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Abstract. This study concerns a situation when measurements of the nonresonant cross-section of nuclear
reactions appear highly dependent on the environment in which the particles interact. An appealing ex-
ample discussed in the paper is the interaction of a deuteron beam with a target of deuterated metal Ta.
In these experiments, the reaction cross section for d(d, p)t was shown to be orders of magnitude greater
than what the conventional model predicts for the low-energy particles. In this paper we take into account
the influence of quantum effects due to the Heisenberg uncertainty principle for particles in a non-ideal
plasma medium elastically interacting with the medium particles. In order to calculate the nuclear reaction
rate in the non-ideal environment we apply both the Monte Carlo technique and approximate analytical
calculation of the Feynman diagram using nonrelativistic kinetic Green’s functions in the medium which
correspond to the generalized energy and momentum distribution functions of interacting particles. We
show a possibility to reduce the 12-fold integral corresponding to this diagram to a fivefold integral. This
can significantly speed up the computation and control accuracy. Our calculations show that quantum
effects significantly influence reaction rates such as p +7Be, 3He +4He, p +7Li, and 12C +12C. The new
reaction rates may be much higher than the classical ones for the interior of the Sun and supernova stars.
The possibility to observe the theoretical predictions under laboratory conditions is discussed.

1 Introduction

The rates of non-resonant nuclear reactions including fu-
sion processes are determined by kinetic energies of the
interacting particles in their center-of-mass system as well
as by their distribution in energy and momentum. For
moderate temperatures the main contribution to the fu-
sion process is expected from particles with energies sev-
eral times larger than the plasma temperature.

However, it is well known that in dense environments
the quantum uncertainty in the energy of particles asso-
ciated with their frequent collisions leads to disruption
of the unambiguous relationship between the energy and
momentum of particles [1–3]. This results in the appear-
ance of power distributions in the momentum distribution
function of particles in dense media. It is particularly in-
teresting to study how these effects in a nonideal plasma
contribute to the rates of fusion reactions at moderate
plasma temperatures of a few electron volts and densities
of about one gram per cubic centimeter.

The influence of quantum effects on the equilibrium
momentum distribution was investigated by Wigner and
others [4–6], who found the amendment to the Maxwellian
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distribution, proportional to the square of the Planck con-
stant. Their result was related to the noncommutativity
of the operators of kinetic and potential energy of interac-
tion and suggested an effective “temperature” increasing
with the density of particles.

The first results on the power dependence of the
equilibrium distribution function (as p−4) for real Bose-
particles were obtained by Bogolyubov in his famous work
on superfluid weakly nonideal Bose-gas [7] (see also [8]).
Similarly, one can obtain the momentum distribution for
electrons in the superconducting phase at momenta larger
than the Fermi momentum. Later, the result of the power
law distribution function for momenta larger than the
Fermi value was obtained by Belyakov [9] for electrons
interacting with short-range impurities. In 1960 Daniel
and Vosko [10] found the distribution function of electrons
above the Fermi momentum, taking into account the ex-
change interaction of electrons. That function decreased
beyond the Fermi jump as p−8.

In 1966, Galitsky and Yakimets [11] showed that the
equilibrium momentum distribution of particles acquires
a power correction term to the Maxwellian function due
to quantum effects. This correction is valid at large mo-
menta that exceed the thermal or the Fermi momentum.
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Fig. 1. Reaction rate diagram for a + b → c + d.

For the Coulomb interaction potential, the inverse power
dependence on the momentum was equal to eight. In 1975
Kimball proved that in a Coulomb system the asymptotic
momentum distribution also includes the eighth degree,
regardless of the plasma temperature [12]. In the collision
of particles of one species in theory there is an additional
factor proportional to the correlation function at zero dis-
tance between them. This factor may be of the order of
1/2 for electrons colliding with each other due to the Pauli
exclusion principle. For heavy particles such as hydrogen
or deuterium nuclei this factor is small in the strongly
coupled plasma.

In [13–15] the authors proposed a simple model using
the Lorentz gas concept in which a light particle is scat-
tered by a heavy impurity particle. It was demonstrated
numerically that there must be a significant deviation of
the distribution function from the Maxwellian form as the
result of the quantum corrections. This fact leads to the
power law damping of the distribution function, the ex-
ponent is also equal to eight for the screened Coulomb
interaction. It has been suggested that this effect should
influence the reaction rate for these particles. In particu-
lar, it should give the nonexponential temperature depen-
dencies of reaction rate constants for inelastic processes.

In the literature [16,17] there was some criticism, con-
nected with the use of the asymptotical presentation of a
single-particle distribution function for calculation of re-
action rates, including fusion rates. The problem is that in
reality we must use the product of distribution functions
over momentum in the laboratory frame for both reacting
particles and due to power low tails, not Maxwellian ones,
it is hard to perform analytical integration of the reaction
cross-section, depending on particles relative momentum
in their center of mass.

In this study we simulated the thermonuclear fusion re-
actions taking into account the impact of this mechanism
on the distribution function under conditions that might
be realized in a contemporary experiment. The rates of
some reactions were calculated. It was shown that in gen-
eral the reaction rate is determined by the diagram shown
in Figure 1 for the single-particle nonrelativistic kinetic
Green’s function or generalized distribution of energy and
momentum, which corresponds to the escape process of
species a and is reduced, in general, to a ten-fold integral.
In other words, in the original expression, one should not

perform a simple averaging of the reaction cross-section,
depending mainly on the relative momentum of particles
(rather than energy) for quantum single-particle momen-
tum distribution function. It is also shown that under cer-
tain conditions this integral is reduced to a five-fold in-
tegral and in the model case to a three-fold integral. In
some cases the last integral can be calculated explicitly
and contains contributions from the power type momen-
tum distributions for each of the reacting particles in ad-
dition to the classical Maxwellian terms. Each stage of re-
duction and the corresponding simplification was verified
numerically without the use of any simplifications. Some
attempts have been made to calculate several fusion reac-
tions appropriate for conditions of the solar plasma in the
deep interior. A reasonable accuracy of the simplified ex-
plicit estimates for the rate constants was shown for these
conditions.

From our calculations we predict in important circum-
stances a significant increase in the rate of neutron yield.
In particular, an increase in the rate of d + d reactions
may in fact be observable in laboratory testing. We also
note possible changes in the reaction rate constant in the
plasma of astrophysical objects.

For some reactions the influence of the power cor-
rections was shown to be very significant at relatively
low temperatures and high densities of weakly nonideal
plasma.

2 Calculation of reaction rates in nonideal
plasmas

The state and properties of a system are found from the
generalized distribution function F (E,p) where E and
p are the energy and momentum of the particles. This
function should be defined in a factorized form. Further
we use kinetic energy to substitute for the momentum so
the generalized function can be written as

F (E, ε) = n (E) δγ (E − ε) , (1)

where n(E) are the occupation numbers and δγ(E − ε)
is the spectral function, describing the dependence of the
generalized distribution function on energy and momen-
tum. Equation (1) is the most general representation of the
nonrelativistic kinetic Green’s function [2,8] without any
assumptions, in which the width of the Lorentzian spec-
tral function δγ is the imaginary part of retarded mass
operator of the particle in a medium and energy shift is
the real part of retarded mass operator. Consequently, the
reaction rate follows from the integration which is formally
a twelve-fold construction written as (see Fig. 1)

S =
1

4πμ2
abh

6

∫ ∞

0

dEa

∫
dpa

∫ ∞

0

dEb

∫
dpb

∫
dω

∫
dq

× δγa (Ea − εa, εa)n (Ea) (1 ± n (Ea +Qa − ω))
× δγb (Eb − εb, εb)n (Eb) (1 ± n (Eb + ω +Qb))

× δγ′a (Ea +Qa − ω − εpa−q, εpaq)

× δγ′b (Eb + ω +Qb − εpb+q, εpb+q) |f |2 . (2)
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Here the subscript indices a and b designate the react-
ing species. Ea and pa are, respectively, the energy and
the momentum of particles a, εa describes the kinetic en-
ergy, μab is the reduced mass, ω is the interaction energy,
h is Planck’s constant, and Qa is the energy released in
the fusion reaction. The dependencies of the occupation
numbers and “±” are subject to proper statistics. Here
“−” refers to fermions and “+” to bosons. The actual ir-
reducible dimension of this integral is equal to 10.

