
Reduced Compressibility and an Inverse Problem for a Spinning Gas

V. I. Geyko and N. J. Fisch

Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544, USA
(Received 14 December 2012; published 10 April 2013)

A spinning ideal gas in a cylinder with a smooth surface is shown to have unusual properties. First,

under compression parallel to the axis of rotation, the spinning gas exhibits reduced compressibility

because energy can be stored in the rotation. Second, the spinning breaks the symmetry under which

partial pressures of a mixture of gases simply add proportional to the constituent number densities. Thus,

remarkably, in a mixture of spinning gases, an inverse problem can be formulated such that the gas

constituents can be determined through external measurements only.
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Introduction.—The classic problem of rotating gases
arises in a variety of physical contexts, both naturally and
in device applications [1,2]. Natural contexts include
accretion disks or compact stars such as white dwarfs
[3]. Device applications include vortices in turbines and
centrifuges [4]. The equilibrium state can be characterized
by conserved quantities, including both relativistic and
quantum effects [5,6]. In the absence of relativistic or
quantum effects, an equation of state for radially adiabati-
cally compressing spinning gases was recently obtained
and numerically simulated [7].

What we consider here is a nonrelativistic, spinning
Boltzmann gas, rotating with angular velocity !, confined
to a long cylinder of radius r0 and length L, with L � r0.
The spinning gas can also be compressed adiabatically
either longitudinally (parallel to the axis of rotation) or
radially. The gas has very small slip on the smooth cylinder
walls, so angular momentum is conserved on time scales
of interest. We will assume that (i) the cylinder is long, so
that end effects are negligible, (ii) there is no friction on
the walls (smooth wall condition), and (iii) the gas is at all
times very close to equilibrium. From assumption (iii), it
follows that the temperature T is constant in space and
that viscous friction assures that all rotating layers have the
same angular velocity! (solid body rotation). The rotation
can be initialized even for vanishing viscosity by spinning
the cylinder for a time long enough to reach equilibrium.
The third assumption means that the slow adiabatic pro-
cesses of gas compression and expansion can be approached
through thermodynamic considerations, neglecting fast
dynamics such as inhomogeneous flow and turbulence.

We show here that such a spinning gas has two hitherto
unappreciated and unusual properties.

First, under longitudinal compression, the spinning gas
features reduced compressibility. To see the reduced com-
pressibility effect, consider that, in the case of relatively
low temperature, the spinning gas hugs the cylinder walls.
But as the gas is compressed longitudinally, its temperature
rises, so the spinning gas can no longer hug the cylinder
walls. Thus, as the gas moves to lower radii, its rotational

velocity must increase in order to conserve angular mo-
mentum. The energy for the increased rotational energy
must come from the temperature, so for a given decrease in
length L, the pressure of the spinning gas increases less
than the pressure of a stationary gas at the same tempera-
ture. In other words, because energy can be stored in
rotation, the rotation introduces a reduced compressibility
in the axial direction.
Second, because of the rotation, partial pressures of a

mixture of gases no longer simply add proportional to the
constituent number densities. Under rotation, heavier gases
will sediment more towards larger radii, thereby capturing
more of the angular momentum. That leaves the lighter
gases less subject to, for example, the reduced compressi-
bility effect. Since the partial pressures of different con-
stituents now respond differently to rotation, the equation
of state is more complicated. But this also means that, from
the external parameters (such as pressure, radius, length, or
temperature), it is possible to deduce the concentrations of
individual constituents in the gas mixture. Thus, the spin-
ning gas permits an inverse problem for gas composition,
not available for the nonspinning gas.
This inversion can have practical implications: Given a

cylinder with an unknown gas mixture that is unsafe to
open or otherwise difficult to analyze spectroscopically,
its components might be deduced nonetheless by spinning
the cylinder and measuring external parameters, such as,
for example, the pressure response to longitudinal or radial
compression.
Basic equations.—To see these unusual properties, con-

sider first the equation of state for a single-component
ideal gas, P ¼ nT, with pressure P and density n. Using
assumption (iii), namely, the isothermal approximation, we
have dP ¼ dnT. From radial force balance we have dP ¼
drnðrÞm!2r, which can be integrated to give

n ¼ n0 exp

�
m!2r2

2T

�
; (1)

where the constant n0 can be written in terms of radius r0
and total number of particles N as
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n0 ¼ m!2N

2�TL

�
1

e’ � 1

�
¼ N

V

’

e’ � 1
: (2)

Here we introduce ’ ¼ m!2r20=2T, the ratio of rotation

kinetic energy at the boundary to the temperature, and the
volume of the cylinder V ¼ �r20L. Note that small ’
describes the limit of ideal gas without rotation, while
large ’ describes the limit of cold particles all rotating at
frequency ! along the boundary at radius r0.

