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Through particle-in-cell simulations and analytics, a host of interesting and novel wave effects in

nonstationary plasma are examined. In particular, Langmuir waves serve as a model system to explore

wave dynamics in plasmas undergoing compression, expansion, and charge recombination. The entire

wave life-cycle is explored, including wave excitation, adiabatic evolution and action conservation,

nonadiabatic evolution and resonant wave-particle effects, collisional dissipation, and potential

laboratory applications of the aforementioned phenomenology. VC 2013 AIP Publishing LLC
[http://dx.doi.org/10.1063/1.4801747]

I. INTRODUCTION

Waves have enjoyed a long and diverse history as a

useful, and sometimes even critical, tool in the design and

operation of magnetic fusion experiments. In magnetically

confined fusion plasmas, a variety of waves are supported

that exhibit resonance mechanisms allowing for the efficient

exchange of energy and momentum between a wave and spe-

cific populations of charged plasma constituents. The utiliza-

tion of wave-particle interactions in magnetic fusion has

yielded remarkable surges in technological capabilities and

system performance. For example, waves are used for such

tasks as heating the plasma,1–3 driving electrical current to

create confining magnetic fields,4,5 and even channeling the

energy of fusion byproducts to fuel ions, while simultane-

ously exhausting byproducts to the system periphery.6–10

Despite the rapid advancements made in the world’s

most sophisticated and powerful inertial confinement fusion

(ICF) experiments, such as NIF11,12 and Z,13–15 a commensu-

rate understanding of the role played by wave-particle

interactions in the high energy density (HED), highly nonsta-

tionary environments characteristic of such experiments is

notably lacking. Neither have kinetic wave-particle interac-

tions been considered an essential feature of basic ICF target

implosion physics nor has the existence of such interactions

been recognized as an ideal platform to perform useful tasks,

in stark contrast with other approaches to fusion. On the

other hand, much scientific interest exists in kinetic plasma

processes associated with nonstationary astrophysical plas-

mas, such as solar flares16–19 and cosmic ray sources,20,21 as

well as with plasmas occurring in the vicinity of nuclear

explosions.22,23 Thus, the ubiquity of nonstationary plasma

throughout terrestrial and astrophysical plasma systems indi-

cates that the field is ripe for an exploration of kinetic wave

dynamics in such environments.

Here, we review a number of recent results of our inves-

tigation of wave dynamics in nonstationary plasma and offer

a broad, more complete account of the impact of these new

concepts afforded by the perspective taking into account the

entire body of work. In plasma undergoing compression,

embedded waves can have very unusual and possibly useful

properties. For example, part of the mechanical energy of

compressing plasma can be transferred controllably to hot

electrons by seeding the plasma with plasma waves. Under

compression, wherein wave action is conserved, the wave

energy grows as its frequency and wavenumber change adia-

batically, until, suddenly, the wave damps, resulting in

switchlike production not only of heat but also voltage and

current. These bursts can be controlled precisely in time by

prescribing the compression script. Several classic problems

in wave physics, including the bump-on-tail instability, non-

linear Bernstein-Greene-Kruskal (BGK) wave dynamics, and

collisional relaxation, exhibit new effects under compression,

expansion, and charge recombination. In addition, waves

affect fundamental properties of plasma undergoing compres-

sion or expansion, such as the plasma compressibility; more-

over, and rather remarkably, nonlinear waves, such as BGK

modes, affect the plasma compressibility differently.

Nonlinear BGK modes are also used to conduct the first ab
initio test of a new theory of nonlinear wave action conserva-

tion.24 Wave-particle interactions mediated by plasma com-

pression also can enhance the performance of plasma-based

particle accelerators. To describe numerically all these

effects, novel particle-in-cell (PIC) simulations were devel-

oped. These findings point towards potentially beneficial

applications, including in ICF and HED physics, where

extreme compression is exercised on dense plasma, which

could be seeded with waves.

