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A theoretical model is developed to explain the plasma rotations induced by lower hybrid waves in

Alcator C-Mod. In this model, torodial rotations are driven by the Lorentz force on the

bulk-electron flow across flux surfaces, which is a response of the plasma to the resonant-electron

flow across flux surfaces induced by the lower hybrid waves. The flow across flux surfaces of the

resonant electrons and the bulk electrons are coupled through the radial electric field initiated by

the resonant electrons, and the friction between ions and electrons transfers the toroidal momentum

to ions from electrons. An improved quasilinear theory with gyrophase dependent distribution

function is developed to calculate the perpendicular resonant-electron flow. Toroidal rotations are

determined using a set of fluid equations for bulk electrons and ions, which are solved numerically

by a finite-difference method. Numerical results agree well with the experimental observations in

terms of flow profile and amplitude. The model explains the strong correlation between torodial

flow and internal inductance observed experimentally, and predicts both counter-current and

co-current flows, depending on the perpendicular wave vectors of the lower hybrid waves. VC 2013
American Institute of Physics. [http://dx.doi.org/10.1063/1.4791666]

I. INTRODUCTION

Plasma in tokamaks with rotation has many advantages.

Strong rotation can stabilize magneto-hydrodynamic (MHD)

instabilities1,2 and gradients of plasma rotation help improve

confinement by reducing turbulence.3,4 Lower hybrid waves

can be used for driving current to provide for plasma con-

finement,5 which is particularly effective if the wave power

can penetrate the plasma core. Early experiments utilizing

externally launched microwave power in the lower hybrid

frequency range were aimed at heating the plasma ions, and

operated at relatively high plasma density (line-averaged

density of about 1� 1020m�3).6 In these experiments, the

coupled radio-frequency (RF) power did not produce any

effect in the plasma core, but remained deposited at the very

edge.7–10 More recently, a similar effect of lack of RF power

penetration in the core was found in LHCD experiments

approaching reactor graded conditions of high plasma den-

sity on FTU (Frascati Tokamak Upgrade)11 and JET (Joint

European Torus).12 Consistently with FTU results, further

LHCD experiments at high plasma density obtained effects

of LH power deposition in the scrape-off layer, on Alcator

C-Mod,13 and decrease of the LHCD efficiency stronger than

expected on Tore Supra.14 By means of the interpretation of

this phenomenon on the basis of parasitic absorption in the

scrape-off layer produced by non-linear mechanism,15 a new

method for enabling the penetration of the coupled LH

power in the core was assessed on FTU.11 Recent studies

have shown that the wave-particle interactions in the scrape-

off layer diminish when the temperature of peripheral plasma

electrons is high.11,16 Therefore, externally launching radio

frequency power coupled to lower hybrid waves is still a

promising method of driving current and improving confine-

ment for future tokamaks with high-density plasma, such as

ITER.

In the experiments carried out in Alcator C-Mod, signifi-

cant changes of toroidal rotation speed have been observed

after the launch of lower hybrid waves for driving current.

Counter-current toroidal rotation driven by lower hybrid

waves was first reported by C-Mod team during lower hybrid

current driving.17,18 The total power coupled to lower hybrid

waves was about 0.8 MW for Alcator C-Mod. The waves

had been shown to induce a counter-current change in toroi-

dal rotation of up to 60 km/s in the central region of the

plasma (r=a �< 0:4). Furthermore, the changes in the cen-

tral rotation velocity were proven to be well correlated with

changes in normalized internal inductance. This indicates

current drive is responsible for the rotation profile modifica-

tions. In the follow-up studies,19–21 lower hybrid waves were

shown to be able to drive toroidal rotation in both counter-

current and co-current direction. At a fixed density of

ne � 0:66� 1020m�3, there existed a critical current,

where the direction of toroidal rotation was reversed. During

high current cases, e.g., 700 kA, the rotation drive was in

the counter-current direction with a rotation change of

�� 30 km=s. At low current, e.g., 400 kA, the core rotation

was driven in the co-current direction with Dv � 30 km=s.

Recently, different theoretical approaches have been

adopted to explain plasma rotations with no external momen-

tum input. A theory based on the turbulent momentum trans-

port seems to be promising, in which it is believed that non-

zero parallel Reynolds stress of turbulence is the force that

drives toroidal flow.22,23 Thermal-ion-loss at plasma edge is

also suggested to be the reason of plasma intrinsic rotation.24

In this theory, thermal ions moving in certain direction are

easier to hit first wall than others, as a result extra momen-

tum is left in plasma. There are a few theories exclusively

for toroidal rotations observed during lower hybrid current

driving (LHCD).25,26 In these works, it is suggested that

Ware pinch of trapped electrons induced by lower hybrid
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waves is the major reason for the spin-up. However, there is

no conclusive theoretical explanation of the toroidal rotations

observed in Alcator C-Mod with LHCD, which is sensitive to

the configuration of the lower hybrid waves and closely asso-

ciated with wave-driven toroidal current. In this paper, we

present a new theory to understand the rotations observed in

Alcator C-Mod with LHCD. In our theory, the driving force

of rotation is proportional to the magnitude of the wave-

driven toroidal current and depends on the propagation of

lower hybrid waves in plasma. In addition, this theory has the

potential to be applied to toroidal rotations observed in other

situations, e.g., plasmas with ICRF heating.27,28

The main idea of our theory is as follows. In the back-

ground magnetic field, lower hybrid waves push resonant

electrons to drift across flux surfaces. This drift brings charge

build-up in plasma and therefore formation of the radial elec-

tric field, which drives bulk electrons to flow across flux

surfaces as a return current to counteract the charge accumu-

lation. The Lorentz force on the return current of bulk elec-

trons is the momentum source, which drives plasma to spin

up. The momentum is transferred to ions by friction between

bulk electrons and ions. The physics of driving return current

across flux surfaces is a complicate issue itself. For certain

cases, the return current can be carried by bulk ions and elec-

trons together or even mainly ions. But the difference in the

carriers of the return current does not change the magnitude

and direction of the Lorentz force on the return current.

