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A magnetized plasma preseeded with an initially undamped Langmuir wave is shown to transition

suddenly to a collisionless damping regime upon expansion of the plasma perpendicular to the background

magnetic field. The resulting anisotropic fast-particle distribution then leads to an electrical current and dc

voltage induction. The current drive efficiency of this effect in nonstationary plasmas is shown to depend

on the rate of expansion of the plasma, the time-varying collisionality, and the plasma L=R time.

Subsequent recompression of the plasma enhances this current drive effect by reducing further the

collision rate of the current-carrying electrons.
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Introduction.—Time-varying plasma with embedded
waves [1] or dust [2] can often exhibit radically different
behavior from steady state plasma. Here, a new scheme to
drive sudden bursts of current and voltage is predicted in
nonstationary plasma, whereby an initially undamped
monochromatic wave, embedded in a magnetized plasma
and propagating in one direction parallel to the magnetic
field, is induced into wave-particle resonance with plasma
particles due to magnetic expansion perpendicular to the
wave vector. The sudden, collisionless damping causes the
wave to transfer its energy anisotropically onto the comov-
ing high-energy tail of the resonant particle distribution,
while subsequent velocity-dependent collisional relaxation
of the modified distribution results in a rise and fall of the
total fast-particle current.

As a paradigmatic example, embedded Langmuir waves
are considered, though other waves may prove more suit-
able for specific applications. The peak attainable fast-
particle current densities occur for expansion rates, �,
comparable to the electron collision rate, �c. However,
expansion rates significantly faster than the collision rate
lead to more prolonged current as a result of enhanced
electron trapping by the wave, which carries more elec-
trons to superthermal velocities and, hence, reduces their
collisionality. Interestingly, the current can be prolonged
by magnetically compressing the plasma to higher den-
sities following the collisionless damping, which increases
perpendicular velocities sufficiently to lower the collision-
ality of the current-carrying electrons.

Before presenting the results of the numerical simula-
tions, the basic current drive mechanism will be explained
briefly. For slow variation of external forces, the Langmuir
wave dispersion relation obeys the eikonal equation [3]:
!2 ¼ !2

pðtÞ þ 3k2v2
TkðtÞ, where !p is the plasma fre-

quency, and vTk is the electron thermal velocity in the

direction parallel to the wave vector k, with jkj � k.
This is just the normal dispersion relation for plasma
oscillations, but with !p and vTk varying slowly in time.

Assume there exists a homogeneous magnetic field B k k

that is sufficiently strong to magnetize both the ions and the
electrons. Then, the plasma number density n / jBj �
BðtÞ by magnetic flux freezing, as B is slowly varied with
time. Additionally, the conservation of the magnetic
moment, � ¼ mv2

?=2B, on time scales short compared

to ��1
c leads to the reduction of perpendicular velocities

for magnetic expansion, i.e., dB=dt < 0.
Consider, for simplicity, a torus of plasma in a toroidal

magnetic field. The torus is high aspect ratio, so any small
toroidal segment appears cylindrical, and expansion is
presumed to occur in the minor radius only, while the
major radius is fixed. Initially, the phase velocity of an
embedded Langmuir wave vph ¼ !=k � vTk, with k ¼
const, and ! � !p / n1=2 for perpendicular expansion.

Neglecting anisotropy-driven electromagnetic instabilities
(addressed in the Discussion section), vTk is decoupled

from vT? when �c � �, and the wave can be made to
satisfy the condition vph �OðvTkÞ via magnetic expan-

sion, at which point Landau damping of the wave initiates
[1]. Even in the limit �c �Oð�Þ, where the temperature
variation scales with the system volume adiabatically, i.e.,

TV2=3 ¼ const, one still finds vT / n1=3. Thus, in this limit

the ratio vph=vTk / n1=6, and the Landau damping criterion

still can become satisfied.
As opposed to the case of compression parallel to k by

walls, where only heating occurs [1], here the Landau
damping of a wave traveling in one direction forms an
anisotropic high-energy electron tail. For an electrostatic
plasma wave initially far from resonance, the fields carry
no momentum (E�B ¼ 0), while the velocity perturba-
tion to the thermal electrons in response to the wave is
sinusoidal, so net mechanical momentum also averages to
zero. Nonlinear Landau damping is expected to conserve
total momentum; thus, velocity-dependent collisions be-
tween electrons and ions are needed in order for an electric
current to arise [4]. Since particle collision rates �c �
1=v3, the high velocity tail relaxes more slowly than the
rest of the distribution, producing a net current. However,
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as opposed to steady state current drive [5], here the
development and relaxation of current carried by supra-
thermal particles will be impacted significantly by the
time-varying temperature and density of the plasma as
well as inductive effects [6].