The article is organized as follows. First in Sec. II, the

PIC codes developed for this study are described briefly. In

Sec. III, wave effects associated with bulk plasma motion

parallel to the direction of wave propagation (longitudinal
compression/expansion) are discussed. In Sec. IV, wave

effects associated instead with plasma motion perpendicular

to the direction of wave propagation (transverse compres-

sion/expansion) are discussed. Section V explores two possi-

ble laboratory applications—current drive and plasma-based

particle acceleration—both of which exploit the unique wave

behavior observed in nonstationary plasma. Section VI

presents a summary of our results.
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II. SIMULATING WAVES IN NONSTATIONARY PLASMA

In order to simulate wave evolution in compressing

plasma, a PIC code was developed capable of modeling elec-

trostatic plasma physics in one spatial dimension (1D) and

two velocity dimensions (2 V), i.e., velocities parallel (vk)
and perpendicular (v?) to the spatial dimension being simu-

lated. Langmuir waves serve as the paradigmatic wave phe-

nomenon to be studied quantitatively, and both linear and

nonlinear Langmuir waves can be excited in the PIC simula-

tions through embedded perturbations, plasma instabilities,

or applied external potentials. The exact nature in which dif-

ferent waves are generated will be explained in each section

that follows.

A Fokker-Planck collision algorithm based on Ref. 25 is

included to provide a mechanism coupling vk and v?. This

particular algorithm was chosen due to its time-explicit for-

mulation, straightforward implementation, good numerical

stability properties, and, most importantly, its preservation of

the 1=v3
rel scaling of charged particle collisionality, where vrel

is the magnitude of the relative velocity between two

charged particles. This is crucial, considering some impor-

tant effects that we investigate, such as wave-based current

drive, rely heavily on the anisotropic collisional relaxation of

a distribution of electrons driven resonantly by waves in a

preferred direction. As suggested in Ref. 25, a d-function ker-

nel is adopted in the collision integral, which reduces

the random number generation requirement to only one per bi-

nary collision, and still converges to the exact Landau-

Fokker-Planck result with OðDtÞ accuracy. This algorithm is

certainly not the only one that could have been chosen,

as there is a rapidly growing body of literature seeking to

develop increasingly stable and efficient PIC collision models;

e.g., Refs. 26–30. Nevertheless, the charged particle scattering

algorithm developed in Ref. 25, and an earlier, related method

developed in Ref. 31, have both received particular attention

from within the field resulting, e.g., in at least two recent

external evaluations in the peer-reviewed literature.32,33

Electrons are initialized generally as Maxwellian,

perhaps with an initial perturbation, while ions either can be

modeled kinetically as well, or they can be treated as a uni-

form charge-neutralizing background. The code employs an

FFT electrostatic field solver and a leapfrog particle mover,

the latter chosen for its efficiency, simplicity, and its preser-

vation of symplectic structure. The essential architecture and

routine functions of the PIC code follow well-established

principles, most of which are explained in detail in the defin-

itive Ref. 34. On the other hand, the unique features of the

code primarily reside in how bulk nonstationary effects are

modeled (discussed below).

The primary purpose of the PIC code is to capture quan-

titatively the dynamical evolution of embedded waves in the

presence of compression and expansion of the bulk plasma;

as such, nonstationary bulk evolution is accomplished

through two separate means. To simulate longitudinal com-

pression or expansion of the plasma (with respect to

the direction of wave propagation), perfectly reflecting,

non-absorbing hard walls are placed at the boundaries of the

simulation domain, and one of the walls is given a smooth,

programmable velocity profile, acting like a piston on the

plasma. On the other hand, transverse compression or expan-

sion is modeled by employing periodic boundary conditions

parallel to the direction of wave propagation, while the mass

and charge of the PIC particles are rescaled as a function of

time. By keeping the PIC particle charge-to-mass ratio fixed,

rescaling effectively simulates the redistribution of charge

across the perpendicularly homogeneous charge sheets mod-

eled by the 1D PIC code. In the event that transverse com-

pression or expansion is intended to be produced by the

adiabatic modulation of a uniform longitudinal magnetic field

of strength B(t), which does not directly affect parallel parti-

cle dynamics, the effect of the slowly changing magnetic field

is captured by a numerical routine that enforces the conserva-

tion of the particle magnetic moment, l / v2
?=B, on very

short time scales, Dt; i.e., Dl ¼ 0. The collisional subroutine

then can violate Dl ¼ 0, but on such short time scales, the

two effects can be considered additive. Thus, the combination

of l-conservation and collisions effectively couples parallel

and perpendicular velocities providing, e.g., additional sour-

ces and sinks for the energy of embedded waves. Here, we

presume Dt� x�1
p � ��1

e , where x2
p ¼ 4pnee2=me is the

electron plasma frequency, ne is the electron number density,

and �e is the electron collision frequency.