The total angular momentum M can be written as

M ¼ mL
Z r0

0
2�rdrnðrÞ!r2 ¼ Nm!r20Að’Þ; (3)

where

Að’Þ ¼ e’ð’� 1Þ þ 1

’ðe’ � 1Þ ; (4)

and where the factor Nm!r20 is the angular momentum if

all particles were rotating with frequency ! at the bound-
ary. As expected and as we see from Fig. 1, Að’Þ tends to
1=2 for small ’ and to 1 for large ’. The most interesting
behavior will result from intermediate ’.

Since the total angular momentum M ¼ Mð!; r0; ’Þ is
conserved, while ’ ¼ ’ð!; r0; TÞ, we can write the varia-
tion of M in the form

d!

�
@M

@!
þ@M

@’

@’

@!

�
þdT

@M

@’

@’

@T
þdr0

�
@M

@’

@’

@r0
þ@M

@r0

�
¼0:

(5)

For completeness, the partial derivatives required to calcu-
late d! may be written as

@M

@’
¼ M

ð1þ e2’ � 2e’ � ’2e’Þ
’ðe’ � 1Þ½e’ð’� 1Þ þ 1� ¼ MHð’Þ; (6)

@M

@!
¼ M

!
;

@M

@r0
¼ 2

M

r0
; (7)

@’

@r0
¼ 2

’

r0
;

@’

@!
¼ 2

’

!
;

@’

@T
¼ �’

T
; (8)

where for simplicity we introduced a function Hð’Þ.
In Eq. (5), the terms @M=@! and @M=@r0 are indepen-

dent of the redistribution of the particle density, and would
be the sole surviving terms in the cold gas limit. The term
@M=@’ reflects the changing particle distribution at finite
temperature.
The energy E can be written as E ¼ E0 þM!=2, where

E0 is the internal energy in the rotating coordinate system
and the rotation energy is given by the second term [2]. For
an ideal, nonrelativistic gas, the particle internal energy
depends on temperature only, so the energy can be written
as E ¼ cvNT þM!=2, where cv is the specific heat. The
energy change, for an adiabatic process, can then be con-
sidered as the work done on the system, so that

pdV ¼ �dE ¼ �cvNdT � ðM=2Þd!: (9)

The energy balance together with angular momentum con-
servation provides complete information in calculating
how internal variables, such as T and !, depend on exter-
nal variables such as r0 and L.
Longitudinal compression.—Slowly compressing the

cylinder from the ends (keeping radius r0 constant)
increases the temperature. However, if the temperature
increases, then ’ decreases, so that, to conserve angular
momentum, ! must increase. Thus, the rotation speed
increases, even in the absence of radial compression,
with Eq. (3) giving implicitly the dependence of ! on T.
The energy distribution between heating and spinning may
be found by first integrating the pressure on the surface of
the cylinder end to find

pdV ¼
Z r0

0
2�rdrpðrÞdL ¼ NT

L
dL: (10)

Note that the side compression acts only against the ther-
mal motion of the particles, since the spinning velocity is
perpendicular to the force exerted. Now using Eq. (10)
together with Eq. (9), and substituting for d!, from
Eq. (5), we get

dL

L
þ dT

T
½cv þ Bð’Þ� ¼ 0; (11)

where in Fig. 2 we plot the function Bð’Þ,

Bð’Þ ¼ ’2Að’ÞHð’Þ
1þ 2’Hð’Þ ; (12)

which governs the extent to which compression energy is
converted into rotation energy. The maximum fraction,
1=ð1þ cvÞ, is reached as ’ ! 1. In this limit, heating
the gas changes the density distribution, resulting in faster
spinning. In the opposite limit, ’ ! 0, the radial density
distribution cannot change significantly, so neither can the
rotation energy. Clearly, the rotation facilitates compression;

FIG. 1 (color online). Functional dependence of angular
momentum on ’.
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because some energy is absorbed by the spinning degree
of freedom, the temperature, and hence the pressure, grow
more slowly with compression, which might be called a
reduced compressibility effect.

