dt is minimal. Since the general variation of S reads

as35

dS ¼
ðt2

t1

@L

@q
� d

dt

@L

@ _q

� �
�dq dtþ p � dqjt2t1 ; (A1)

with p � @ _qL, and dq(t1,2)¼ 0 due to q1,2 being fixed, one

thereby obtains the Euler-Lagrange equations,

d

dt

@L

@ _q
¼ @L

@q
: (A2)

For simplicity, we henceforth consider a 2D system,

with q¼ (h, x), the extension to a larger number of dimen-

sions being straightforward. Suppose, in particular, that h is

cyclic, i.e., does not enter L explicitly. Then the momentum

J canonically conjugate to h is conserved, so we can use the

equality J ¼ @ _hL to express _h as

_h � XðJ; x; _x; tÞ: (A3)

Hence, S can be understood as a functional of x(t) only.

Now consider the set of trajectories x(t) starting at given

x1 at time t1 and ending at given x2 at time t2, while h1 and h2

are arbitrary [albeit connected through Eq. (A3)]. Suppose

that �xðtÞ satisfies Eq. (A2) and consider the linear variation

of S[x(t)] with respect to dxðtÞ ¼ xðtÞ � �xðtÞ. Then, from Eq.

(A1), one obtains

dS ¼ Jdhjt2t1 : (A4)

Since S is thereby not minimized on �xðtÞ within these varia-

tion procedures, consider another, “reduced” action

Ŝ ¼ S�
ðt2

t1

J _h dt: (A5)

Here, the latter term can also be put as
Ð h2

h1
J dh, where

depending on x(t) are only the integration limits. Therefore,

its variation around �xðtÞ equals J dh jt2t1 , thus yielding

dŜ½�xðtÞ� ¼ 0. Then a new variational principle can be formu-

lated as follows: among trajectories x(t) starting at x1 at t1
and ending at x2 at t2, with arbitrary h1 and h2, realized is

�xðtÞ on which Ŝ is minimal.

Notice further that Eq. (A5) rewrites as Ŝ ¼
Ð t2

t1
R dt,

with the equivalent Lagrangian

Rðx; _x; tÞ ¼ Lðx; _x; t;XÞ � JX (A6)

[where X ¼ XðJ; x; _x; tÞ], also known as Routhian. Hence,

the motion equation that flows from the new variational prin-

ciple reads as

d

dt

@R

@ _x
¼ @R

@x
; (A7)

also in agreement with the general Routh equations [Ref. 36,

Sec. 41]. Since R is independent of h, the system phase space

is effectively reduced now, and x-motion decouples, which is

what constitutes the Routh reduction. For plasma physics

applications of this technique, see Refs. 34, 43, 49–52.

APPENDIX B: LINEAR WAVES

Here, we show how the known GO equations for linear

electromagnetic waves [which have n(t)¼ 0] follow from the

general Lagrangian formalism discussed in Sec. II.

1. General electromagnetic waves

Let us take eE; eB / e�ixtþik�x, and employ the dipole

approximation forHs [Refs. 49 and 50], namely,

Hs ¼ Hð0Þs þ Us; Us ¼ �eE	 � âs � eE=4; (B1)

whereHð0Þs is some function of the particle canonical momenta

(but not of the wave variables), Us is the ponderomotive poten-

tial, and âs is the linear polarizability. Then, since

1þ 4p
X

s

nshâsifs ¼ �̂ðx; kÞ; (B2)

where �̂ is the linear dielectric tensor, one obtains

L ¼ Lð0Þ þ 1

16p
eE	 � �̂ � eE� j eBj2� �

; (B3)

where the term

Lð0Þ ¼ Lem �
X

s

nshHð0Þs ifs (B4)

is independent of the wave variables. Now let us introduce

the wave amplitude a via eE ¼ ae for the electric field enve-

lope, where e determines polarization; hence, ~B ¼ jn� eja,

where n : ck=x, and c is the speed of light. Then,

L ¼ Lð0Þ þ a2

16p
Dðx; kÞ; (B5)

where we introduced

Dðx; kÞ ¼ e	 � �̂ � e� jn� ej2: (B6)

Varying the wave Lagrangian with respect to the amplitude

a yields the dispersion relation La ¼ 0, or

Dðx; kÞ ¼ 0; (B7)
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which coincides with the known dispersion relation

at prescribed e [Ref. 33, Secs. I–III]. In fact, the vector
equation,

�̂ � eþ n� ðn� eÞ ¼ 0; (B8)

also can be recovered, namely, by varying L with respect to

e*. [One could, of course, vary L also with respect to eE	 and

get Eq. (B8) immediately.]