The intent of these simulations is to provide an ideal nu-

merical laboratory to isolate and diagnose key nonstationary

wave phenomena, while simultaneously avoiding additional

effects and complications associated with finite plasma extent,

device-like interactions with boundaries, and higher dimen-

sional considerations. As such, the exact nature of the com-

pression or expansion often can be considered inessential,

arising, e.g., due to ballistic plasma motion or a time-varying

magnetic field. Anisotropy-driven instabilities,35–38 which

could invalidate this assumption for some physical systems,

are assumed negligible on the compression or expansion time

scale, and some effort is made to establish fairly general con-

straints to ensure fidelity of the physical model.

Through the various tools and simplifications incorpo-

rated into the PIC code, the simulations capture many essen-

tial effects of wave evolution in nonstationary plasma in a

framework that improves drastically the economy and effi-

ciency of the code. The simulation results and their theoretical

interpretations will be presented in the sections that follow.

III. LONGITUDINAL NONSTATIONARY PLASMA
EFFECTS

A. Adiabatic linear wave evolution and threshold
dynamics

An initially cold plasma wave embedded in plasma

undergoing densification and heating evolves adiabatically at

first, but after some time, a sudden transition can occur in

which resonant wave-particle interactions and nonadiabatic

dynamics become significant. The nature of this transition

from a cold plasma regime to a hot plasma regime can be

characterized well in the case of a 1D plasma undergoing lon-

gitudinal, piston-like compression.39

Consider a linear wave immersed in collisionless plasma

and far from any collisionless resonances. Under such
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conditions, a linear wave will not (at first) experience dissi-

pation, and thus, the wave action, I, is conserved for slow,

adiabatic compression or expansion of the bulk

plasma.24,40–45 The action conservation theorem (ACT),

which holds generally for any linear wave, is given by

I ¼
ð
V
ðW=xÞ dV;

¼ const; (1)

where W is the (local) linear wave energy density, x is the

(local) wave frequency, and the integral is taken over the

plasma volume, V. In the case of a linear Langmuir wave-

packet, adiabaticity requires j � kkD � 1, where k is the

longitudinal wavenumber, kD ¼ vTe=xp is the Debye length,

and vTe is the electron thermal velocity. Such a constraint

minimizes the impact of Landau damping, which introduces

dissipation and thus breaks the ACT. To extract quantitative

predictions from Eq. (1), one also has for linear Langmuir

waves W ¼ 2X2WE, X � ð1þ 3j2Þ1=2 � 1, and

WE ¼ E2=ð16pÞ,44 where the latter quantity is the electro-

static component of the total wave energy density.

For longitudinal compression, one has V ¼ �� const,

where � � L=L0 is the normalized length of the plasma, and

the subscript 0 henceforth refers to initial conditions. In terms

of �, the system parameters scale as follows: xp / ��1=2;
k / ��1; vTe / ��1, and thus, j / ��3=2. (See Ref. 39 for a

more detailed explanation of these scalings.) Hence, Eq. (1)

yields G ¼ �X
�1
��3=2, or in terms of the normalized density,

N � n=n0 / ��1,

G ¼ �X
�1

N3=2; (2)

where the amplification gain G � WE=WE0; �X � X=X0, and

X ¼ ð1þ 3j2
0N3Þ1=2

for longitudinal compression or expan-

sion. Thus, the ACT predicts the wave electrostatic energy

density amplifies with compression until the assumption of

adiabaticity is violated.

With further compression, the condition j� 1 is no

longer satisfied, as the wave phase velocity, u ¼ x=k
/ N�1=2, is slowing down with densification, while vTe / N
implies electrons are absorbing energy, which eventually

must lead to collisionless wave dissipation. In Ref. 39, a

geometrical optics approach is employed to predict the

switchlike onset of Landau damping, in which the scaling of

the linear Landau damping rate with compression due to the

slowly evolving plasma parameters follows from the

expression46

cL �
xp

j3

ffiffiffi
p
8

r
exp � 1

2j2
� 3

2

� �
: (3)

Then, damping causes exponential decay of the wave action,

I ¼ I0 expð�2CÞ, where C ¼
Ð t

0
cLðt0Þ dt0. A generalization of

Eq. (2) follows by including this exponential decay, i.e.,

G0 ¼ �X
�1

N3=2expð�2CÞ: (4)

As a result of sudden collisionless damping, electrons reso-

nant with the amplified wave are carried, on average, to

higher energies, resulting in an enhanced non-thermal high

energy component of the electron distribution function. This

enhanced tail carries most of the energy initially found in the

bulk oscillations supporting the wave, which is amplified

further through mechanical compression prior to Landau

damping.