For the nonideal plasma, the distribution function con-
tains the Lorentzian which determines the spectral depen-
dence on the kinetic energy:

δγ (E − ε, ε) =
γ (E, ε) /π

(E − ε−Δ (E, ε))2 + γ2
. (3)

The scattering linewidth in the Lotentz gas model γ(E, ε)
is found from

γ (E, ε) = �NσV, (4)

where N is the number density of the scatterers, σ is the
scattering cross section, and V is the collision velocity,
determined by energy E.

In reference [18] it was noted that, for the gaseous
medium approximation, when only binary collisions can
be considered, the reaction amplitude is just a function
of the momenta before and after their reaction. In our
further transformations we use the value of the reaction
cross section which depends on the energy in the center-
of-mass system. The ratio between the amplitude and the
cross section has the form

|f |2 =
|p|

|p − q|σf (εp), (5)

where p is the momentum of the reacting species a and b
in the center-of-mass system:

p =
mbpa −mapb
ma +mb

, εp =
|p|2
2μab

. (6)

The reaction cross section is the function of kinetic energy
εp in the center-of-mass system and may be written as
in [19], i.e.

σf (εp) =
S(εp)
εp

exp {−2πη(εp)} (7)

where η = Z1Z2e
2/�ν is the Sommerfeld factor. It is con-

ventional to use a different form of the cross-section for a
non-resonant fusion reaction:

σf (εp) =
S(εp)
εp

exp

{
−π

√
EG
εp

}
, (8)

where the Gamow parameter is found from

EG =
2μabmpZ

2
1Z

2
2e

4

�2
= 4μab

mp

me
Z2

1Z
2
2Ry, (9)

with Ry = mee
4/2�

2. With a very good accuracy we can
approximate it as Ry = 100μabZ2

1Z
2
2 keV. At the same

time, the factor S(εp) is weakly dependent on energy εp.

In a dense medium with account for the effects of de-
generacy the scattering amplitude for nuclear fusion may
depend on the total energy [20]. This leads to corrections
proportional to plasma concentration multiplied by the
cube of the elastic scattering amplitude, which are low
within the gas approximation.

The reaction rate found from (2) is a very general defi-
nition formulated for this model. The modeling procedure
is reduced to calculation of the tenfold integral which is
a very complicated task. Under conditions when plasma
becomes ideal, for example for smaller densities, we may
write γ (E, ε) → 0 and δγ (E − ε, ε) can be reduced to the
delta function.

For reactions with energy release (Qa > 0), in case of
nondegenerate plasma the population numbers are small
and n(E) can be neglected as compared to unity. With this
simplification the reaction rate obtained from the general
equation is the following

S =
1

4πμ2
abh

6

∫ ∞

0

dEa

∫
dpaδγa (Ea − εa, εa) n (Ea)

×
∫ ∞

0

dEb

∫
dpbδγb (Eb − εb, εb)n (Eb)

×
∫
dω

∫
dq δγ′a (Ea +Qa − ω − εpa−q, εpaq)

× δγ′b (Eb + ω +Qb − εpb+q, εpb+q) |f |2 . (10)

In this approximation we also neglect the suppression of
transmission for Fermi particles or amplification (conden-
sation) for Bose particles. This is a valid assumption be-
cause of small populations in both cases. We further as-
sume that the linewidths of the energy and the kinetic
energy distribution profiles, determined by δγ′a and δγ′b,
are small enough to approximate the contours with the
Dirac delta functions. With this assumption in equation
we come to

S =
1

4πμ2
ab (2π�)6

∫ ∞

0

dEa

∫
dpan (εa) δγa (Ea − εa, εa)

×
∫ ∞

0

dEb

∫
dpbn (εb) δγb (Eb − εb, εb) |p|σ (εp)

×
∫
dω

∫
dq δ (Ea +Qa − ω − εpa−q)

× δ (Eb + ω +Qb − εpb+q)
1

|p − q| . (11)

The inner integration over ω in this equation can be per-
formed as following:

Iq =
∫
dq

∫
dω δ (Ea +Qa − ω − εpa−q) (12)

× δ (Eb +Qb + ω − εpb+q)
1

|p − q|
=

∫
dq δ (Ea +Qa + Eb +Qb − εpa−q − εpb+q)

1
|p − q| .
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Now it is easy to obtain the ratio for the delta function
arguments:

εpa−q + εpb+q =
|pa − q|2

2ma
+

|pb + q|2
2mb

= εa + εb +
q2

2

(
1
ma

+
1
mb

)
− 2q

(
pa

2ma

× cos (pa, q) − pb
2mb

cos (pb, q)
)
. (13)

Let us reduce it to the perfect square by introducing the
energy in the center-of-mass system:

εpa−q + εpb+q = εa + εb − p2

2μab
+

(q − p)2

2μab

= εa + εb − εp +
(q − p)2

2μab
, (14)

so that the integral Iq now takes the form

Iq =
∫
dq δ

(
Ea + Eb +Qa +Qb

− εpa − εpb
+ εp − (q − p)2

2μab

)
1

|q − p| . (15)

Let us note that variable εq as well as momentum p is
determined by the momenta of colliding particles and does
not depend on q. Changing to the variable s = q − p we
get

Iq =
∫
ds δ

(
Ea + Eb +Qa +Qb

− εpa − εpb
+ εp − (s)2

2μab

)
1
|s|

= 4π
∫ ∞

0

s2ds δ

(
Ea + Eb +Qa +Qb (16)

− εpa − εpb
+ εp − (s)2

2μab

)
1
|s|

= 4πμab
∫ ∞

0

dεsδ
(
Ea + Eb +Qa +Qb

− εpa − εpb
+ εp − εs

)
= 4πμab.

The integration in the latter equation was carried out with
the use of the variable εs = |s|2/2μab.

Now we substitute the result into equation (11). For
the relative velocity of the colliding particles we need to
make an account for Vab = Va − Vb = |p|/μab. As the

Table 1. The rate constants for the model reaction at different
concentrations.

N , cm−3 1021 1022 1023

Analytic 1.5 × 10−29 1.5 × 10−28 1.5 × 10−27

〈σVab〉 5 1.3 × 10−29 2.0 × 10−28 3.2 × 10−27

〈σVab〉 10 0.99 × 10−29 2.1 × 10−28 2.7 × 10−27

result we come to

S =
1

4πμ2
ab

∫ ∞

0

dEa

(2π�)3

∫
dpa n (Ea) δγ (Ea − εa)

×
∫ ∞

0

dEb

(2π�)3

∫
dpb n (Eb) δγ (Eb − εb) (17)

× 4πμ2
ab

|p|
μab

σ (εp)

=
∫ ∞

0

dEan (Ea)
(2π�)3

∫
dpa δγ (Ea − εa)

×
∫ ∞

0

dEbn (Eb)

(2π�)3

∫
dpb δγ (Eb − εb)Vab (εp) σf (εp) .