Perpendicular compression.—Perpendicular compres-
sion is somewhat more complicated than longitudinal com-
pression because r0 is no longer invariant. The work done
by radial compression can be written as

pdV ¼ dr02�Lpðr0Þ ¼ dr0
Nm!2r0e

’

e’ � 1
: (13)

Note that, while the pressure is isotropic, the force acting
on the radial walls is different from that acting in the axial
direction since it also includes the centrifugal force. Now
using Eq. (13) together with Eq. (9), and substituting for
d!, from Eq. (5), we get

dr0
r0

þ dT

T
Cð’Þ ¼ 0; (14)

where

Cð’Þ

¼ ð1=2Þ½cvþBð’Þ�
½’e’=ðe’�1Þ��’Að’Þf½1þ’Hð’Þ�=½1þ2’Hð’Þ�g :

(15)

As we see from Fig. 2, in the nonrotating limit, ’ ! 0, a
Cð’Þ approaches cv=2. On the other hand, for the strongly
rotating case, Cð’Þ has a finite limit Cð’Þ ! ðcv þ 1Þ=4,
even though most of the pdV work increases the rotation
energy; namely, the ratio of the energy going to heat over
the work against centrifugal force is

D ¼ cvNdT

pdV � cvNdT
¼ cvðe’ � 1Þ

2’e’Cð’Þ � cvðe’ � 1Þ ; (16)

and D ! 0 as ’ ! 1.
Commutative property.—The adiabatic parallel and

perpendicular compression will possess a commutative

property. To see this, consider differential changes of
radius and parallel length (dr0, dL), with the goal to
demonstrate that the order of dr0 and dL is immaterial.
Call compression first in dr0 the RL process and compres-
sion first in dL the LR process. For adiabatic processes,
by the second law of thermodynamics, the processes must
be reversible. Hence, since energy is a state function,
monotonic with respect to both T and !, the work done
through LR and RL must be identical; for, if not, then we
could set up a cycle that eventually gives us positive work,
by pumping energy through one process and retrieving it
through the other. However, this would violate the second
law of thermodynamics because, as the total energy is
conserved, work can be obtained only through cooling of
the gas. Since any macroscopic change can be constructed
through adding differential changes, clearly parallel and
perpendicular compression are commutative. This result
may also be shown directly by calculating the work done
through Eqs. (13) and (10).
Inverse problem.—While the spinning preserves the

commutative property of parallel and perpendicular com-
pression, it does break the property that the total pressure in
a system with different mass gases is simply proportional
to the total number of gas molecules. Note that the degree
to which the spinning affects the compressibility is gov-
erned by the ratio of spinning energy to thermal energy ’
for each species; since temperature T and rotation ! are
common to all gases, the ’ for each gas depends linearly
on the mass. This, in turn, means that at the same tempera-
ture and rotation, different mass gases will behave differ-
ently to differential changes in rotation, temperature, or
volume.
To be specific, consider that, by Dalton’s law, the total

pressure is a sum of partial pressures of each gases,

p ¼ XK
i¼0

Pi ¼ T

V

XK
i¼0

Ni’ie
’i

e’i � 1
; (17)

where ’i ¼ mi!
2r20=2T. For the vanishing rotation case,

where all the ’i vanish, we have

p ! T

V

XK
i¼0

Ni ¼ TNtot

V
; (18)

so, clearly, measurements of external parameters of the
system inform only on the total number of particles Ntot,
but not the individualNi. Similarly, for supersonic rotation,
in the limit that all the ’i are large, we have

p ! r20!
2
0

2V

XK
i¼0

Nimi ¼ r20!
2
0

2V
mtot; (19)

where mtot is the total confined mass. Thus, external mea-
surements inform only on the total mass, but, as in the
opposite limit, not on the individual Ni.
However, for finite rotation, the coefficients weighting

the Ni in Eq. (17) differ for different mass molecules and
FIG. 2 (color online). Parallel and perpendicular compression
functions, Bð’) and Cð’Þ.
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depend on both temperature T and rotation !. Thus, by
varying either temperature or rotation velocity, in principle,
K independent measurements of total pressure could be
made to resolve K species through a linear system of
equations to find Ni. Of course, the degree to which these
measurements are informative will depend upon the sensi-
tivity of the partial pressures to the variations in tempera-
ture or rotation velocity. Hence, we can imagine that the
most informative measurements occur for intermediate
rotation speeds when, for any two species i and j, there
is at least one measurement in which both species are not
in the same ’ limit.

In principle, any number of inverse problems could be
constructed in which, given masses mi, the pressure as a
function of external parameters such as L or r0 is used to
calculate the Ni. As but one example, we show here a class
of inverse problems that admit analytic solutions; specifi-
cally, the distribution of masses NðmÞ can be found from
measuring the radial pressure as a function of T or !.