Both the linear ACT and sudden transition into a colli-

sionless damping regime are confirmed in PIC simulations,

where 1D longitudinal compression is simulated in a plasma

bounded by perfectly reflecting hard walls, one of which is

given a smooth velocity profile, V(t), with jVj � vTe.39

Figure 1 shows the results of a typical simulation, with

clearly delineated regimes showing initial action conserva-

tion followed by a sudden transition into collisionless damp-

ing, until all wave energy has been removed from the

system. The analytical prediction, corresponding to Eq. (4),

predicts the adiabatic amplification well. The slightly

delayed onset of damping of the simulated wave relative to

the analytical prediction is thought to arise from the incom-

plete resolution of the high energy tail of the Maxwellian,

typical in PIC simulations. In addition, the necessarily slow

compression of the plasma implies that the wave is in the

trapping regime,47 in which the compression rate, g � V=L,

obeys the ordering g� cL � xb, where xb ¼ ðeEk=meÞ1=2

is the electron bounce frequency, with E the electric field

amplitude. In this case, cL is smaller than predicted by

Eq. (3), also implying slower decay of the wave than pre-

dicted by the linear theory. Nevertheless, the results indicate

FIG. 1. (a) The normalized total action, I=I0, and total electrostatic energy,

WE=WE0, for an initially undamped Langmuir wave in plasma undergoing

longitudinal compression. The analytical plot corresponds to G0=N (cf.

Eq. (4)). (b) The electron distribution function compressed together with a

wave, f ðx; vÞ, and the same distribution function compressed without the

wave, f̂ ðx; vÞ, showing the production of suprathermal electrons. Figure

from Ref. 39. Reprinted with permission from P. F. Schmit, I. Y. Dodin, and

N. J. Fisch, Phys. Rev. Lett. 105, 175003 (2010). Copyright 2010 American

Physical Society.
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a substantial degree of predictability of the switchlike damp-

ing effect both by numerical and analytical means.

While the numerical results presented above pertain spe-

cifically to linear Langmuir waves undergoing longitudinal

compression, the underlying ACT and threshold behavior

near the onset of collisionless damping is sufficiently general

to be applied to a wide variety of systems. The practical in-

terest in such effects arises then from the notion that waves

in nonstationary plasma can act as embedded switches,

which could be used to heat individual particle populations

or drive electrical currents at predetermined instants during

the bulk plasma evolution. Indeed, the terminal electron dis-

tribution function observed in Fig. 1 clearly indicates the

effect of the damped standing wave structure excited in the

simulation, namely, an accentuated isotropic, non-thermal

electron tail population. Thus, some fraction of the mechani-

cal energy of compression, which is channeled into the

amplifying standing wave structure due to the ACT, is then

deposited onto a specific particle population, in this case

suprathermal electrons, in a targeted and predictable manner.

Further discussion on this topic can be found in Ref. 39.

B. Bump-on-tail instability and plasma
compressibility

The well-known bump-on-tail instability (BoTI) demon-

strates increasingly complex dynamical wave behavior in

nonstationary plasma, as one transitions from the considera-

tion of a single linear monochromatic wave or single wave-

packet to the broadband resonant, stochastic, nonlinear
interactions characteristic of the instability.48 Numerical PIC

studies of bump-on-tail unstable plasma subject to longitudi-

nal compression shed light on two interesting and related

concepts: first, the final plasma state in the presence of BoTI

differs from that described by quasilinear theory for station-

ary bulk plasma and can depend on the compression history,

and second, the transformation of bulk thermal energy into

wave energy by the BoTI increases the bulk plasma

compressibility.

Consider the plasma total energy, U, as the sum of the

wave total energy, W, and the thermal total energy, WT, for

which there is a unique decomposition, U ¼ W þWT .49

Since BoTI conserves total energy, it cannot change U,

but it can change the instantaneous ratio q � W=U
¼ 1�WT=U. Remarkably, this affects the plasma pres-

sure,50 defined as usual through P ¼ �dU=dV for adiabatic

compression, and also the energy gain, DU, through com-

pression. From the standpoint of quasilinear theory,51 the

BoTI drives a broadband spectrum of linear Langmuir

waves resonant with the electron population inversion in ve-

locity-space, and thus, according to the scalings described

above, one has W / V�1=2 and WT / V�2. Hence,

dW ¼ �WdV=ð2VÞ, dWT ¼ �2WTdV=V, and

P ¼ 2Uð1� 3q=4Þ; (5)

where U � U=V is the average total plasma energy density.