If we use the apparent ratio for the number densities Na
and Nb this equation can be transformed to the standard
form, i.e.

S = 〈Vabσ〉NaNb. (18)

Numerical simulation of a fusion reaction in the light of
the above models and the calculation of the reaction rates
with (2) and (17) as well as comparison of the results con-
firmed the correctness of the approximations used in our
approach. Table 1 shows the constants for the model re-
action 〈σVab〉 for values of particles concentration N and
temperature T = 2 eV in the region where the quantum
effects are important. The reaction constants 〈σVab〉 ob-
tained with the numerical model in which we used equa-
tion (2) is designated as 〈σVab〉 10 and the results ob-
tained with equation (17) are denoted as 〈σVab〉 5. The
detailed simulation algorithm in the Monte Carlo method
is described in the Appendix. These results were compared
with the analytical estimations based on (73) which is ob-
tained later in this paper. Calculations were performed
for the astrophysical factor S (0) = 241 keV barns and
the Gamow energy was determined in accordance with
the equation (9) as EG = 100 keV.

3 Kinetic energy distribution function
with quantum corrections

For the nondegenerate plasma the occupation numbers
should have Maxwellian distribution over energy at high
temperatures:

n(ε) =
2

√
π (kT )3/2

exp
{
− ε

kT

}
. (19)
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At the same time the energy distribution function could be
derived by integrating the generalized distribution func-
tion as shown here:

f(ε) =
∫ ∞

0

f (E, ε) dE =
∫ ∞

0

n (E) δγ(E − ε) dE (20)

=
1
π

∫ ∞

0

n (E)
γ (E, ε)

(E − ε−Δ (E, ε))2 + γ (E, ε)2
dE.

For the values of the kinetic energy in the range of ε ≤ E0,
where the threshold energy is significantly greater than
the linewidth of the Lorentz function, i.e. γ � E0, the
Lorentzian can be represented by δ-function with a high
accuracy. Therefore, for this energy range the kinetic en-
ergy distribution function is f(ε) = n(ε). If the kinetic
energy is ε > E0, then in order to calculate the integral
one should split the integration interval in equation (20)
into two regions, i.e. the region of small energies of the
order of the plasma temperature E0: 3kT . . . 5kT and the
rest of the interval. In the region of E > E0 the Lorentzian
can be approximated by the delta function. In the region
of small E with account for γ � kT in the asymptotic
limit of ε� kT the denominator of the Lorentzian is ap-
proximately ε2:

f (ε) =
∫ E0

0

n (E)
γ (E, ε) /π

(E − ε−Δ (E, ε))2 + γ (E, ε)2
dE

+
∫ ∞

E0

n (E)
γ (E, ε) /π

(E − ε−Δ (E, ε))2 + γ (E, ε)2
dE

=
2√

π (kT )3/2

[∫ E0

0

exp
{
− E

kT

}
γ (E, ε) /π

ε2
dE

+
∫ ∞

E0

exp
{
− E

kT

}
δ (E − ε) dE

]

= fqt (ε) + f0 (ε) . (21)

The classic expression for the distribution function is rep-
resented by the term

f0 (ε) =
2√

π (kT )3/2
exp

{
− ε

kT

}
. (22)

In the range of small E it is necessary to use the Coulomb
cross section:

σt(εp) =
2πe4Z2

aZ
2
l

ε2p
(23)

and the expression for width of the Lorentz function which
is conditioned by scattering of particle a on plasma parti-
cles l:

γal = �Nlσt(εp)Val. (24)

In the center-of-mass system we write

εp = μal

(
εa
ma

+
εl
ml

− 2
√

εa
ma

εl
ml

cos (pa,pl)
)
. (25)

If we consider the Lorentz gas approximation, i.e. ma �
ml, then

εa/ma � εl/ml,
εp
μal

≈ εa
ma

, (26)

where

εa =
|pa|2
2ma

, (27)

Vab =
√

2εp
μab

≈
√

2εa
ma

or Vab ≈
√

2Ea
ma

. (28)

The cross section for Coulomb scattering of particles a by
particles l:

σal (ε) =
2πe4Z2

aZ
2
l

ε2pal
=

2πe4Z2
aZ

2
l m

2
a

μ2
alε

2
a

, (29)

γal = �Nl
2πe4Z2

aZ
2
l

ε2a

m2
a

μ2
al

√
2Ea
ma

, (30)

where ma/μal = ma(ma +ml)/maml ≈ 1 for ma � ml.
In a multicomponent medium the line width is deter-

mined by the sum of the contributions from different sorts
of scatterers (strictly speaking, the sum over l must take
into account the particles different from species a, accord-
ing to the Lorentz model):

γa =
∑
l

γal =
2π�e4Z 2

a

ε2a

√
2Ea
ma

∑
l

NlZ
2
l

m2
a

μ2
al

=
2π�e4Z2

aΣal
ε2a

√
2Ea
ma

. (31)

Here we introduced the following notation:

Σal =
∑
l

NlZ
2
l

m2
a

μ2
al

. (32)

In order to calculate the “tail” of the distribution function,
we need to substitute the line width from equation (30)
into integral (21) and write

fqt (εa) =
2√

π (kT )3/2

∫ ∞

0

exp
{
−Ea
kT

}
γ (Ea, εa)
πε2a

dEa

=
2

√
π (kT )3/2

∫ ∞

0

exp
{
−Ea
kT

}

× 2
√

2π�e4Z2
a

ε2a
√
ma

√
EaΣal
πε2a

dEa

=
2√

π (kT )3/2

√
2π�e4Z2

aΣal√
ma

1
ε4a

(kT )3/2

=
2
√

2�e4Z2
a√

ma

Σal
ε4a

. (33)

The influence of the correction to the distribution function
is significant only in the asymptotic region of its argument
which is the kinetic energy. It should be noted that at
low values of the kinetic energy ε ≤ E0 the distribution
function is determined by the classical expression, i.e., the
Maxwellian function (22). For the temperature of 10 eV
and the concentration of interacting particles (deuterium
ions) N = 1023 cm−3 the value of the energy threshold

http://www.epj.org
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Fig. 2. (Color online) The distribution function of the kinetic
energy in the Lorentz gas for temperature 0.01 KeV (a), ob-
tained from numerical simulation of the generalized distribu-
tion function (b) and the Maxwellian distribution (c).

Fig. 3. (Color online) The share of the quantum correction
to the full distribution function in the approximation of the
Lorentz gas for temperature 0.01 KeV (a), the same quantity
for the generalized distribution function, obtained from numer-
ical simulation (b), the share of the Maxwellian part to the full
distribution function (c).

parameter can be defined as E0 = 5kT . In this case, tak-
ing into account equation (30) one can male the following
estimation:

γ

E0
=

�NσV

E0
=

2π�Ne4

(kT )2

√
2kT
m

1
E0

≈ 5 × 10−3. (34)

Figure 2 shows the contribution of the quantum-tail cor-
rection in the approximation of the Lorentz gas in the
full distribution function. Figure 2 shows the Maxwellian
distribution functions with a correction that takes into
account the quantum effects in the approximation of the
Lorentz gas and obtained in the analytical form (21), as
well as the distribution function of the kinetic energy, ob-
tained by numerical integration of the generalized distri-
bution function.