First, write the total pressure as

pðxÞ ¼ x
T

V

Z 1

0

NðmÞmexmdm

exm � 1
; (20)

where we introduced the parameter x ¼ !2r20=2T. Note
that the limit of small x gives the total number of particles

pð0Þ ¼ T

V

Z 1

0
NðmÞdm ¼ T

V
Ntot; (21)

and the limit of large x gives total mass of particles mtot

pð1Þ ¼ x
T

V

Z 1

0
NðmÞmdm ¼ x

T

V
Mtot: (22)

Now define the function GðxÞ:

GðxÞ ¼ pðxÞ � pð1Þ ¼ x
T

V

Z 1

0

NðmÞmdm

exm � 1
: (23)

Equation (23) is the Fredholm integral equation of the
first kind for unknown NðmÞ, with kernel Kðm; xÞ ¼
m=ðexm � 1Þ, and known GðxÞ. Multiply GðxÞ by xs�1

and integrate with respect to x:

Z 1

0
xs�1GðxÞdx ¼ T

V

Z 1

0

�Z 1

0

ðxmÞsdðxmÞ
exm � 1

�
dmNðmÞm�s

¼ T

V

Z 1

0

dyys

ey � 1

Z 1

0
dmNðmÞm�s: (24)

Since Gð0Þ ¼ TNtot=V, in order for the first integral to
converge we demand ReðsÞ> 1. The second integral con-
verges when ReðsÞ> 0. For the last integral to converge,
we need to have Nð0Þ ¼ 0, i.e., the realistic condition that
all molecules have finite mass. To solve for NðmÞ we
employ an integral Mellin transform, given by

�ðsÞ ¼
Z 1

0
xs�1fðxÞdx; (25)

fðxÞ ¼ 1

2�i

Z Cþi1

C�i1
x�s�ðsÞds: (26)

Now we have

K̂ðsÞ ¼
Z 1

0
ys�1 y

ey � 1
dy ¼ �ðsþ 1Þ�ðsþ 1Þ; (27)

ĜðsÞ ¼
Z 1

0
xs�1GðxÞdx; (28)

N̂ð1� sÞ ¼
Z 1

0
m�sNðmÞdm; (29)

where �ðsÞ and �ðsÞ are the Euler gamma function and
Riemann zeta function, respectively. Thus, the solution for
the image is

N̂ðsÞ ¼ V

T

Ĝð1� sÞ
�ð2� sÞ�ð2� sÞ ; (30)

giving NðmÞ

NðmÞ ¼ V

2�iT

Z Cþi1

C�i1
Ĝð1� sÞ

�ð2� sÞ�ð2� sÞm
�sds: (31)

Note that the class of inverse problems solved here
began with knowledge of pðxÞ only, namely, the pressure
measured at the radial periphery as a function of x, which
in turn depends explicitly on rotation speed, temperature,
and radius. However, these parameters in turn might be
interdependent, depending on the particular way in which
the parameters are varied. Perhaps the easiest realization
of the inverse problem is to vary the the frequency, putting
the cylinder in a heat bath, thus leaving the radius and
temperature constant. The frequency can be varied until a
steady state is reached at constant temperature.
However, insofar as this class of inverse problems is

concerned, any way in which pressures are measured as
a function of x admits the inverse solution, no matter how
the range of x is obtained. For example, we can vary not
angular velocity, but temperature, and measure again the
pressure on the wall. Alternatively, the spinning gas can be
compressed longitudinally or radially. In each case, a range
of x is obtained. The precise range of x expected may be
found by using Eq. (14) in the case of perpendicular
compression and Eq. (11) in the case of parallel compres-
sion. In either case, once the pressure function pðxÞ is
measured, the inversion of the Fredholm equation gives
us the distribution function NðmÞ.
However, for the inversion to be robust against noise in

the measurements, we expect that, however the range in x
is obtained, it will be important to reach intermediate, or
approximately sonic (when mean gas flow velocity is equal
to thermal velocity), rotation speeds for each gas constitu-
ent. As discussed, it is at the sonic speeds that the distri-
bution function of any constituent gas is most sensitive
to changes in temperature or rotation speeds. Additional
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robustness might be obtained through other sources of
information, for example, that the molecular masses must
take on discrete values only, or that the molecular masses
are chosen from a certain finite subset of all possible
masses. The quantification of these other sources of infor-
mation, however, is outside the scope of our effort here.
Our main goal here is simply to point out that there is a
whole class of inverse problems that can now be formu-
lated and solved.

Conclusion.—The spinning gas possesses a number of
significant and apparently unnoticed features. A finite
rotation velocity changes the compressibility of the gas
in both the perpendicular and the axial directions, with the
axial direction exhibiting an unusual reduced compressi-
bility effect. The rotation plays the role of energy storage
similar to a change in specific heat. However, because
this storage effect is most sensitive to external parameters
at sonic rotation, as opposed to subsonic or supersonic
rotation, constituent gases in a mixture may be distin-
guished by molecular weight. Thus, as opposed to the
case of no rotation, for finite rotation, a variety of inverse
problems can be constructed in which external parameters
can resolve the individual constituent gas densities.
Remarkably, these inverse problems admit direct solutions
by posing the inversion as a Fredholm integral of the

first kind. The practical merit of these inverse problems
is that gas constituents in a closed cylinder, lacking spec-
troscopic access, might nonetheless be deduced by external
measurements.
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