Two key points distinguish our theory from previous

studies of plasma rotation. First, we believe that the Lorentz

force brought by the bulk-electron flow across flux surfaces

is the momentum source, which drives toroidal plasma rota-

tion. In other theories, non-diffusive residual stress of mo-

mentum transport22 or thermal-ion-orbit loss near edge24 are

the candidates to provide the momentum for toroidal plasma

rotation. In addition, the bulk-electron flow is a response of

the plasma to the resonant-electron flow across flux surfaces

induced by lower hybrid waves. In previous theoretical stud-

ies,29,30 effects of lower hybrid waves are considered solely

to be driving current and heating.

Here, we briefly describe the physical picture of our

theory. As explained above, the Lorentz force is the momen-

tum source for toroidal plasma rotation in our model. If we

use the two-fluid model to describe the plasma, the toroidal

components of momentum equations are
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e

@t
þ nemeue �

@uu
e

@x
¼ �ðr �PeÞu

þ neqeðEu þ ur
e � BhÞ þ f

u
ei;

(1)
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@x
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þ niqiðEu þ ur
i � BhÞ þ f

u
ie; (2)

where terms on the right-hand side of Eqs. (1) and (2) repre-

sent momentum transport, electric force, the Lorentz force,

and friction, respectively. The driving force of rotation is

one or multiple terms on the right-hand side of Eqs. (1) and

(2). The Lorentz force in Eq. (1), ur
e � Bh, can act on toroidal

rotation of ions, uu
i , through friction. The bulk electron flow,

ur
e, is a response of the plasma to a resonant-electron flow

across flux surfaces, which builds up charge hence the radial

electric field. This resonant-electron flow is induced by the

E� B drift due to the perpendicular electric field of the

lower hybrid waves. It is well-known that the electric field of

lower hybrid waves has parallel and perpendicular compo-

nents, and the parallel electric field interacts with resonant

electrons to drive current. However, the effects of the per-

pendicular electric field of the lower hybrid waves have been

largely ignored so far.

In Sec. II, we will use kinetic equations to derive a set of

fluid equations to describe the toroidal plasma rotation

induced by lower hybrid waves. The resonant-electron flow

across flux surfaces is an input parameter of the fluid equa-

tions that has to be calculated before we can solve the equa-

tions. In Sec. III, we will use an improved quasilinear theory

to study the distribution function of resonant electrons during

LHCD and to calculate magnitude and direction of the

resonant-electron flow across flux surfaces. By substituting the

results of Sec. III into the fluid equations in Sec. II, the set of

fluid equations is completed. Using the completed fluid equa-

tions, we will study toroidal plasma rotation induced by lower

hybrid waves in Sec. IV. Discussions are given in Sec. V.

II. FLUID EQUATIONS FOR LHCD INDUCED PLASMA
ROTATION

In this section, we start from kinetic equations of ions

and electrons to derive a set of fluid equations to study the

rotation of a two-component plasma during the launch of

lower hybrid waves. As discussed in the end of Sec. I, the

resonant-electron flow across flux surfaces is an input param-

eter of the fluid equations, which has to be calculated before

we can solve the fluid equations. Therefore, we divide the

distribution function of electrons into that of resonant elec-

trons and bulk electrons. We will use the distribution func-

tions of bulk electrons and ions to derive the fluid equations

and use the distribution function of resonant electrons to cal-

culate resonant-electron flow across flux surfaces. This

approximation has been adopted in previous study for RF

current-drive theory.30,31 Bulk electrons, i.e., those with

speed v � vet, all experience about the same collisionality

with collision rate proportional to v�3
et . Here vet is thermal

electron speed. Resonant electrons are those with speed

v � vLH � vet, where vLH is parallel phase velocity of the

lower hybrid wave. Collision frequency of these electrons

will be ðvet=vLHÞ3 smaller than that for bulk electrons. In

practise, even a resonant electron with vet=v � vet=vLH ’
1=3 may be considered fast, hence relatively collisionless.

Therefore, it is reasonable to separate resonant electrons

from bulk electrons. By taking this approximation, we can

take moments of the kinetic equations of bulk electrons and

ions to derive the set of two-fluid equations.

Kinetic equations for ions and electrons are

@fe

@t
þ v � @fe

@x
þ qe

me
ðEþ v� BÞ � @fe

@v
¼ Cðfe; feÞ þ Cðfe; fiÞ;

(3)
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@fi

@t
þ v � @fi

@x
þ qi

mi
ðEþ v� BÞ � @fi

@v
¼ Cðfi; fiÞ þ Cðfi; feÞ;

(4)

where C is collision operator. As discussed above, we divide

fe into fe ¼ fenr þ fer with the assumption that fenr � fer .

Here, fenr and fer are distribution function of bulk (non-

resonant) electrons and resonant electrons. Substituting

fe ¼ fenr þ fer into Eqs. (3) and (4) and only keep dominant

terms, we have kinetic equations for resonant electrons, bulk

electrons and ions

@fer

@t
þ v � @fer

@x
þ qe

me
ðEþ v� BÞ � @fer

@v

¼ Cðfer; fenrÞ þ Cðfenr; ferÞ þ Cðfer; fiÞ; (5)

@fenr

@t
þ v � @fenr

@x
þ qe

me
ðEþ v� BÞ � @fenr

@v

¼ Cðfenr; fenrÞ þ Cðfenr; fiÞ; (6)

@fi
@t
þ v � @fi

@x
þ qi

mi
ðEþ v� BÞ � @fi

@v
¼ Cðfi; fiÞ þ Cðfi; fenrÞ:

(7)

One can notice that the equations of bulk electrons and ions,

Eqs. (6) and (7), seem to be decoupled from the equation of

resonant electrons, Eq. (5). We will see later that the physics

of resonant electrons and bulk electrons will be coupled by

electromagnetic field. We will use Eq. (5) to calculate the

resonant-electron flow across flux surfaces later in Sec. III.