In Figure 3 this contribution is presented as the ratio
fqt(E)/f(E) in equation (21), where – curve (a), the same

Fig. 4. (Color online) The same as in Figure 2 for temperature
1.0 KeV.

value for the distribution of kinetic energy, obtained by
numerical integration of the generalized distribution func-
tion – curve (b), as well as the contribution of the Maxwell
distribution in the full distribution function kinetic energy,
the ratio of the formula (21) – curve (c). The simulation
was performed under conditions of a shock compression
of deuterium in the titanium matrix with the density of
atoms of 5.7 × 1022 cm−3 at a temperature of 0.01 keV.
As one can see the energy is less than 0.1 keV the to-
tal distribution function is determined by the Maxwellian
term. At energies higher than 0.2 keV the contribution
of the quantum correction to the total distribution func-
tion becomes crucial. Quantum correction obtained in the
approximation of the Lorentzian gas as well as obtained
by numerical integration of the generalized distribution
functions, represented by curves (a) and (b) respectively.

Figure 4 shows the same distribution function as in
Figure 2, but at a temperature of 1.0 keV. As one can see
from comparison of these figures, with increasing temper-
ature the quantum effect comes into play at higher energy.

Figure 5 shows the energy distribution for different
temperatures: 0.01 and 1.0 keV, curves shown are col-
lected from Figures 2 and 4. Given that the characteristic
energies are of different orders, we had to switch to a loga-
rithmic scale. It is clear that in the asymptotic region the
tails of the distribution function do not depend on tem-
perature and are practically identical. From this pictures
it may be estimated the percentage of deuterium ions in
the asymptotic region of distribution function over mo-
mentum. This number is much larger then correspondent
number in Maxwellian distribution, which is considered
for calculating fusion rate constant in classical approach.

4 Comparison of Kimball’s approach
and the Lorentz gas model

The equations for the power-tail distribution function of
particles momentum in the Lorentz model can be com-
pared with the rigorous result obtained with the use of the
Kimball’s approach. Considering the repulsive Coulomb
interaction between two particles with charges Za and Zb,
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Fig. 5. (Color online) Curves (a)−(c) the same as in Figure 2
(temperature 0.01 KeV), curves (d)−(f) respectively the same
functions of temperature 1.0 KeV.

and reduced mass mab from the Schrödinger equation it
follows: (

− �
2

2μab
∇2
ab +

ZaZae
2

rab

)
ψ = F, (35)

where F does not contain singularities at small r. At short
distances one can solve the equation (extraction of the
singularity at small r)

ψ = f

(
1 +

|r|
aab

)
, (36)

where aab is the Bohr radius:

aab =
�

2

μabZaZbe2
. (37)

Using this solution one can come to the distribution func-
tion by calculating the Fourier transform of the product
of the solutions with singularities at the particle species
a approaching particles l and m. In the final expression
points l and m are to tend to each other. As a result, we
obtain the asymptotic momentum distribution function in
the following form

fal (p) =
64π2μ2

al

�3�4

Z2
aZ

2
l e

4Nl
k8

. (38)

It is easy to see that these asymptotics in the framework of
the Lorenz model and the Kimball’s approach are in good
agreement. This agreement takes place independently of
the mass of the particles – whether electrons or nuclear
particles – and whether or not they are degenerate.

It is interesting to note that. in contrast to the Lorenz
model. the Kimball’s formulas are valid for an arbitrary
mass ratio of the colliding particles. For the scattering of
particles of species a on one another we can get, using
Kimball’s method, the following:

faa (p) =
16π2μ2

aa

�7

Z4
ae

4Nl
k8

gaa(0). (39)

In a nonideal plasma these contributions are small in pro-
portion to the ion-ion correlation function. Contribution
to the quantum asymptotic of the distribution function for
protons and other ions at expense of their scattering on
neutrals and electrons is small due to small cross sections
and the square of the reduced mass.

One can compare the asymptotics of the distribution
function obtained by Kimball and within the Lorentz
model for the interaction potential, which has a singu-
larity near zero distance between the particles:

U =
C

rn
, (n ≤ 3) . (40)

The Schrödinger equation with such a potential is written
as (

− �
2

2μab
∇2
ab +

C

rn

)
ψ = F (41)

and has a solution

ψ (r) = ψ0

(
1 − 2μalC

�2 (n− 2) (3 − n) rn−2

)
. (42)

After calculating the square of the Fourier transform of
this solution we obtain

np∼ 1
k10−2n

. (43)

At the same time, from the expression for the quantum
correction to the Maxwellian distribution we get

fp∼�NlT
3/2σt(l)

√
π

2πε2p
√

2μal
∼ 1
k4

∣∣∣∣
∫
e−ik·rU (r) d3r

∣∣∣∣
2

, (44)

where
σt∼k2n−6. (45)

Calculating the scattering amplitude on the potential of
this type in the Born approximation we obtain:

fn∼σt
ε2p

∼ 1
k10−2n

, (46)

which is in agreement with (43).
In addition to the agreement, as noted above, of

the asymptotic expression (38) to the limit obtained by
Kimball for the electron momentum distribution function
due to their interaction with ions, with the results of the
Lorentz model, this treatment now allows us to generalize
the result for the distribution function of heavy particles
such as deuterons interacting with heavy ions, as soon as
they satisfy the Schrödinger equation and the Coulomb
law at distances of the order of the Bohr radius (37). Note
that the result obtained by Kimball does not depend on
the ratio of masses of interacting particles, since the in-
teraction is considered in the center-of-mass frame. Thus,
we can conclude that the power law for the distribution
function in the asymptotic region holds not only where
the Lorentz model is applicable to interacting particles,
but also for arbitrary particles. For example, it holds also
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for the interaction of deuteron ions with hydrogen ions.
This asymptotic behavior does not depend on the tem-
perature, so the Kimball’s theory for electron distribution
function and Lorentz gas model considered here coincides
in spite of great differences of physical objects, i.e., met-
als near zero degree in the first case and dense plasmas of
1−1000 eV temperature in the second.

It may also be noted that if electrons are localized
within their Bohr radius, with an uncertainty in their mo-
mentum and kinetic energy of the order of 13.6 eV, then
for deuterons, similarly localized to a Bohr radius (37), the
scale of uncertainty of their kinetic energy will be of the
order of 50 keV, which is on the scale of energy necessary
for fusion to occur.

5 Reaction rate for the model distribution
functions

The reaction rate for the case of the nondegenerate plasma
at sufficiently high temperature is determined by averag-
ing the interaction frequency of the particles over their
distribution functions. The equation to calculate the reac-
tion frequency is reduced to finding

〈σV 〉 =
∫ ∫

f(εa)f(εb)Vabσf (εp)d3pad
3pb. (47)

Here Vab is the relative velocity of particles a and b, εp is
the energy of the particles in the center-of-mass system.

The relation between the energy of the particles in the
center of mass coordinate system and in the laboratory
system has the form:

εp = μab

(
εa
ma

+
εb
mb

− 2
√

εaεb
mamb

cos (pa,pb)
)
. (48)

In the laboratory system we have

Vab = |V a − V b| =
√

2εp
μab

(49)

=
√

2

√
εa
ma

+
εb
mb

− 2
√

εaεb
mamb

cos (pa,pb).