Induced wave damping in expanding plasma.—To de-
scribe this switchlike mechanism, a novel particle-in-cell
(PIC) simulation was developed that treats electrostatic
fields with mobile electrons and ions in one spatial dimen-
sion, while particle velocities parallel and perpendicular to
the simulation domain are modeled. Periodic boundary
conditions are imposed to allow the current loop to close,
and the velocities are initialized as Maxwellian with a
sinusoidal parallel perturbation for the plasma wave.
Perpendicular velocities are coupled to the change in n
(and thus B) by enforcing conservation of the magnetic
moment, �� ¼ 0, during each time step, �t � !�1

p �
��1
c . Variations in density due to perpendicular compres-

sion and expansion are simulated by scaling both the PIC
particle charge, Q, and mass, M, proportionally to the
normalized density, ~nj ¼ nj=n0, while holding the ratio

Q=M fixed. This can be visualized as the redistribution of
charge across the perpendicularly homogeneous charge
sheets modeled by a 1D PIC code. Finally, a continuous,
time-explicit PIC collision algorithm for coupling parallel
and perpendicular velocities was used based on the ap-
proach in Ref. [7]. The advantage of this approach is that
the 2D effects of magnetic expansion and collisional re-
laxation can be retained while simulating motion in only
one spatial dimension, allowing for more particles to be
simulated per cell, and, hence, drastically decreasing the
statistical noise.

Any time-varying current will induce an electric field,
whose strength will depend on the L=R time, �. The total
current then can be described by [8]: �dI=dt ¼ IrfðtÞ � I,
where IrfðtÞ is the current source that arises from the effects
considered here. Since the number of fast current carriers is
small compared to the bulk current carriers, the induced
electric field affects primarily bulk electrons, producing
current with classical resistivity. What is addressed and
simulated here is the wave-generated current, IrfðtÞ, for
which the induced field can be ignored [6]. Thus, a differ-
ent choice of plasma parameters and expansion rate could
yield a switchlike means to produce either a burst of
current or voltage, or both.

Consider a Langmuir wave that is initialized such that
the trapping width vtr=vT ¼ 3, and the phase velocity

vph=vT ¼ 7, where vtr ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eE=mk

p
, E is the electric field

strength, and e=m is the electron charge-to-mass ratio.
Particles are not initialized beyond vk ¼ 4vT in velocity-

space, so the resonant region of the wave initially lies just
beyond the fastest particles in the simulation, and no damp-
ing occurs if collisions are excluded and the density is held
fixed. The plasma density is chosen so the electron colli-
sionality relative to the wave frequency ! initially goes

like !=2��c ¼ 94, and an optimal expansion rate, �, is
expected to exist in the range ! � � * �c, where suffi-
cient collisionless damping can occur before the wave
energy is lost to collisional damping. The plasma is ex-
panded until it is 20% of its original density at different
linear rates with brief, smooth ramp-up and ramp-down
periods. Following expansion, the plasma is allowed to
evolve further at the fixed reduced density.
The fast-particle current response of the plasma subject

to a number of different expansion times, T ¼ 1=�, is
shown in Fig. 1. Figure 1(a) shows the normalized current
density, J=en0vT0, versus time for T ¼ 30, 50, 100, 150,
and 250, where T has units of plasma periods, �p0 ¼
2�=!p0, and the subscript ‘‘0’’ signifies an initial value.

Since the PIC code utilizes a random collision routine, the
data in Fig. 1 represent the mean of many identically
initialized simulations for each value of T , with an
!p-scale smoothing filter applied to remove fast oscilla-

tions. The statistical error in the data is on the order of
�1� 10�4 for Fig. 1(a), approximately a 2% to 5% error
at peak current density. To maximize the peak current
density, there is clearly a benefit to slower expansion,
though the performance levels off for T * Oð��1

c Þ. Of
course, for T � ��1

c , the wave damps promptly without
modifying the tail distribution significantly.
Figure 1(b) shows the total normalized flux tube current.