Now we take moments of Eqs. (6) and (7) to derive the two-

fluid equations for bulk electrons and ions

@nenr

@t
þ @

@x
� ðnenruenrÞ ¼ 0; (8)

@ni

@t
þ @

@x
� ðniuiÞ ¼ 0; (9)

nenrme
@uenr

@t
þ nenrmeuenr �

@uenr

@x
¼ �r �Penr �rpenr

þ qeðE0 þ uenr � B0Þ þ fenr;i; (10)

nimi
@ui

@t
þ nimiui �

@ui

@x
¼ �r �Pi �rpi

þ qiðE0 þ ui � B0Þ þ f i;enr; (11)

@penr

@t
þ uenr �

@penr

@x
¼ �cpenrr � uenr; (12)

@pi

@t
þ ui �

@pi

@x
¼ �cpir � ui: (13)

Here nenr; ni; uenr; ui;Penr;Pi; penr , and pi are density, fluid

velocity, viscosity, and pressure of bulk electrons and ions,

respectively.

It is important to notice that the two-fluid equations are

for bulk electrons and ions. Fast oscillating field of lower

hybrid waves have no direct effects on bulk electrons and ions.

Therefore, we have ignored the wave field and used the

slow-changing background field E0 and B0 instead of the total

field E and B in the equations. In addition, Eqs. (8)–(13) do

not include resonant electrons directly. Resonant electrons act

on bulk electrons and ions through electric field E0 and mag-

netic field B0. The current carried by resonant electrons

changes B0 and the charge built up by the resonant-electron

flow across flux surfaces generates radial component of E0.

For this reason, we use Maxwell’s equations of the background

fields E0 and B0 to couple the physics of fields and particles

r � E0 ¼
qener þ qenenr þ qini

�0

; (14)

r� E0 ¼ �
@B0

@t
; (15)

r� B0 � l0�0

@E0

@t
¼ l0ðqeneruer þ qenenruenr þ qiniuiÞ:

(16)

Here, ner and neruer denote resonant-electron density and

flow. We can simplify the problem by assuming that back-

ground magnetic field is constant in the fluid equations.

Thus, we can use Poisson’s equation alone instead of the

complete set of Maxwell’s equations. The simplification can

be justified by the following arguments. In experiments with

LHCD, toroidal current is usually controlled by feedback

system to be constant before and after the launch of lower

hybrid waves. As a result, magnetic field is relatively con-

stant except that the radial profile of poloidal magnetic field

changes. Therefore, taking the background magnetic field as

constant is a good approximation.

After assuming constant magnetic field, the set of fluid

equations includes Eqs. (8)–(13) and (14), and they can be

further simplified. Since toroidal rotation is our goal, we will

start from the toroidal component of momentum equations

nenrme
@uu

enr

@t
þ nenrmeuenr �

@uu
enr

@x
¼�ðr �PenrÞu

þ qeðEu
0 þ ur

enrB
h
0Þ þ f /

enr;i;

(17)

nimi
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i

@t
þnimiui �

@uu
i

@x
¼�ðr �PiÞuþqiðEu

0 þur
i B

h
0Þþ f /

i;enr:

(18)

We have neglected ðrpenrÞu and ðrpiÞu in Eqs. (17) and

(18) because of the toroidal symmetry of tokamak. Convec-

tive terms, which are second terms on the left-hand side of

Eqs. (17) and (18), are typically small and can be

ignored.32,33 Toroidal electric field on the right-hand side of

Eqs. (17) and (18) is close to zero during LHCD according

to experimental observations.34 We can also safely neglect

ur
i because ions response much more slowly to the radial

electric field than electrons do. Viscosities of bulk electrons

and ions, which are the first terms on the right-hand side of

Eqs. (17) and (18), can be written as35,36

�ðr �PenrÞu ¼ nenrme venr

@2uu
enr

@r2
þ venr

@uu
enr

@r

� �
; (19)
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�ðr �PiÞu ¼ nimi vi

@2uu
i

@r2
þ vi

@uu
i

@r

� �
; (20)

where venr, venr, vi, and vi are momentum diffusivities and

momentum-pinch velocities of bulk electrons and ions.

Friction between bulk electrons and ions, f /
enr;i and f /

i;enr , are

defined as

f /
enr;i ¼ �f /

i;enr ¼ nenrme�enr;iðuu
enr � uu

i Þ: (21)

Here �enr;i is collision rate of bulk electrons on ions. If we

assume that the time scale for the charge build-up to reach

steady state is much faster than that for plasma rotation, the

following equation holds while uu
i evolves:

@ðqener þ qenenr þ qiniÞ
@t

¼ �r � ðqeneruer þ qenenruenr þ qiniuiÞ ¼ 0: (22)

Since it is the flow across flux surfaces that causes charge

build-up, we can re-write Eq. (22) as

@ðqener þ qenenrÞ
@t

¼ � 1

r

@

@r
rðqeneru

r
er þ qenenru

r
enrÞ ¼ 0:

(23)

Again, ur
i in Eq. (23) has been neglected. With the boundary

condition ur
erðr ¼ aÞ ¼ ur

enrðr ¼ aÞ ¼ 0, where a is minor

radius, Eq. (23) gives

nenru
r
enr ¼ �neru

r
er: (24)

Combining all the simplifications and definitions above, we

have the toroidal momentum equations for bulk electrons

and ions

nenrme
@uu

enr

@t
¼ nenrme venr

@2uu
enr

@r2
þ venr

@uu
enr

@r

� �

� qeneru
r
erB

h
0 � nenrme�enr;iðuu

enr � uu
i Þ; (25)

nimi
@uu

i

@t
¼ nimi vi

@2uu
i

@r2
þ vi

@uu
i

@r

� �

� nenrme�enr;iðuu
i � uu

enrÞ: (26)

If we take densities nenr and ni, momentum diffusivities venr

and vi, momentum-pinch velocities venr and vi, resonant-

electron flow across flux surfaces neru
r
er, and collision fre-

quency �enr;i to be known quantities, we only have two

unknown variables left, uu
enr and uu

i for two equations, Eqs.