Using equation (47) for calculating the reaction frequency
might be easier if one reduces the integral’s dimension by
performing the angular integration:

〈σV 〉 = 2(2π)2
∫ ∞

0

dpap
2
af(εa)

∫
dpbp

2
bf (εb) (50)

×
∫ 1

−1

d cos θabVabσf (εp).

Using the same approximation for the distribution func-
tion (21), i.e. marking out the power asymptotics, we can
rearrange the equation to form convenient for standard
numeric integration. The reaction frequency is then split

into four terms, which correspond to the terms of the dis-
tribution function in the region of small energies and in
the asymptotic region:

〈σV 〉 = 2(2π)2
∫ ∞

0

dpap
2
a (f0 (εa) + fqt (εa))

×
∫ ∞

0

dpbp
2
b (f0 (εb) + fqt (εb))

∫ 1

−1

d cos θabVabσf (εp).

(51)

This equation for the reaction rate constant can be used
in calculations of fusion reaction rates. Along with equa-
tions (2) and (17) this expression is the next order approx-
imation suitable for numeric modeling of fusion reactions.

We change the variables of integration from the mo-
menta to energies and substitute expression (33) for the
asymptotic distribution function. As a result we obtain:

〈σV 〉 =
2

π (kT )3

∫ ∞

0

dεa
√
εa exp

{
− εa
kT

}

×
∫ ∞

0

dεb
√
εb exp

{
− εb
kT

}∫ 1

−1

d cos θabVab σf (εp)

+
2
√

2π�e4Z2
bΣbl

π (kT )3/2
√
mb

∫ ∞

0

dεa
√
εa exp

{
− εa
kT

}

×
∫ ∞

0

dεb

ε
7/2
b

∫ 1

−1

d cos θabVab σf (εp)

+
2
√

2π�e4Z2
aΣal

π (kT )3/2
√
ma

∫ ∞

E0

dεa

ε
7/2
a

×
∫ ∞

0

dεb
√
εb exp

{
− εb
kT

}∫ 1

−1

d cos θabVab σf (εp)

+

(
2�e4ZaZb

)2
ΣalΣbl√

mamb

∫ ∞

E0

dεa

ε
7/2
a

×
∫ ∞

E0

dεb

ε
7/2
b

∫ 1

−1

d cos θabVab σf (εp) . (52)

Further calculations of constants for the reaction with the
use of this model are denoted as 〈Vabσ〉 3. The last for-
mula takes into account that the part of the distribution
function conditioned by the quantum effects is fqt(ε) = 0
in the range of low kinetic energies.

Equation (52) can be analyzed to estimate the causes
and conditions under which the asymptotic region of the
energy distribution functions gives a determining contri-
bution to the rate of fusion reactions. The integrand in the
first term of (52) is a series of factors that are notably dif-
ferent from zero in different domains of their arguments.
The values of the Maxwellian distribution function are ∼1
for the energies not too much higher than the temperature.
In the asymptotic region these functions decrease expo-
nentially. The fusion cross section is exponentially small
at low energies and reaches its maximum for the energies
of the order of hundreds of keV, as, for example, happens
in the synthesis of the deuteron. Therefore, at low temper-
atures the first term in (52) becomes small. Note that it is
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the one which determines the reaction rate in the model
currently accepted for computation.

The second and third terms are equal in calculat-
ing the rates of reactions of identical particles, such as
deuterons. Despite the small factor preceding the integrals
these terms may exceed the first term for sufficiently large
concentrations of the particles. Let us note that accord-
ing to equation (32) Σab ∼ N , therefore the contribution
of the asymptotic distribution function increases with in-
creasing density. In these terms the main contribution to
the reaction rate is given by the different definition re-
gions of the integrands. For example, for the second term
the integration of the Maxwellian function over energy εa
is substantial for the values of the argument only slightly
exceeding the temperature. In order for the value func-
tion – the reaction cross section was not negligible the
domain of its argument should be taken in the order of
hundreds of keV. Hence, the integral over εb gives a sig-
nificant contribution to the asymptotic region, where the
function decays as a power law. Thus, for estimations it is
possible to assume that the reduced energy in the center
of mass εp does not depend on εa. The integral to this
argument is evaluated as:

2√
π(kT )3/2

∫ ∞

0

dεa
√
εa exp

{
− εa
kT

}
∼ 1. (53)

In order to estimate the last or the fourth term in (52)
we can calculate the ratio of its value to the value of the
second term. Given the recent relation obtained we get:

2�e4Z2
aΣal√
ma

∫ ∞

E0

dεa

ε
7/2
a

≈ 2�e4Z2
aΣal√
ma

2/5

E
5/2
0

. (54)

This ratio is obtained for the values Σab ∼ N ∼ 1023 cm3

and E0 = 5kT = 5× 10 eV. Note that the latter estimate
is consistent with the relation (34).

6 Reaction rate in a Lorentz gas

Let us perform calculation of reaction rates conditioned by
different energy ranges (the argument of the distribution
function). The reaction frequency for particles of species a
and b in the Lorentzian gas approximation, i.e. motionless
target particles, is reduced to the following calculation:

〈σV 〉 =
∫ ∞

0

f (ε)Vabσ (εp)
√
εdε. (55)

Substituting the distribution function, we obtain:

〈σV 〉 =
∫ ∞

0

(f0 (ε) + fqt (ε))V σ (ε)
√
εdε

=
∫ ∞

0

(
2√

π (kT )3/2
exp

{
− ε

kT

}
+ fqt (ε)

)

×
√

2εp
μab

S (0) exp

{
−π

√
EG
εp

} √
ε

εp
dε. (56)

Calculating the terms separately, we get:

〈σV 〉0 =
4
3

√
2kT
μab

S(0)
kT

τ1/2e−τ , (57)

where

τ = 3
(π

2

)2/3
(
EG
kT

)1/3

. (58)

The reaction rate determined by the asymptotic part of
the distribution function is found from

〈σV 〉qt =
∫ ∞

0

fqt (εa)Vab σf (εp)
√
εadεa

=
4�e4Z2

aΣal√
maμab

S(0)
∫ ∞

0

exp

{
−π

√
EG
εp

} √
εa√
εpε4a

dεa.

(59)

When calculating the rate of fusion of identical particles,
such as d+ d reaction, in the center-of-mass system for
particles of equal masses and equal energies we have:

εab = μab

(
εa
ma

+
εb
mb

− 2
√

εa
ma

εb
mb

cos (pa,pb)
)

= 2μab
εa
ma

(1 − cos (pa,pb))

= 2
mama

ma +ma

εa
ma

(1 − cos (pa,pb))

= εa (1 − cos (pa,pb)) ≈ εa. (60)

Finally, we come to

〈σV 〉1 =
4�e4ΣalS(0)√

ma

√
1

ma/2

×
∫ ∞

0

exp

{
−π

√
EG
ε

} √
ε

ε4
√
ε
dε

=
4
√

2�e4Z2
aΣalS(0)

ma

∫ ∞

0

exp

{
−π

√
EG
ε

}
dε

ε4

=
8 × 5!