Since BoTI cannot affect U but increases q (at least

temporarily), it thereby decreases P. Therefore, considering

the definition of the plasma compressibility,52 bS

� �ð1=VÞdV=dP, or bS ¼ 1=P here, one finds that the con-

version of thermal energy to wave energy (by BoTI or some

other means) increases the plasma compressibility. The sub-

script S indicates here that we are referring to the adiabatic,

or isentropic, compressibility of the plasma. Additionally,

the total energy gain, DU ¼
Ð

_U dt, can be calculated

using _U ¼ 2U½1� 3qðtÞ=4�gðtÞ, where the compression rate

g � � _V=V has been introduced. Thus, one also finds that

DU is decreased by the influence of the BoTI.

The function qðtÞ varies depending on the manner in

which BoTI developed during compression. Thus, U is not a

function of the plasma volume and, in this sense, is not a

state variable, unlike for a neutral gas or plasma containing

only nonresonant, dissipationless waves. This is because the

latter cases can be thought of as systems containing a large

number of degrees of freedom, both particle-like and collec-

tive, in thermodynamic equilibrium, while the system under-

going BoTI contains several nonequilibrium collective

degrees of freedom that are resonantly coupled both to each

other and to the bulk plasma “thermal reservoir.” Thus, the

sensitivity of the evolution of BoTI to the time history of

compression results in a continuum of possible DU.

Interestingly, the theoretically maximum free energy

available through velocity-space instabilities by evolution of

the Vlasov equation, namely, the free energy available under

so-called Gardner restacking,7,53,54 is unaffected by the

details of the compression. Since adiabatic compression

drives a self-similar evolution of the particle velocity distri-

butions, restacking prior to compression or subsequent to

compression yields the same final distribution and liberates

the same amount of particle energy. However, since wave-

particle interactions generally act diffusively in plasma, the

free energy that can be liberated by velocity-space instabil-

ities must be further constrained by diffusive considerations.

Constrain further the details of such diffusive behavior by

invoking a particular compression script, and it becomes

clear that the maximization of this free energy release, of

practical interest, e.g., in the case of a-channeling,6 requires

more information than just the initial particle and field

configurations.

Further discussion on this topic can be found in Ref. 48.

C. BGK mode evolution

Rather than the broadband, stochastic quasilinear dy-

namics associated with the BoTI, consider the strongly corre-

lated nonlinearity associated with quasistatic, phase-mixed

electron plasma wave equilibria, commonly termed BGK
modes56,57 or electron holes.58,59 For such modes, a signifi-

cant departure from the behavior associated with linear

plasma waves is observed in the presence of nonstationary

bulk plasma evolution.55 Unlike linear waves, whose wave-

length decreases proportionally to the system length, L(t),
nonlinear plasma waves are found to conserve their charac-

teristic size, D, during slow longitudinal compression by a

perfectly reflecting wall. This has a dramatic effect on the
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amplification of the wave with plasma densification, which

is stronger than the amplification observed for linear waves.

In collisionless plasma, phase-mixed BGK equilibria are

undamped, long-lived solitary structures exhibiting an elec-

tric potential that maintains its shape as the wave propagates,

creating a suitable mechanism whereby the wave can retain a

population of trapped electrons. In the context of longitudi-

nal plasma compression, solitary nonlinear plasma waves are

formed as the saturated state of a strong bump-on-tail insta-

bility, a well-documented phenomenon in unbounded plasma

as well.60–65 Figure 2 shows the development of a single soli-

tary electron hole after the coalescence instability causes the

nonlinear structures driven by the BoTI to merge.66,67

The amplification of a typical solitary nonlinear plasma

wave subject to longitudinal bulk plasma compression is

shown in Fig. 3. Compared to the peak amplification of a

typical linear plasma wave by similar compression (cf.

Fig. 1), total wave energy gains attainable through the ampli-

fication of nonlinear waves are regularly at least an order of

magnitude larger. This feature is due to two factors: (i) non-

linear modes do not undergo linear Landau damping and (ii)

their amplitude changes more rapidly with decreasing � (or

increasing N). The latter characteristic is due to the fact that

the dynamics of a strongly nonlinear mode is determined pri-

marily by phase-locked, resonant particles (cf. Ref. 68),

which are absent in linear waves. The consequences of this

strong dependence on the dynamics of trapped and nearly

resonant particles are described heuristically as follows.