(25) and (26). Therefore, Eqs. (25) and (26) are complete

and can be used to study toroidal rotation. This method has

been adopted previously to study toroidal rotations.33 The

differences here are that we use toroidal momentum equa-

tions of both bulk electrons and ions instead of just one for

ions, and there is a driving force qeneru
r
erB

h
0 in the equation

of bulk electrons. The magnitude and direction of neru
r
er will

be calculated in the next section. Another important feature

of Eqs. (25) and (26) is the symmetry with respect to the

signs of uu
enr, uu

i , and ur
er. If ðuu

enr; u
u
i Þ is a solution of Eqs.

(25) and (26) for a given resonant-electron flow across flux

surfaces neru
r
er, it is not difficult to prove that ð�uu

enr;�uu
i Þ is

also a solution of the system if we change the sign of neru
r
er.

Therefore, our approach theoretically allows the existence of

opposite toroidal rotations.

III. LOWER HYBRID WAVES INDUCED RESONANT-
ELECTRON FLOW ACROSS FLUX SURFACES

In this section, we calculate the resonant-electron flow

across flux surfaces neru
r
er. Lower hybrid waves used in

LHCD can not only drive toroidal current but also push reso-

nant electrons to form a flow across flux surfaces. However,

we cannot obtain this flow by following the standard quasi-

linear analysis for velocity-space diffusion caused by lower

hybrid waves. Here we discuss the reason using the calcula-

tions in Refs. 29 and 37 as examples. Following these stand-

ard analysis, we calculate the velocity-space diffusion of

resonant-electron distribution function in cylindrical coordi-

nates for velocity and wave-vector

vx ¼ v?cos / vy ¼ v? sin /;
kx ¼ k?cos w ky ¼ k? sin w;

(27)

where / is the angle between x axis and perpendicular veloc-

ity, and w is the angle between x axis and perpendicular

wave-vector. The background magnetic field B0 is chosen to

be in the z-direction. Flow across flux surfaces is the first

moment of the /-dependent part of the distribution function

as shown later in Eq.(58). But in Refs. 29 and 37, the distri-

bution function is averaged over the period ½0; 2p� in /. The

averaged distribution function only depends on parallel ve-

locity vz and perpendicular velocities v?. By taking the first

moment of the averaged distribution function, no flow across

flux surfaces can be derived.

In order to correctly calculate the resonant-electron flow

across flux surfaces, we do not average resonant-electron dis-

tribution function over /. The distribution function of reso-

nant electrons is expanded into Fourier components of /

f ¼
Xþ1

n¼�1
f nein/: (28)

The first moment of the first harmonics f 61e6i/ gives the

resonant-electron flow across flux surfaces neru
r
er. We will

first carry out the calculation for general electromagnetic

waves, and then the result is restricted to lower hybrid

waves. Following quasilinear theory,29,37 we split the distri-

bution function of resonant electrons fer into fluctuation and

non-fluctuation parts denoted by ~fer and fer;0, then substitute

them into Eq. (5). The corresponding equations of ~fer and

fer;0 are

@~fer

@t
þ v � @

~fer

@x
þ qe

me
ðv� B0Þ �

@~fer

@v

¼ � qe

me
ð~E þ v� ~BÞ � @fer;0

@v
; (29)
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@fer;0

@t
þ qe

me
ðv� B0Þ �

@fer;0

@v
¼ Cðfer;0; fenrÞ

þCðfenr; fer;0Þ þ Cðfer;0; fiÞ

þ @

@v
� � qe

me
ð~E þ v� ~BÞ~fer

� �
; (30)

where B0; ~E, and ~B are static magnetic field, electric field,

and magnetic field of the electromagnetic waves. We have

neglected static electric field in Eqs. (29) and (30) because

contributions of static magnetic field and waves are domi-

nant. Collision terms in Eq. (29) are dropped since the fluctu-

ation part is mainly determined by waves and static magnetic

field. For simplicity, we have ignored the spatial gradient of

fer;0 in Eq. (30) as well.

The last term on right-hand side of Eq. (30) is the

velocity-space diffusion, which represents the effect of

waves on electrons. We will solve Eq. (29) for ~fer through

Fourier transform, then substitute it into the term of velocity-

space diffusion to solve Eq. (30) for fer;0. Fourier transforms

of ~fer; ~E, and ~B are

~fer ¼
ð1
1

d3k

ð2pÞ3
~ferkeiðk�r�xktÞ; (31)

~E ¼
ð1
1

d3q

ð2pÞ3
~Eqeiðq�r�xqtÞ; (32)

~B ¼
ð1
1

d3q

ð2pÞ3
~Bqeiðq�r�xqtÞ: (33)

It is convenient to use rotating coordinates for the wave field

components in the form

~E
6 ¼ ~Ex6i ~Ey;

~B
6 ¼ ~Bx6i ~By:

(34)

Using these expressions, we can write the Fourier-

transformed Eq. (29) and (30) as

�ixk
~fer;k þ i½kzvz þ k?v?cosð/� wÞ� ~fer;k

� xce

@~fer;k

@/
¼ � qe

me
ð~Ek þ v� ~BkÞ �

@fer;0

@v
;

(35)

@fer;0

@t
þ qe

me
ðv�B0Þ �

@fer;0

@v
¼ Cðfer;0; fenrÞ þCðfenr; fer;0Þ

þCðfer;0; fiÞ þ
@

@v
�
ð

k

d3k

ð2pÞ3

� � qe

me
ð~E�kþ v� ~B�kÞ~f er;k

� �
:

(36)

Equation (35) is a first-order differential equation in u, the

solution of which is

~fer;k ¼
Xþ1

m;n¼�1
Jm

k?v?
xk

� �
Jn

k?v?
xk

� �
exp½iðn� mÞw� � qs

ms

� �"
i

xk � ðn� 1Þxce � kzvz

exp½iðm� nþ 1Þu�
2

� E�k Ĝ
þ
k þ

k?Ez
k

xk

e�iwĤ
þ

� �
i

xk � ðnþ 1Þxce � kzvz

exp½iðm� n� 1Þu�
2

� Eþk Ĝ
�
k þ

k?Ez
k

xk

eþiwĤ
�

� �
ik?
2xk

ðEþk e�iw � E�k eþiwÞv?ê/

þ i

xk � nxce � kzvz
exp½iðm� nÞu�Ez

kêvz

#
� @fer;0

@v
; (37)

where Jn denotes nth order Bessel function of the first kind

and

Ĝ
6

k � êv?6iê/ �
kz

xk

Ĥ
6
;

Ĥ
6 � vzêv? � v?êvz

6ivzê/:

(38)

Following our procedure discussed above, we will substitute

the solution ~fer;k into the term of velocity-space diffusion in

Eq. (36) to solve for fer;0. As mentioned after Eq. (28), we

only need the first harmonics of the Fourier-transformed fer;0

to calculate the resonant-electron flow across flux surfaces.