√
2�e4Z2

aΣal
π6E2

Gma

S(0)
EG

. (61)

The intermediate integral used in this equation has been
calculated as following:

∫ ∞

0

exp

{
−π

√
EG
ε

}
dε

ε4
= 2

∫ ∞

0

x8e−αx

x3
dx (62)

= 2
∫ ∞

0

x5e−αxdx = 2
∂5

∂α5

(
−

∫ ∞

0

x5e−αxdx
)
α=π

√
E0

= 2
∂5

∂α5

(
e−αx

α

∣∣∣∣
∞

0

)
α=π

√
E0

= 2
∂5

∂α5

(−1
α

)

= 2
∂4

∂α4

(
1
α2

)
=2 × 2

∂3

∂α3

(−1
α3

)
= . . . =

2 × 5!
α6

=
2 × 5!
π6E3

G

.
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In this calculation we performed the change of variables:

x =
1√
ε
, dx = − 1

2ε3/2
dε, dε = −2

dx

x3
. (63)

In the center-of-mass for particles of identical masses but
different energies, such as εa � εb we have

εab=μab

(
εa
ma

+
εb
mb

− 2
√

εa
ma

εb
mb

cos (pa,pb)
)
≈μab εa

ma
.

(64)
Finally, for such a case we get

〈σV 〉2 =
4�e4Σl√
ma

S(0)
√

1
μab

×
∫ ∞

0

exp

{
−π

√
EG
ε

} √
εdε

ε4
√
ε

(
μab
ma

)5/2

=
4�e4μ2

abZ
2
aΣlS(0)

m3
a

∫ ∞

0

exp

{
−π

√
EG
ε

}
dε

ε4

=
8 × 5!
π6

S(0)
EG

�e4

E2
G

μ2
abZ

2
aΣl

m3
a

. (65)

Given the equal masses of particles we get

〈σV 〉2 =
2 × 5!
π6

S(0)
EG

�e4

E2
G

Z2
aΣl
ma

. (66)

7 Analytical estimates for reaction rates
for model distributions with quantum effects

For the integrals in the second and third terms in (52),
different ranges of εa and εb are essential. For the second
term the integrand is close to 0 if the energy is greater than
the temperature, i.e. outside the interval 0 < εa < 3kT .
For variable εb this integral area is significantly wider. In
the third term variables εa and εb interchange.

Let us now consider the second term. We assume εa �
εb taking into account the significant range of energies of
different particles. Then the energy in the center of mass
can be represented by

εp = μab

(
εa
ma

+
εb
mb

−2
√

εa
ma

εb
mb

cos (pa,pb)
)

≈ μab
εb
mb

.

(67)
If we substitute this expression into the second term
in (52) it turns out that the rate and the cross section
do not depend on the angle between the velocity vector

and the integral is reduced to

〈σV 〉b =
2

√
π (kT )3/2

√
2�e4Z 2

b Σbl√
mb

×
∫ ∞

0

dεa
√
εa exp

{
− εa
kT

}∫ ∞

0

dεb

ε
7/2
b

Vab (εp)σ (εp) 2

=
2
√

2�e4Z2
bΣbl√

mb

∫ ∞

0

dεb

ε
7/2
b

Vab (εp) σ (εp)

=
2
√

2�e4Z2
bΣbl√

mb

(
μab
mb

)5/2

×
∫ ∞

0

dεp

ε
7/2
p

√
2εp
μab

S(0)
εp

exp

{
−π

√
EG
εp

}

=
4�e4Z2

bΣblS(0)
mb

(
μab
mb

)2

×
∫ ∞

0

dεp

ε
7/2
p

√
εp

exp

{
−π

√
EG
εp

}

=
8 × 5!
π6

S(0)
EG

�e4

E2
G

(
μab
mb

)2
Z2
bΣbl
mb

. (68)

We can practically perform similar transformations as ear-
lier but here we have

Z2
bΣbl = Z2

bm
2
b

∑
l

NlZ
2
l

μ2
bl

. (69)

For the third term in (52) we get

〈σV 〉a =
8 × 5!
π6

S(0)
EG

�e4

E2
G

(
μab
ma

)2
Z2
aΣal
ma

, (70)

where

Z2
aΣal = Z2

am
2
a

∑
l

NlZ
2
l

μ2
al

. (71)

Thus, the reaction rate corrected with the quantum tail
contribution is equal to

〈σV 〉quant = 〈σV 〉a + 〈σV 〉b

=
8 × 5!
π6

S(0)
EG

�e4μ2
ab

E2
G

(
Z2
a

ma

∑
l

NlZ
2
l

μ2
al

+
Z2
b

mb

∑
l

NlZ
2
l

μ2
bl

)
.

(72)

In the sums of the last formula the summation index l
should stand for all particles of the medium except for
species a or b respectively. It follows from (39) and the
following comments. Because of the small correlation func-
tion of identical particles, the quantum corrections corre-
sponding to such scattering are also small.

Let us note that the reaction rate constant determined
for the tails of the distribution function and represented
as (72) does not depend explicitly on temperature. As
noted above, this is due to the fact that in the asymptotic
region the tails of the distribution function do not depend
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on temperature. At the same time it should be noted that
temperature defines the ionic composition of the plasma.
Therefore, the temperature dependence of the distribu-
tion function is extremely important and is determined
by the terms in brackets in (72). As it is shown below, the
definition of the ionic composition of plasma is essential
for temperature range of 5−10 eV. It must be noted, that
correct definition of the distribution for ionic composition
is very complicated problem in nonideal plasmas, so the
measurement of neutron yield gives an instrument to have
information on equation of state in such plasmas.

Thus, we have given proof of the validity of the ap-
proximate approach, which consists in averaging the cross
sections found using the quantum corrections to the mo-
mentum distribution functions of the reacting particles.
The accuracy of this approach is discussed further be-
low where the results of calculations are shown for the
full formula (2), simplified equation (17), and approximate
analytical estimations (57) and (70). This eliminates the
issues raised in the paper [16] on the validity of such a
method.

From (72) we can estimate the rate constant for fu-
sion of deuterons taking 49.6 keV barn for an astrophys-
ical factor S(0) and to 99.9 keV for the Gammov energy
EG. Calculating the scattering cross section at EG as well
as estimating the velocity of the particles appearing in
the reaction rate, we find that the collisional width of the
gamma at the density of scattering particles of the or-
der of 3 × 1023 cm−3 appears to be about 10−6 eV and
the reaction rate constant turns out to be of the order of
10−28 cm3 c−1.

In a coupled plasma the Maxwellian contribution to
the reaction rate is specified to make an account for screen-
ing of the Coulomb potential [17,21–23]. The correspond-
ing generalized expression is obtained, for example, by re-
placing the exponential Sommerfeld factor in equation (7)
with the semiclassical tunneling probability through the
screened potential barrier:

exp {−2πη} → exp

{
−2

√
2μab
�

×
∫ rl

rn

dr

√
ZaZbe2

r
−H(r) − Ep

}
, (73)

where rn and rl are classic stopping points and ZaZbe2/r−
H(r) is the interaction potential with allowance for screen-
ing effects. It may be noted that the progress in the theory
of the subbarrier tunneling, connected with the problem
of heavy ion fusion, was analyzed in [24].

Great interest was aroused by the experimental stud-
ies of reactions involving light nuclides such as isotopes
of hydrogen, He, and Li. They have shown the exponen-
tial enhancement of the nuclear reactions cross-sections at
low energies [25–30]. The beam of the light nuclides ions
was focused on the metallic target. The Coulomb screen-
ing of electrons had been considered in this case. The elec-
trons respond by accumulating around the positive charge
and therefore partially screen out its positive Coulomb

Table 2. The rate constants calculated for the fusion reaction
p + p → D + e+ + ν at three points along the solar trajectory.