First, for most of the simulation, the relevant time scales

are ordered as follows: sr � sb, where sb ¼ 2p=xb is

the characteristic bounce period of trapped electrons, and

sr � D=u is the approximate time taken for the wave,

traveling at the nonlinear phase velocity u, to reflect off the

wall. Thus, reflection occurs quickly relative to trapped parti-

cle bounce motion, implying trapped particles are essentially

free-streaming on the sr-time scale. Notice that the distance

between two free-streaming particles with equal initial

velocities is conserved upon reflection of both particles from

a wall moving at constant velocity, since this distance is a

Galilean invariant and obviously is conserved in the rest

frame of the wall. The assumption of a nearly constant wall

velocity assumes that V= _V � sr. For the BGK mode, the

velocity spread over the trapping island is sufficiently small

to ensure that the distance is conserved between all trapped

particles during reflection. As such, the mode shape is not

substantially affected by moving walls, at least until the

mode no longer fits in the system, which is related to the sud-

den damping observed in Fig. 3.

Thus, the approximate scaling behavior of the wave total

energy can be deduced by the following argument. The elec-

tron density depletion due to the nonlinear mode results in an

uncompensated background ion density dni. Assuming the

electron hole charge is approximately fixed, one has

dni / ��1. The characteristic field of the hole is E � 4pdniD,

so conservation of D yields the wave total electrostatic

energy scaling WE / WED / ��2, which is reasonably close

to the scaling observed in simulations [Fig. 3], though other

fitting functions can describe slightly better the amplification

curve. In comparison, the wave total electrostatic energy for

a linear plasma wave subject to longitudinal compression is

only WE / ��1=2. It should also be noted that, while the lin-

ear plasma wave energy scaling is derived from an ACT, the

energy scaling for BGK modes is fundamentally nonadia-
batic. Throughout the entire course of compression, a

FIG. 2. Snapshots of the electron phase

space density f(x, v) (in arbitrary units)

in bounded plasma without compression.

These snapshots show the development

of the bump-on-tail instability and subse-

quent evolution of nonlinear BGK-like

modes: (a) t¼ 0, initial bump-on-tail dis-

tribution; (b)–(e) formation and merging

of electron holes; (f) t ¼ 280sp, final

state, corresponding to a solitary electron

hole (circled). Time is measured in

units sp ¼ 2p=xp. Figure from Ref. 55.

Reprinted with permission from P. F.

Schmit, I. Y. Dodin, and N. J. Fisch,

Phys. Plasmas 18, 042103 (2011).

Copyright 2011 American Institute of

Physics.
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substantial amount of electron trapping and detrapping is

observed, which constitutes a nonadiabatic process and, thus,

prevents one from formulating a corresponding ACT for the

BGK modes.

The unique behavior of BGK waves in compressing

plasma, including their resistance to Landau damping, strong

amplification, and ability to persist at high amplitude and rel-

atively slow, thermal phase velocities, suggests that such

waves could provide yet another useful tool for targeted

phase space engineering in plasma. In addition, there is sig-

nificant interest in generating and sustaining waves at high

kkD to be used as an effective grating for the processing of

intense laser light in Raman compression studies.69,70

Compression could provide an additional pathway to access

this regime through a part of parameter space that might oth-

erwise be prohibitive.

Further discussion on this topic can be found in Ref. 55.

IV. TRANSVERSE NONSTATIONARY PLASMA
EFFECTS

The concepts of adiabaticity, action conservation, reso-

nance thresholds, and nonlinearity, in the context of nonsta-

tionary plasma evolution, are sufficiently general such that

these ideas can be applied across a broad range of wave-

plasma systems. Thus, the case of longitudinal 1D compres-

sion studied in Sec. III serves primarily as a simple scenario

through which each of these fundamental topics could be

explored. One might then assume that wave evolution in the

presence of perpendicular compression should proceed in a

manner very similar to the case of longitudinal compression.

This is, to a large extent, a reasonable assumption, but it

turns out that perpendicular compression provides access to

a regime of nonlinear wave evolution that could not be eli-

cited through longitudinal compression.71 In the following

analysis, note that the exact nature of the compression is

inessential, i.e., it can be ballistic or driven by a compressing

magnetizing field, for example.