Hence, we keep equations for the zeroth and the first har-

monics, f 0
er;0 and f 61

er;0

@f 0
er;0

@t
¼ Cðf 0

er;0Þ þ
@

@v
� D0/ � @f 0

er0

@v
; (39)

@f 1
er;0ei/

@t
� xce

@f 1
er;0ei/

@/
¼ @

@v
� Di/ � @f 0

er0

@v
; (40)

@f�1
er0 e�i/

@t
� xce

@f�1
er0 e�i/

@/
¼ @

@v
� D�i/ � @f 0

er0

@v
; (41)

where Cðf 0
er;0Þ � Cðf 0

er;0; fenrÞ þ Cðfenr; f
0
er;0Þ þ Cðf 0

er;0; fiÞ and

the velocity-space diffusion tensors D0/;Di/, and D�i/ are
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D0/ ¼ q2
e

m2
e

Xþ1
n¼�1

1

V

ð
d3k

ð2pÞ3
i

xk � nxce � kzvz
a	nkank; (42)

Di/ ¼ q2
e

m2
e

Xþ1
n¼�1

1

V

ð
d3k

ð2pÞ3
iei/

xk � nxce � kzvz
b	1nkc1nk; (43)

D�i/ ¼ q2
e

m2
e

Xþ1
n¼�1

1

V

ð
d3k

ð2pÞ3
ie�i/

xk � nxce � kzvz
b	�1nkc�1nk;

(44)

with

ank ¼
1

2
Eþk gk þ

k?Ez
k

xk

eiwh

� �
e�iwJn�1

k?v?
xc

� �

þ 1

2
E�k gk þ

k?Ez
k

xk

e�iwh

� �
eiwJnþ1

k?v?
xc

� �

þEz
kêvzJn

k?v?
xc

� �
; (45)

b1nk ¼
1

2
Eþk G�k þ

k?Ez
k

xk

eiwH�
� �

Jn
k?v?
xc

� �

þ 1

2
E�k Gþk þ

k?Ez
k

xk

e�iwHþ
� �

ei2wJnþ2

k?v?
xc

� �

þ ik?v?
2xk

Eþk e�iw � E�k eiw
� �

ê/ þ Ez
kêvz

� �

� eiwJnþ1

k?v?
xc

� �
; (46)

b�1nk ¼
1

2
Eþk G�k þ

k?Ez
k

xk

eiwH�
� �

e�2iwJn�2

k?v?
xc

� �

þ 1

2
E�k Gþk þ

k?Ez
k

xk

e�iwHþ
� �

Jn
k?v?
xc

� �

þ ik?v?
2xk

Eþk e�iw � E�k eiw
� �

ê/ þ Ez
kêvz

� �

� e�iwJn�1

k?v?
xc

� �
; (47)

c1nk ¼ c�1nk ¼
1

2
Eþk G�k þ

k?Ez
k

xk

eiwH�
� �

e�iwJn�1

k?v?
xc

� �

þ 1

2
E�k Gþk þ

k?Ez
k

xk

e�iwHþ
� �

eiwJnþ1

k?v?
xc

� �

þ ik?v?
2xk

Eþk e�iw � E�k eiw
� �

ê/ þ Ez
kêvz

� �
Jn

k?v?
xc

� �
;

(48)

gk ¼ êv? �
kz

xk

ðvzêv? � v?êvzÞ; (49)

h ¼ vzêv? � v?êvz: (50)

We have dropped the collision terms in Eqs. (40) and (41) by

assuming that f 0
er;0 � f 61

er;0. The physics of the zeroth har-

monic f 0
er;0 in Eq. (39) has been well studied,29,37 but the

physics of the first harmonic f 61
er;0 in Eqs. (40) and (41) has

not. Heating and current-driving effects of electromagnetic

waves are reflected in the velocity-space diffusion tensor

D0/ in Eq. (39) since the tensor only contains velocity-

diffusion in the êv? and êvz
directions. For example, if we

take Ek ¼ ikU and n¼ 0 for D0/, which is the case for lower

hybrid waves in LHCD, the only component left in D0/ is

êvz
êvz

. This is exactly the diffusion coefficient used in LHCD

theory.30,31

Using the expressions for the velocity-space diffusion

tensors in Eqs. (42)–(44), we can solve Eqs. (40) and (41) for

the first harmonics of the resonant-electron distribution func-

tion f 1
er;0ei/ and f�1

er;0e�i/. Multiplying Eqs. (40) and (41) by

e�i/ and ei/, we have equations for f 61
er;0

@f 1
er;0

@t
� ixcef 1

er;0 ¼ P1; (51)

@f�1
er;0

@t
þ ixcef�1

er;0 ¼ P�1; (52)

with

P1 � e�i/ @

@v
� Di/ �

@f 0
er;0

@v
P�1 � ei/ @

@v
� D�i/ �

@f 0
er;0

@v
:

(53)

The solutions of Eqs. (51) and (52) are

f 1
er;0 ¼ eixcet

ðt

0

dt0e�ixcet0P1; (54)

f�1
er;0 ¼ e�ixcet

ðt

0

dt0eixcet0P�1; (55)

with the initial condition that f 61
er;0 ¼ 0 at t¼ 0. We need

time-averaged distribution functions to calculate the

resonant-electron flow across flux surfaces. The averages of

f 1
er;0 and f 1

er;0 in one gyro-period at moment t are

f 1
er;0 ¼

1

T

ðtþT

0

dt0f 1
er;0 �

ðt

0

dt0f 1
er;0

� �
¼ � P1

ixce
þ 1

x2
ce

dP1

dt


 � P1

ixce
; (56)

f�1
er;0 ¼

1

T

ðtþT

0

dt0f�1
er;0 �

ðt

0

dt0f�1
er;0

� �
¼ P�1

ixce
þ 1

x2
ce

dP�1

dt


 P�1

ixce
; (57)

where T is one gyro-period. We have dropped

1=x2
ceðdP61=dtÞ in above solutions of f 1

er;0 and f�1
er;0 , because

ðdP61=dtÞ=P61 � xce. The resonant-electron flow across

flux surfaces can be calculated by taking the first moment of

f 1
er;0ei/ þ f�1

er;0e�i/,

neru
r
er ¼

ð
d3vvr f 1

er;0ei/ þ f�1
er;0e�i/

� 	

¼
ð

d3vvr
�P1ei/ þ P�1e�i/

ixce

� �
: (58)
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Equation (58) is correct for general electromagnetic waves.