N , cm−3 3.31 × 1025 9.575431 × 1024 7.405 × 1022

KeV 1.3362 0.6892 0.1828

Classic

rate 2.98 × 10−45 6.13 × 10−47 0.79 × 10−51

Quantum

correction 2.77 × 10−49 0.8 × 10−49 0.62 × 10−51

Full rate

(analytic) 2.98 × 10−45 6.13 × 10−47 1.41 × 10−51

〈σVab〉 3 3.27 × 10−45 7.45 × 10−47 1.28 × 10−51

〈σVab〉 5 3.08 × 10−45 6.78 × 10−47 1.43 × 10−51

〈σVab〉 10 3.35 × 10−45 6.48 × 10−47 1.61 × 10−51

potential. Although the experiments have proved the sig-
nificance of electron screening, a theoretical explanation
is still far from satisfactory. The high screening potential
value arises from the environment of the light nuclides
in the metallic matrix, but a quantitative explanation is
missing. The screening effect was far beyond the expected
value.

It must be noted that for the quantum correction the
screening effects can be ignored because the screening en-
ergy is of the order of H(0), and is therefore small com-
pared to the Gamow energy EG, which determines the
“tail” contribution to the value of reaction rates.

8 Modeling of fusion reactions

Nuclear fusion reactions occur at an appreciable rate in
conditions of hot plasma. This is primarily the plasma in
stars; in particular, it is the plasma in the solar interior.
From the models considered in this paper, the quantum
effects can also predict the increase in the rate of reactions
in plasmas of moderate temperatures but high densities.
By monitoring the synthesis reaction, this increase might
be observed for suitable parameters. In order to determine
these parameters, we calculated the fusion rates for differ-
ent conditions. It is also interesting to do some revision
of processes in the interiors of stars, to re-evaluate the
contribution of various processes to the release of fusion
energy, and ultimately to the evolution of stars.

Table 2 shows the constants, which were calculated for
the fusion reaction p + p → D + e+ + ν at three points
along the solar trajectory, from the central part to the
periphery. In the table we show the constants calculated
numerically: 〈Vab〉 3, 〈Vab〉 5, 〈Vab〉 10 as well as analyt-
ical estimations of constant for the reaction, which were
calculated using equation (58) (Classic rate), the quan-
tum correction of constant for the reaction, which were
calculated with equation (73) (Quantum correction), and
the sum of these two values (Full rate). As one can see
the calculations performed for different models are in a
satisfactory agreement with each other.
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Table 3. The rate constants calculated for the fusion reaction
3He +3 He → 2p +4 He at three points along the solar trajec-
tory.

N , cm−3 3.31 × 1025 9.575431 × 1024 7.405 × 1022

KeV 1.3362 0.6892 0.1828

Classic

rate 6.84 × 10−34 5.65 × 10−39 1.86 × 10−53

Quantum

correction 2.34 × 10−27 5.37 × 10−28 4.14 × 10−30

Full rate

(analytic) 2.34 × 10−27 5.37 × 10−28 4.14 × 10−30

〈σVab〉 3 2.38 × 10−27 5.42 × 10−28 4.15 × 10−30

〈σVab〉 5 1.34 × 10−27 3.03 × 10−28 2.24 × 10−30

Another conclusion to be drawn from the results pre-
sented in this table is that the influence of the quantum
effects is notable for this reaction only in a distant region
from the Sun center. But in this region the fusion rate
is much lower than in the central region, so the influence
of the quantum corrections brings no effect on the energy
balance for this reaction and synthesis of deuterons in the
solar interior. Our simulations were carried out using the
data on the astrophysical factor from [31].

An example of the reaction with the rate greatly in-
fluenced by the quantum corrections is the reaction of the
hydrogen cycle: 3He +3 He → 2p +4 He. Table 3 shows the
rate constants calculated for the same points of the solar
trajectory. In calculations of these rates the value of the
astrophysical factor was taken from [32].

Similarly, it could be shown that the rates of many
fusion reactions, which occur in the solar interior, such
asp +7 Be, 3He +4 He, etc., as well as of reactions such as
C + C in the depths of supernovae, become much larger
than their classic values if the quantum effects are taken
into account (see, e.g., [33] where the authors consider
how the distribution function of charged particles is mod-
ified by plasma microfields). These results require further
consideration and beyond the scope of this work.

However, these predictions, in principle, might be ver-
ified in laboratory experiments using a dense plasma
with moderate temperatures around one electron volt and
above. This can be achieved in explosive experiments like
the ones, for example, that study the equation of state
of strongly coupled plasma [34–36]. If we take deuterium,
compressed to a pressure of the order of megabars, we
can make the following prediction: in pure deuterium, in
which there is a noticeable degree of dissociation and ion-
ization due to pressure ionization, the reaction rate will
be very small in these conditions because of the factor
g(0) in (39), which in turn is small in a strongly coupled
plasma. If deuterium is diluted with an extraneous gas,
such as a different isotope of hydrogen, helium, etc., then
there will be terms in the D + D reaction rate due to scat-
tering on a buffer gas, which can lead to an observable
neutron yield of about 108 to 1010 neutrons per pulse of

Table 4. The results of the calculation of constant fusion
reaction: D + D → 3He + n for different spatial points of the
plasma in conditions of shock compression of a mixture of deu-
terium and xenon.

T , eV 9.27 9.88 1.06 1.22

N(D+), 1021 5.45 5.54 5.63 5.74

N(Xe+), 1020 6.35 2.79 1.46 6.24

N(Xe+2), 1021 5.53 5.19 4.61 3.31

N(Xe+3), 1021 2.26 2.68 3.08 3.76

N(Xe+4), 1020 0.88 1.40 2.19 4.79

〈σV 〉, 10−29 3.50 3.68 3.85 4.13

〈σV 〉N(D+)2, 1015 1.04 1.13 1.22 1.36

about 1 microsecond length. The result strongly depends
on the ion composition and possibility of the plasma phase
transition in strongly coupled plasmas.

As another example, we present calculations for a mix-
ture of deuterium and xenon, which can create a shock
wave with a speed exceeding 5 km/c and create a plasma
with temperature of 5−10 eV in the reflected wave. Cal-
culations of the plasma parameters for these conditions
were kindly provided by Gryaznov.

Table 4 shows the results of the calculation of con-
stant fusion reaction: D + D → 3He + n for different spa-
tial points of the plasma in conditions of shock compres-
sion of a mixture of deuterium and xenon. The gas mixture
was D:Xe = 50:50 in volume ratio. The initial pressure
was 25 bars. The table shows the equilibria concentra-
tion of various components of plasma for these conditions:
N(D+), N(Xe+) etc, reaction constants 〈σV 〉 and the rates
of the reaction 〈σV 〉N(D+)2. The latter ones have been
obtained analytically by taking into account the quantum
corrections.

As this table shows, the temperature of the plasma
in such conditions is more than 2 orders of magnitude
lower than the temperature of the Sun plasma. The plasma
density is sufficiently high. Under the conditions of shock
compression of xenon is 2 to 3-times ionized as a result
of pressure ionization [32]. The calculations used data on
the astrophysical factor of the reaction of [37].