By employing periodic boundary conditions and driving a

single electrostatic plasma normal mode with an applied exter-

nal potential at the linear resonance, one can generate fully

phase-mixed nonlinear plasma waves,72–74 which assume the

identity of an undamped periodic BGK mode when the driver

is turned off [Fig. 4(a)]. In the absence of collisions and

anisotropy-driven electromagnetic instabilities,35–38 or on time

scales shorter than the characteristic rates for such effects to

become significant, perpendicular compression or expansion

leads to the scaling, xp / N1=2, much like longitudinal com-

pression, but leaves the parallel thermal velocity vTe and paral-

lel wave number k unchanged.44 Thus, perpendicular

compression increases the linear plasma wave phase velocity

u / N1=2, rather than decreases it (as occurs with longitudinal

compression), while leaving the parallel motion of bulk

plasma particles unaffected. In this case, j / N�1=2, indicat-

ing that collisionless damping is suppressed at all times for

compression, making transverse compression qualitatively dif-

ferent from longitudinal compression, where j / N3=2, and

induced Landau damping places the dominant limitation on

achievable wave amplification (cf. Sec. III).

The increase of u with perpendicular compression

creates a unique set of circumstances from the standpoint of

the wave evolution. First, for slow compression, particles

that were trapped initially (i.e., when the driver was turned

off) are accelerated autoresonantly and remain trapped as the

trapped particle phase space island moves to higher veloc-

ities [Fig. 4(b)]. Second, because the trapped particle den-

sities are relatively small compared both to the bulk plasma

average density and to the bulk plasma fluctuation densities,

the wave nonlinearity is initially weak, and the wave approx-

imately conserves the linear action, implying amplification

during early stages of compression (cf. Eq. (2)). Since

trapped particles conserve their actions, while the total phase

space volume of the separatrix increases due to amplifica-

tion, the trapped particle distribution becomes more deeply

trapped with compression [Fig. 4(b)]. It is also worth noting

that the expansion of the island separatrix toward lower

velocities due to wave amplification is more than offset by

FIG. 4. Snapshots of typical electron distribution, f(z, v), associated with

nonlinear waves in our PIC simulations. (a) The initial, uncompressed BGK

structure after the driver is turned off; dashed red is the separatrix confining

trapped electrons. (b) An adiabatically compressed wave; a phase-space

island of trapped electrons has been detached from the bulk plasma via

autoresonant acceleration. Figure from Ref. 71. Reprinted with permission

from P. F. Schmit, I. Y. Dodin, J. Rocks, and N. J. Fisch, Phys. Rev. Lett.

110, 055001 (2013). Copyright 2013 American Physical Society.

FIG. 3. Evolution of a solitary electron hole during longitudinal compres-

sion. Electrostatic energy WE normalized to initial plasma total energy U0.

Pictured are both instantaneous and local time-averaged WE (wide and thin

line plots, respectively) and also the fitting functions WE=WE0 ¼ ��2

(dashed-dotted line) and WE=WE0 ¼ exp½2:8ð��1=2 � 1Þ� (dashed line). Note

direction of time indicated by arrow. Figure from Ref. 55. Reprinted with

permission from P. F. Schmit, I. Y. Dodin, and N. J. Fisch, Phys. Plasmas

18, 042103 (2011). Copyright 2011 American Institute of Physics.

056302-6 P. F. Schmit and N. J. Fisch Phys. Plasmas 20, 056302 (2013)



the acceleration of the island average velocity due to the

increase in u. Considering as well that very few particles are

found initially at velocities higher than those swept out by

the trapped particle island, as can be observed in Fig. 4(a),

the wave does not trap additional particles as the plasma is

compressed. Hence, the evolution of this nonlinear wave is

truly adiabatic, since all of the particles in the slowly chang-

ing system evolve adiabatically, unlike the BGK modes sub-

jected to longitudinal compression.

This scenario serves as an ideal proving ground to test the

recently formulated nonlinear action conservation theorem for

waves containing trapped particles.24 Assuming the passing

particle response is approximately linear, one can write

INL ¼ I þ It, where I is just the linear action given in Eq. (1),

It ¼
Ð
ð2Wt=xÞ dV, Wt ¼ ntmu2=2 is the energy density of

the trapped particle average motion, and nt is the trapped parti-

cle density averaged over one wave period. Note two remark-

able features of this result. First, with the exception of a very

minor nonlinear frequency shift,45,75 the nonlinear action INL

is insensitive to the precise shape of the distribution, depend-

ing instead only on its average quantities. In addition, part of

the wave action, It, is independent of the wave amplitude,

which signifies a drastic departure from the conventional pic-

ture of nonlinear waves presented in literature.76

The amplitude-independent term in INL produces cate-

gorical consequences in the nonstationary evolution of waves

containing trapped particles. That even small trapped particle

populations could become energetically significant makes

sense, as their approximate energy density, Wt / N2, grows

with densification faster than the linear wave energy density,

W / N3=2 [cf. Eq. (2)]. By inserting the appropriate parame-

ter scalings into the nonlinear ACT and solving for the

amplification gain G ¼ WE=WE0, one can derive the

approximate scaling

G � N3=2½1� 2g0ðN1=2 � 1Þ�; (6)

where g0 � Wt0=W0 is, remarkably, the only parameter that

determines the amplification gain for a given compression

ratio N, up to small nonlinear and thermal corrections.