Now we apply Eq. (58) to lower hybrid waves for LHCD to

calculate the resonant-electron flow across flux surfaces

induced by lower hybrid waves.

In order to avoid the mathematical complexity of toka-

mak geometry, we carry out the calculation in a slab geome-

try shown in Fig. 1.

In this geometry, plasma exists in the region of

0 < y < a. A constant and uniform magnetic field B0 is in z
direction, and lower hybrid waves propagate within the x–z
plane. Here the –y direction in slab geometry is the counter-

part of the r direction in tokamak geometry. We first calcu-

late neru
y
er using the following equation:

neru
y
er ¼

ð
d3vv?sin /

�P1ei/ þ P�1e�i/

ixce

� �
; (59)

then consider it approximately the same as �neru
r
er . In order

to calculate neru
y
er , we need to know P61. As shown in Eq.

(53), P61 are functions of the velocity-diffusion tensors D6i/

and the zeroth harmonic of the distribution function f 0
er;0. We

have to derive the expressions for D6i/ and f 0
er;0 first. For

lower hybrid waves in LHCD, we have Ek ¼ ikU and n¼ 0

in the expressions of velocity-space diffusion tensors D0/,

Di/, and D�i/, which can be written as

D0/ ¼ q2
e

m2
e

1

V

ð
d3k

ð2pÞ3
iJ0J0

xk � kzvz
Ez	

k Ez
kêvz

êvz
; (60)

Di/ ¼ q2
e

m2
e

1

V

ð
d3k

ð2pÞ3
iei/J0J0

xk � kzvz

1

2
Ex

kG�k þ
k?Ez

k

xk

H�
� �	

Ez
kêvz

;

(61)

D�i/ ¼ q2
e

m2
e

1

V

ð
d3k

ð2pÞ3
ie�i/J0J0

xk � kzvz

1

2
Ex

kGþk þ
k?Ez

k

xk

Hþ
� �	

Ez
kêvz

:

(62)

Since the distribution function is approximately Maxwellian

in the perpendicular direction, k?v?=xk < 1 holds for ma-

jority of the electrons. Therefore, all terms related to J61;62

have been dropped in Eqs. (60)–(62), considering

J61;62ðk?v?=xkÞ � J0ðk?v?=xkÞ when k?v?=xk < 1. Sub-

stituting D0/, Di/, and D�i/ into Eq. (53) for P61, we have

P1 ¼ P�1 ¼ q2
e

m2
e

1

V

ð
d3k

ð2pÞ3
1

v?

@

@v?
v? �

1

v?

� �

� iJ0J0

xk � kzvz

Ex	
k Ez

k

2

@f 0
er;0

@vz
: (63)

In Eq. (63), we have neglected terms proportional to kzvz=xk

and kzv?=xk since the parallel phase velocity of lower

hybrid waves is large compared to the electron thermal ve-

locity. The last step before we can use P61 to calculate the

resonant-electron flow across flux surfaces is to determine

f 0
er;0. In the LHCD theory,30,31 an analytical solution of f 0

er;0 is

obtained using a one-dimensional theory

f 0
er;0 ¼ C exp � v2

?
v2

et

� �

� exp
1

v2
et

ðvz

0

�dv0zv
0
z



1þ v03z

v3
et

D0/ðv0zÞ
ð2þ Zef f Þv2

et�enr;i

� �� �
;

(64)

where vet is the thermal velocity of bulk electrons, and C is

an integration constant. The velocity-diffusion tensor D0/ in

Eq. (64) is usually assumed to be30,31

D0/ ¼ D0/ðvzÞêvz
êvz
; (65)

with

D0/ðvzÞ ¼
D0/; VLH1 � vz � VLH2;

0; vz < VLH1 or VLH2 < vz:

(
(66)

Here VLH2 and VLH1 are the upper and lower limit of the par-

allel phase velocity. Usually, D0/ is considered to be con-

stant and VLH1 
 VLH2 ¼ VLH. Spread of the parallel phase

velocity DVLH is defined as VLH2 � VLH1, which satisfies

DVLH � VLH. Parallel velocities of resonant electrons satisfy

VLH1 � vz � VLH2. Substituting f 0
er;0 in Eq. (64) into P61 in

Eq. (63), we have

P1 ¼ P�1 ¼ �C�enr;ið2þ ZiÞ
v3

et

v2
z

1

v?

@

@v?
v? �

1

v?

� �

� exp � v2
?

v2
et

� �
q2

e

m2
e

1

V

ð
d3k

ð2pÞ3
iJ0J0

xk � kzvz

Ex	
k Ez

k

2



D0/:

(67)

We need to know the integral

q2
e

m2
e

1

V

ð
d3k

ð2pÞ3
iJ0J0

xk � kzvz

Ex	
k Ez

k

2



D0/

FIG. 1. Plasma exists in the region of 0 < y < a. A constant and uniform

magnetic field is in z direction, and lower hybrid waves propagate within the

x–z plane.
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in Eq. (67) before we can use the equation to calculate the

resonant-electron flow across flux surfaces. Using the defini-

tion of D0/ in Eq. (60), we can write the above integral as

1

2

q2
e

m2
e

1

V

ð
d3k

ð2pÞ3
iJ0J0

xk� kzvz
Ex	

k Ez
k

. q2
e

m2
e

1

V

ð
d3k

ð2pÞ3
iJ0J0

xk� kzvz
Ez	

k Ez
k;

which can be estimated to be Ex
k=2Ez

k ¼ kx=2kz. As a result,

P61 can be written as

P1 ¼ P�1 ¼ �C
ð2þ Zef f Þ

2
�enr;i

kx

kz

v3
et

v2
z

1

v?