The peak current is far less sensitive to T than the peak
current density, though Fig. 1(b) shows that faster expansion
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FIG. 1 (color online). (a) Dimensionless current density for
expansion time T ¼ 30 (blue), 50 (green), 100 (red), 150
(cyan), 250 (magenta), time measured in units �p0.

(b) Dimensionless total flux tube current, same color scheme.
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generally leads to a more prolonged current profile. Thus,
another figure of merit might be the total time-integrated
current. In this case, optimization of time-integrated cur-
rent also points to faster expansion rates. Figure 2(a) shows
the behavior of the normalized electron parallel velocity
distribution function, fðvÞ, with R

fðvÞdv ¼ 1, for T ¼
30�p0. At this expansion rate, enhanced particle trapping

by the wave modifies significantly the particle distribution
in the vicinity of the resonance [9], accelerating high-
energy electrons to higher parallel velocities by amounts
comparable to vtr. On the other hand, Fig. 2(b) shows that
slower expansion leads to less particle trapping, thus limit-
ing the production of high-energy electrons. In phase
space, the advancement of the trapped orbit separatrix
along the velocity axis toward the particle distribution,
i.e., d=dtjvph=vTkj � �< 0, is counterbalanced by the

recession of the separatrix due to wave damping, i.e.,
d=dtðvtr=vTkÞ � � < 0. This reduction in vtr is due ini-

tially to plasmon conservation as the plasma rarefies, vtr /
E1=2 / n3=8 [3], and later to resonant wave-particle energy
exchange, _vtr � �Lvtr=2, with the (nonlinear) Landau
damping coefficient, �L & 0 [9]. Then, when j�j � j�j,
as is the case with fast system expansion, a phase space
bubble is dragged into the plasma, and resonant particles
experience an impulse of OðvtrÞ [10]. As some particles
become trapped by the wave, an additional downshift in
wave frequency occurs [11], dragging the phase space

bubble further into the thermal velocity distribution. In
the slower expansion case, where j�j � j�j, the wave
damps appreciably as it penetrates the distribution, limiting
the size of the phase space bubble. Consequently, the
current carriers in the slower expansion cases are signifi-
cantly lower energy relative to the high-energy current
carriers produced in the faster expansion cases, resulting
in quicker collisional damping of the associated current.
Extended current with recompression.—The lifetime of

the modified parallel velocity tail can be extended signifi-
cantly through magnetic recompression of the plasma fol-
lowing collisionless damping of the wave. Figure 3 shows
the flux tube current for the original T ¼ 30�p0 case from

Fig. 1(b) as well as the case where, after t ¼ T , the plasma
is then compressed back to its original density at the same
linear rate. The current in the recompressed plasma decays
over a longer interval, since the compression heats the
particles at a rate sufficient to overcome the opposing
effect of densification, lowering the overall collisionality.
Generally, simulations reveal that faster recompression
leads to more prolonged current.
Discussion.—The use of lower dimensional models to

simulate wave-particle interactions often offers benefits
and has been implemented recently in other systems [12].
The number of particles NS required in an S-dimensional
PIC simulation is determined by the weak-coupling con-
dition, NSð�D=LÞS � 1, where �D is the Debye length and
L is the characteristic length of the simulation domain.
Since �D=L � 1, far fewer particles are needed in a one-
dimensional simulation. The lower dimensionality of the
code also allows N to be increased beyond the minimum

requirements so that noise, scaling like 1=
ffiffiffiffi
N

p
, may be

reduced without loss of computational tractability.
The simulation does not treat electromagnetic interac-

tions and, thus, does not capture temperature anisotropy-
driven instabilities [13]. For a � T?=Tk, the relevant elec-
tron instabilities, the firehose (a < 1) and whistler (a > 1)
instabilities, have maximum growth rates determined by
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FIG. 2 (color online). Plot of log10½fðv; tÞ	, with fðv; tÞ the
electron parallel velocity distribution function, for (a)T ¼ 30�p
and (b) T ¼ 250�p. Cooling of bulk parallel velocities is due to

collisional coupling with perpendicular velocities.