Now let us vary L with respect to the wave phase n,

with Eq. (14) taken into account. Like for any other Lagran-

gian density of the form Lða;x; kÞ, one obtains then1

@tLx �r � Lk ¼ 0: (B9)

The quantity I � Lx can be written as

I ¼ a2

16p
e	 � �̂x � eð Þ þ a2

8px
jn� ej2

¼ a2

16px
e	 � ðx�̂xÞ � eþ e	 � �̂ � eþ jn� ej2
h i

¼ 1

16px
eE	 � @xð�̂xÞ � eEþ jeBj2h i

; (B10)

or I ¼ e=x, where we used Eq. (B7) and introduced e for the

linear-wave energy density;49 thus, I equals the linear-wave

action density. Also, J � �Lk can be put as

J ¼ � a2

16p
Dk ¼

a2

16p
Dx

�Dk

Dx

� �
¼ vg0I ; (B11)

where we used �@kD=@xD ¼ xk [from Eq. (B7)], the latter

being the linear group velocity vg0; thus, J is the linear-

wave action flux density. Hence Eq. (B9) rewrites as

@tI þ r � ðvg0IÞ ¼ 0; (B12)

in agreement with the linear ACT [Ref. 2, Sec. 11.7].

Equations (14), (B7), and (B12) represent a complete set

of equations describing nondissipative linear electromagnetic

waves in the GO approximation (cf. Ref. 2, Chaps. 14 and

15). As one can see from the above calculation, the Max-

well’s equations and the Vlasov equation per se are not

needed to derive these equations.53

2. Longitudinal electrostatic waves

Finally, let us consider longitudinal electrostatic waves

in somewhat more detail. In this case, for the longitudinal

polarizability of an individual particle with OC velocity V,

we take as ¼ �e2
s=½msðx� k � VÞ2�,43 where es and ms are

the particle charge and mass, respectively; in particular, this

corresponds to

Us ¼
e2

s jeEj2
4msðx� k � VÞ2

(B13)

(cf. Refs. 43, 54, and 55). Then, the longitudinal dielectric

function,

� ¼ 1þ 4p
X

s

nshasifs ; (B14)

can be written as (cf. Ref. 23)

� ¼ 1�
X

s

x2
ps

ð1
�1

fsðVxÞ
ðx� kVxÞ2

dVx; (B15)

where x2
ps ¼ 4pnse

2
s=ms, and fs(Vx) are the distributions of

the particle longitudinal velocities Vx, normalized such thatÐ1
�1 fsðVxÞ dVx ¼ 1. By definition, a linear wave has no

trapped particles, so fs(Vx) is zero in the resonance vicinity,

and thus the integrand in Eq. (B15) is analytic. Hence, one

can take the integral by parts. This yields

� ¼ 1þ
X

s

x2
ps

k

ð1
�1

f 0s ðVxÞ
x� kVx

dVx; (B16)

in agreement with Ref. 56.

From Eq. (B7) the dispersion relation now reads as

�(x, k)¼ 0. In particular, this means vg0¼��k=�x and

I ¼ �x
16p
jeEj2: (B17)

Let us show that this expression is consistent with Eq. (51).

First, notice that49

Px ¼ msVx � @Vx
Us; (B18)

so I ¼ k�1
P

s nsh@VxUsifs . From Eq. (B13), one gets

k�1h@Vx
Usifs ¼ �h@xUsifs ¼ �@xhUsifs ; (B19)

and therefore I ¼ �@x
P

s nshUsifs or

I ¼ j
eEj2

16p
@x

X
s

4pnshasifs ; (B20)

where we substituted Eq. (B1) for Us. Using Eq. (B14), one

thereby matches Eq. (B17), as anticipated.
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