@

@v?
v? �

1

v?

� �

� exp � v2
?

v2
et

� �
: (68)

At last, we can use P61 to calculate the resonant-electron

flow across flux surfaces. Substituting P61 into Eq. (59), we

have

neru
y
er ¼ �Cpð2þ Zef f Þ

�enr;i

xec

kx

kz

v5
etDVLH

V2
LH

: (69)

Since resonant electrons only exist in the resonant region of

velocity space, which is VLH1 � vz � VLH2, the integration in

Eq. (59) is only needed to be completed in this region. The

integral constant C can be determined by the wave-driven

current in z direction

JLH
z ¼ qe

ð
d3vf 0

er;0vz ¼ qeCpv2
etVLHDVLH: (70)

Combining Eqs. (69) and (70), we have the resonant-electron

flow across flux surfaces

qeneru
y
er ¼ �

kx

kz

ð2þ Zef f Þ
V3

LH=v
3
et

�enr;i

xec
JLH

z : (71)

As discussed previously, we can write resonant-electron flow

across flux surfaces in tokamak geometry approximately as

qeneru
r
er 
 �qeneru

y
er ¼

k?
kk

ð2þ Zef f Þ
V3

LH=v
3
et

�enr;i

xec
JLH
k ; (72)

where JLH
k is plasma current measurable in experiments. It is

important to pay attention to the factor k? in Eq. (72). This

factor shows that propagation of lower hybrid waves in

plasma determines the direction of the resonant-electron

flow across flux surfaces if other terms in Eq. (72) are fixed.

With the symmetry of Eqs. (25) and (26) discussed in Sec.

II, our theory predicts opposite toroidal rotations given oppo-

site k?. In studies of propagation of lower hybrid waves in

tokamaks,38,39 there is no restriction for the sign of k?, which

in experiments might depend on the configuration of the dis-

charge. In the next section, we will substitute the result in

Eq. (72) into Eqs. (25) and (26) to study the toroidal rotation

induced by lower hybrid waves.

IV. LHCD INDUCED PLASMA ROTATION

In this section, we will numerically solve Eqs. (25) and

(26) for the toroidal rotation of ions. As discussed in Sec. II,

we take densities nenr and ni, momentum diffusivities venr and

vi, momentum-pinch velocities venr and vi, resonant-electron

flow across flux surfaces qeneru
r
er, poloidal magnetic field Bh

0,

and collision frequency �enr;i as known quantities. For sim-

plicity, we assume flat radial profiles for these quantities

except for Bh
0, venr, vi, and qeneru

r
er. The input parameters for

calculation have to be consistent with experimental data.

From the reports of Alcator C-Mod,17,18 we know electron

density and temperature at plasma core are about 1020=m3

and 2.5 keV. Therefore we choose nenr ¼ ni ¼ 1020=m3 and

estimate the collision frequency of thermal electrons as

�enr;i ¼ 105=s. To determine the radio profile of the poloidal

magnetic field Bh
0, we simply assume a geometry with circular

flux surfaces and a large aspect ratio with Bh
0 ¼ rB0=qR0. The

magnitudes of axial magnetic field, major radius, minor ra-

dius, and interior safety factor of Alcator C-Mod have been

listed in Ref. 40. We use a set of typical values for the calcu-

lation, which are B0 ¼ 5 T;R0 ¼ 0:67 m; a ¼ 0:21 m, and

q¼ 1.5. The momentum transport coefficients of tokamak

plasma are still an unsolved issue. The momentum diffusivity,

v, is generally found to be similar to the ion thermal conduc-

tivity,33 which is in the range of 0:05 � 0:5 m2=s.33,40 Hence,

we use a diffusivity somewhat in the middle of the range,

venr ¼ vi ¼ 0:225 m2=s. For momentum-pinch velocities,

theoretical results of either turbulent equipartition pinch35,36

or fluid treatment41 do not agree with the experiment observa-

tions, which is in the range of 0 � 6 m=s.40 We select a

pinch-velocity in the middle approximately and assume a ra-

dial profile, so that vi ¼ venr ¼ 4exp½�ðr=a� 0:4Þ2=20� m=s.

The resonant-electron flow across flux surfaces qeneru
r
er is cal-

culated using Eq. (72). The parallel phase velocity is usually

3 � 5 times of electron thermal velocity in order to have a

high driving efficiency.30 The current driven by lower hybrid

waves can typically reach the level of 3 MA=m2.40 As a

result, it is reasonable to choose JLH
k and VLH=vte to be

2� 106 A=m2 and 4. Effective ion charge is selected as

Zef f ¼ 2:0. We estimate xec to be 8:8� 1011 s�1 using axial

magnetic field and k?=kk to be 617 using the dispersion rela-

tion of lower hybrid waves. Here the sign of k?=kk depends

on the direction in which lower hybrid waves propagate. Dif-

ferent signs of k?=kk correspond to different directions of the

driving force. In LHCD experiments, the sign of k?=kk can be

positive or negative, as a result toroidal rotations in both

co-current and counter-current directions are predicted. Sub-

stituting these parameters into Eq. (72), we have the resonant-

electron flow across flux surfaces qeneru
r
er � 60:25 A=m2,

where the sign is determined by that of k?=kk.
With all the input quantities in Eqs. (25) and (26) deter-

mined, we can numerically solve the two equations for ion

toroidal rotation. We apply a finite difference method in

which the grid size is 1/400 of the minor radius a and the

time-step is 1/200 of the thermal collision time 1=�enr;i. The

numerical results are presented in Fig. 2. Shown in Fig. 2(a)

is radial profile of toroidal velocity of ions for the case of

qeneru
r
er ¼ �0:25 A=m2. The profile is plotted from plasma
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core ðr ¼ 0 mÞ to plasma edge at r ¼ a ¼ 0:21 m. The max-

imum rotation speed is –37 km/s, located at plasma core. Fig.