For the conditions of the shock experiments it would
be important to estimate the relaxation time of the distri-
bution function. In [3,11] it was suggested, that the only
binary elastic scattering must be taken into account to
study relaxation of the nonequilibrium distribution func-
tion. It is the Coulomb type collision for the plasma in a
shock wave. The cross section for these collisions decreases
with increasing energy. So the elastic scattering frequency
for the kinetic energy is of the order of the Gamow energy.
When the fusion reaction is realized distinctly, it may be
estimated as:

〈σtV 〉 ≈ 2πe4Z2
aZ

2
b

E2
G

√
2EG
μab

. (74)
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Then the upper level of the relaxation time is τ ≈
(N 〈σtV 〉)−1 with the data from Table 4. In this case it
may be estimated as about 1 ns to 10 ns. In [38] the period
of relaxation of the nonequilibrium distribution function
was calculated more precisely. The model, used in this pa-
per, permits an analysis of the relaxation process for all
velocities, including formation of the distribution function
tail. In this paper for the various dependencies of the elas-
tic scattering cross section on energy it was obtained that
the time of the equilibrium setting is larger, up to factor
6, than that of the elastic collisions. This estimation was
obtained for the energy equal to the kinetic temperature.
The calculated value of relaxation is less than 1 ns.

Thus, for estimating the fusion reaction, it can be seen
that the collisions in the plasma of the shock experiments
are effective in bringing the distribution function to equi-
librium during the hydrodynamical process with the char-
acteristic time of <1 μs.

The fusion rate constants for the above conditions cal-
culated with no account taken for the quantum effects are
by about 20 orders of magnitude smaller than the values
listed in the table. The reaction rate for different points
of the plasma vary by ∼30%, as it is seen from the last
line of the table. The lifetime of such a plasma is of ∼1 μs,
which gives the neutron yield of ∼1.2 × 109 cm−3.

9 Conclusions

In this paper we analyzed the influence of quantum effects
on the rate of fusion reactions. As a result of frequent col-
lisions of particles in a dense plasma there disappears the
complete correspondence between the total and kinetic
energy of the particle, the generalized distribution func-
tion, thus, depends on both the total and the kinetic en-
ergy of the particle. The momentum distribution function
has the power dependence on the kinetic energy in the
asymptotic region. Carrying out the averaging over the
distribution function to calculate, for example, the fusion
reaction rate leads to a notable increase in reaction rate as
compared to the calculations using the Maxwellian distri-
bution function. We created numerical models for various
conditions of the reactions and carried out calculations in
a wide range of plasma parameters. The use of the approx-
imate analytical estimates obtained under the averaging
procedure has been validated.

In addition, the ranges of parameters where the most
pronounced quantum effects are expected are shown. Two
experiments are identified that might demonstrate quan-
tum effects: one, by comparing DD reaction rates in
densely compressed cold deuterium plasma with or with-
out a buffer gas; and, two, by arranging for a shock wave
in mixtures of deuterium and xenon.

The presence of quantum tails is also evident in the vi-
brational kinetics of low-temperature plasma. It increases
the rate of V -T relaxation, as shown in [3]. This result
of the theory is in a very good agreement with the ex-
perimental data under normal conditions. The theory also
predicts the reduction of the induction time for ignition of

hydrogen-oxygen and hydrogen-air mixtures at pressures
above 5 atm and at temperatures below 1000 K.

The authors wish to express their sincere appreciation and
gratitude to V.E. Fortov, V.B. Mintsev, V.K. Gryaznov, I.V.
Lomonosov, N. Shilkin, S.V. Ayukov, V.A. Baturin, A.B. Gor-
shkov and S. Taova for fruitful discussions and valuable advice.
This work was supported by the ISTC project No. 3755 and
partially by grant NSh-2447.2012.2.

Appendix: Monte Carlo integrations

Calculation of the approximate value of the integral us-
ing the Monte Carlo method is one of the few methods
for calculating the quadrature in this problem, given the
high multiplicity of integral. Optimization of the calcu-
lations in the framework of this method is the choice of
determining the probability distribution of sites of inte-
gration of the quadrature formula. On one hand it mini-
mizes the dispersion of the mean value while on the other
hand it minimizes the possibility of a fairly simple and ef-
ficient simulation of random vectors, which determine the
quadrature grid of the numerical integration.

Minimum dispersion in the calculation of the integral is
achieved when selecting a random distribution function of
several variables, proportional to the integrand [39]. Given
this condition, the probability density of the random vec-
tor in a multidimensional space was defined as the product
of functions, which were probability densities for individ-
ual components of the random vector. In the Monte-Carlo
method the integration variables are the very random vari-
ables. Functions that are selected as probability densities
constitute a significant part of the integrand function pro-
vided in the multiplicative form. For example, we consider
in detail the computation of the integral, which reduces
the calculation of the reaction rate for the non-degenerate
distribution function (17):

Sab =
∫ ∞

0

dEa

∫ ∞

0

dεa
√
εa

∫ ∞

0

dEb

∫ ∞

0

dεb
√
εb

×
∫ 1

−1

d cos(pa,pb)n(Ea)δγa (Ea − εa, εa)

× n(Eb)δγb (Eb − εb, εb)Vab σ (εp) . (A.1)

In accordance with the foregoing notes, in integration over
the variables Ea, Eb we use n (Ea), n (Eb) as probability
density functions, and over the variables εa, εb – functions
of the spectral particle characteristic δγa(Ea− εa, εa) and
δγb(Eb − εb, εb).

In accordance with the technique used in this paper
we will decompose the factors into terms corresponding
to the probability density and a factor, the average value
of which is to be calculated. The following expressions
describe for the probabilities of random variables, i.e. the
variables of integration (A.1) with the selected probability

http://www.epj.org


Page 14 of 15 Eur. Phys. J. D (2012) 66: 154

density:

S3a(Ea) = α3a

∫ Ea

0

dEan(Ea), 0 ≤ Ea <∞, (A.2)

S2a(εa) = α2a

∫ εa

0

dεaδγa(Ea − εa, εa), 0 ≤ εa <∞,

(A.3)

S3b(Eb) = α3b

∫ Eb

0

dEbn(Eb), 0 ≤ Eb <∞, (A.4)

S2b(εb) = α2b

∫ εb

0

dεbδγb(Eb − εb, εb), 0 ≤ εb <∞,

(A.5)

S1(x) = α1a

∫ x

−1

dx, −1 ≤ x < 1. (A.6)

Here Sψ (z) is the probability of a random variable to be
in the range with the upper limit of z, the factors αψ are
the normalizing factors that ensure the implementation
of the normalization condition for the probability of the
variable denoted by the index ψ.

Distribution of random variables with a given proba-
bility density is performed using the standard methods. It
is necessary to find a solution for the system of nonlinear
equations:

Sψ (z) = uψ, (A.7)

where index ψ runs over all the values corresponding to
different variables of integration, uψ are random variables
uniformly distributed over the range [0,1]. Variables Ea,
Eb, x can be determined from one of the equations in
system (A.2), (A.4), and (A.6). The selected probability
densities for variables εa, εb contain other integration vari-
ables in addition to their “own” variables. Therefore, dur-
ing simulation of these random variables, we have to solve
the system of two nonlinear equations (A.3) and (A.5)
applying the method of iterations.

The value of integral (A.1) is found as the average
value of the expression:

Sab =
1
N

N∑
1

√
εa
√
εbVabσ(εp), (A.8)

with variables εa and εb as well as values of Vab and σ(εp)
contained in this sum determined by the above-described
drawing of random variables.
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