0 50 100 150 200 250
0

1

2

3

4

5

6
x 10

−3

ω
p0

t/2π

(J
 / 

en
0v T

0)⋅(
A

 / 
A

0)

FIG. 3 (color online). Normalized flux tube current for the
original T ¼ 30�p expansion scenario (dashed line), and where

the plasma is compressed immediately back to its original
density with an identical (T ¼ 30�p) linear profile (solid line).
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two parameters: parallel beta, 	e ¼ 8�nTk=B2, and the

anisotropy parameter, a. The systems modeled in Fig. 1
traverse this parameter space as indicated in Fig. 4. Initial
conditions correspond to the lower right corner of the plot,
and, given enough time, all trajectories eventually return to
a ¼ 1 from collisional isotropization. The dashed line
shows the limit of � � �c, in which 	e / n�1, and a /
n, so the (reversible) paths are along lines of constant
a	e. Figure 4 can be compared directly with Fig. 5 of
Ref. [13(b)]. For expansion-induced current, which coin-
cides with a < 1, the firehose instability generally can be
avoided by picking a sufficiently small 	e0. On the other
hand, the whistler instability, whose growth rate is more
sensitive to anisotropy than the firehose instability, may
occur with recompression if a > 1, limiting the extent to
which plasma compression may prolong the current.

The simulation also does not capture the induced electric
field due to finite _Irf . However, Appendix A of [6] shows
that the relaxation of the fast-particle current is minimally
affected by the induced dc field driving an Ohmic counter-
current. Then the IrfðtÞ calculated here can be inserted into
the circuit equation along with some L=R time [8], and the
solution IðtÞ then represents the net plasma current.
Because there is a trade-off between driven current and
induced voltage, a continuum of parameter-dependent
plasma responses can be achieved through this switchlike
wave damping mechanism.

The analysis here describes Langmuir waves propagat-
ing along field lines of a toroidally magnetized annulus of
plasma expanding uniformly about its toroidal axis. Such a
wave could be excited by external injection of an electron
beam [14] or using chirped lasers [15], for example. In one
scenario, a single current-carrying wire runs along the
central axis of a Z-pinch, producing an azimuthal magnetic
field within the plasma surrounding the wire. At tempera-
tures near 750 eV and densities of Oð1016 cm�3Þ, an
Oð100 �mÞ Langmuir wave with energy density roughly
1% the total plasma energy would drive several kA=cm2 of
fast-particle current with expansion times T � 100 ns,
characteristic of modern Z-pinch devices [16]. However,

note that a toroidal plasma with major radiusR and minor
radius a exhibits resistance scaling like R�R�=a2, with
the classical resistivity �� 4��c=!

2
p. The inductance

scales like L� 4�R=c2, leading to the scaling L=R�
ða=
eÞ2=�c, with the electron skin depth 
e ¼ c=!p. For a

cm-scale Z pinch with the above parameters, T � L=R,
and an Oð1 mVÞ loop voltage nearly cancels Irf . Instead,
significant net current is produced when L=R & T & ��1

c ,
implying a=
e & 1. For instance, centimeter waves in
magnetically confined laboratory plasmas, with densities
around 1010 cm�3 and temperatures around 50 eV, produce
current at sub-ms expansion times. Note, though, that so
long as L=R & ��1

c , fast-particle current driven by rela-
tively fast expansion, i.e., T � L=R, will eventually pro-
duce net current long after expansion has ceased, since Irf
decays on a much longer time scale than ��1

c .
While Langmuir waves serve as a paradigmatic example

to illustrate the current drive mechanism, various applica-
tions may find other waves more suitable, such as lower
frequency waves or nonlinear waves [17]. Waves charac-
terized by coherent motion of the ion species would damp
on ion collisional time scales, allowing for more modest
expansion rates and/or higher initial plasma densities.
Lower frequency waves also could be made to damp
preferentially on the ions, in which case the formation of
an enhanced superthermal ion population could be of
practical use in inertial fusion experiments [18].
In summary, magnetic expansion of plasma can induce

sudden collisionless damping of an embedded Langmuir
wave with phase velocity in one direction. This produces a
fast-particle current that grows and subsides due to a dy-
namically changing collision rate, while inductive effects
drive a loop voltage and Ohmic countercurrent. The effi-
ciency of this current drive process varies with the expansion
rate of the plasma, with faster rates leading to longer-lasting
currents due to greater particle trapping by the wave. This
current drive effect is enhanced further by the subsequent
recompression of the plasma.
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