2(b) is the time history of the rotation speed at plasma core

for the same case. Plotted in Fig. 2(c) is the radial profile of

the rotation speed by taking qeneru
r
er ¼ 0:25 A=m2. The peak

speed is 37 km/s, which is also located at plasma core. The

time history of the core rotation for this case is shown in Fig.

2(d). The symmetry with respect to the sign of uu
enr , uu

i , and

ur
er discussed at the end of Sec. II is evident from the numeri-

cal results shown in Fig. 2.

As displayed in Figs. 2(a) and 2(c), the rotation speed

reaches its peak value at plasma core, this is consistent with

experimental results.17,18 The magnitude of the peak velocity

shown in the above example is 37 km/s. The magnitude is

determined by the driving force and momentum dissipation. A

weaker momentum diffusivity, stronger return current or

higher poloidal magnetic field can induce a stronger rotation.

For the rotations in Alcator C-Mod, the peak velocity ranges

from 20 km/s to 60 km/s.17,18 Therefore, our model indeed pre-

dicts strong rotations comparable to experimental observa-

tions. The radial profile of rotation velocity is affected

by the radial profile of return current, momentum diffusivity,

momentum pinch-velocity, density, poloidal magnetic field,

and other quantities. It is understandable that the profile of

rotation shown above is different from the hollow rotation pro-

file in the experiments.17,18 The time scale of rotation is also

important. The time history of flow in Figs. 2(c) and 2(d) can

be fitted by exponential functions with a characteristic time of

65 ms, which is shorter than the typical 150 ms observed in

experiments.17 The reason of this difference might be that we

have ignored the time it takes to establish toroidal current in

Eq. (72). The driving force of rotation is proportional to the

resonant-electron flow across flux surfaces which itself is pro-

portional to the toroidal current as shown in Eq. (72). In prac-

tise, increase of the toroidal current will not be instantaneous

because of the plasma internal inductance, neither will be the

driving force. Therefore, we might be able to obtain results

with more accurate characteristic time if we allow the toroidal

current to have a finite increasing time. In experiment, normal-

ized internal inductance is closely correlated with rotation

speed. Although our model does not include the evolving of

the inductance, it does indicate the existence of the correlation.

The driving force of the rotation is proportional to wave-

driving plasma current, and the normalized internal inductance

FIG. 2. (a) Radial profile of rotation speed with qeneru
r
er ¼ �0:25 A=m2. (b) Time history of the rotation speed at plasma core for the same case as (a). (c) Ra-

dial profile of rotation speed with qeneru
r
er ¼ 0:25 A=m2. (d) Time history of the rotation speed at plasma core for the same case as (c).
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is just a measure of the radial profile of the current density.

One significant advantage of our theory is that both counter-

current and co-current rotations are predicted with different

signs of k?=kk as shown in Fig. 2. Recent studies have

reported that there are indeed toroidal rotations in both direc-

tions during launch of lower hybrid waves depending on spe-

cific experimental setups.19,20 For example, the rotation speed

is observed to increase by 30 km/s in the counter-current direc-

tion after the launch of lower hybrid waves for an initial toroi-

dal current of 700 kA.19,20 By lowering the initial toroidal

current to 300 kA, the rotation speed increases by 20 km/s in

the co-current direction after the launch of lower hybrid

waves.19,20

V. CONCLUSION AND DISCUSSION

In this paper, we have presented a theoretical model to

explain plasma rotations induced by lower hybrid waves

observed in Alcator C-Mod. The driving force of the rota-

tions is the Lorentz force on the bulk-electron flow across

flux surfaces, which is a response of the plasma to the

resonant-electron flow across flux surfaces induced by

the lower hybrid waves. The flow across flux surfaces of

the resonant-electrons and the bulk electrons are coupled

through the radial electric field initiated by the resonant elec-

trons, and the friction between ions and electrons transfers

the toroidal momentum to ions from electrons. Toroidal rota-

tions are determined using a set of fluid equations for bulk

electrons and ions. However, the resonant-electron flow

across flux surfaces cannot be found using the standard qua-

silinear theory29,37 for velocity-space diffusion. We have

developed an improved quasilinear theory to calculate the

resonant-electron flow across flux surfaces as a result of

velocity-space diffusion induced by lower hybrid waves. It

turns out that it is necessary to include the gyrophase de-

pendent part of the distribution function in the analysis.

Velocity-space diffusion tensors for the zeroth and first gyro-

phase harmonics of the resonant-electron distribution func-

tion are derived, and kinetic equations for the first harmonics

of the distribution function are solved. The resonant-electron

flow is then calculated by taking the first moment of the first

harmonics. A numerical code based on a finite-difference

method is used to solve the fluid equations for the toroidal

flow. The numerical results agree well with the experimental

observation in terms of flow profile and amplitude.

In this theoretical model, the driving force of toroidal

rotations is proportional to the toroidal current driven by the

lower hybrid waves, as shown in Eq. (72). During the launch

of lower hybrid waves, increasing the wave-driven current

while fixing the total current is accompanied by variations in

current density profile, which is usually measured by normal-

ized internal inductance. Therefore, our theory has explained

the mechanism of the strong correlation between rotation

speed and normalized internal inductance observed in experi-

ments.17 In addition, it is able to explain the recent experi-

ments in which both counter- and co-current rotations are

observed during the launch of lower hybrid waves with differ-

ent initial currents. Both counter-current and co-current rota-

tions are predicted by this model depending on the sign of k?.

Different discharge configurations in experiments might have

changed k?, and thus resulted in different rotation directions.

The theoretical model developed is also applicable to toroidal

rotations observed in certain other tokamak experiments, for

example, in discharges with ICRF heating. From Eq. (58), the

lower hybrid waves are not the only mode that is able to drive

resonant-particles to flow across flux surfaces. For this reason,

we can follow the same procedure to calculate the Lorentz

force and toroidal rotations induced by ICRF waves. Results

in this direction will be reported in future publications.
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