Equation (6) bears a striking resemblance to Eq. (2) for lin-

ear waves, but the amplification is attenuated and eventually

halted by the second factor, due to the presence of the

trapped particle population.

The analytic results demonstrate excellent agreement

with PIC simulations, as depicted in Fig. 5(a). One may con-

clude that significant amplification of nonlinear waves by

transverse compression is possible but is limited fundamen-

tally by the initial trapped particle content of the wave. For

adiabatic wave evolution, the upper limit for the amplifica-

tion gain is set by the linear ACT, as observed in the data.

Interestingly, once the trapped particle energy content

becomes comparable to the rest of the wave energy content,

some amount of adiabatic damping occurs, at which point

deeply trapped particles move closer and closer to the sepa-

ratrix, until they eventually become detrapped, and the wave

evolution can no longer be considered adiabatic [Fig. 5(b)].

A wide variety of nonadiabatic behavior proceeds subse-

quently, for which the interested reader can find a full discus-

sion in Ref. 71, as well as the recently submitted Ref. 77.

This is the first study of BGK-like wave dynamics in

plasma undergoing compression perpendicularly to the wave

vector. This paradigmatic problem yields a host of interesting

results. First, such compression is found to amplify a wave

manyfold, due in large part to the suppression of Landau

damping with transverse compression, unlike the case of lon-

gitudinal compression in Sec. III. Second, the nonstationary

wave evolution conserves nonlinear action, for which our

study is the first ab initio confirmation. Third, the amplifica-

tion has an upper limit determined by the total initial energy

of the trapped particle average motion but otherwise is insen-

sitive to the particle distribution, and such a limit is always

present in theory whenever nt is finite. A variety of novel

nonadiabatic behavior is also observed. Apart from the aca-

demic interest in these new phenomena and the numerical

demonstration of the nonlinear ACT, these results suggest yet

more ways in which waves can provide new means to manip-

ulate particle phase space and couple energy into plasma.

FIG. 5. (a) Amplification gain vs. compression ratio

for different M0 � u0=vT : M0 ¼ 3:8 (black), 4.0

(magenta), 4.2 (cyan), 4.4 (blue), 4.8 (green), and

6.0 (red). Generally, M0 and g0 are inversely corre-

lated. Solid are results from PIC simulations,

smoothed on the timescales x�1
b . Dashed are Eq. (6)

with g0 adjusted to provide the best fit. Dotted,

nearly matching the red curve, is the scaling pre-

dicted by linear action conservation, G � N3=2. (b)

Deteriorating trapped particle island in phase space

during wave decay. The dashed line marks the linear

phase velocity of the resonant mode, xpX=k. Since

u exceeds the island average velocity, the wave non-

linear frequency shift is negative, as expected.45,75

Figure from Ref. 71. Reprinted with permission

from P. F. Schmit, I. Y. Dodin, J. Rocks, and N. J.

Fisch, Phys. Rev. Lett. 110, 055001 (2013).

Copyright 2013 American Physical Society.
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V. APPLICATIONS

While the ultimate goal of this work is to draw useful

connections to modern ICF research, two applications imme-

diately lend themselves to the present study of Langmuir

waves in nonstationary plasma. These applications include

wave-induced current drive in nonstationary plasma as well

as a new plasma-based particle acceleration scheme employ-

ing plasma compression as a means to exert control over the

accelerating wave dynamics.

A. Current drive in nonstationary plasma

One application that immediately lends itself to the

results obtained in this work is wave-induced current

drive. The problem of driving electrical currents in plasma

using waves is well studied in the context of stationary,

magnetically-confined plasma.5 Since the goal of wave-

driven current drive is to create conditions that favor steady-

state reactor operation, most current drive calculations are

similarly steady-state in nature. The problem of driving cur-

rent in nonstationary plasma is inherently non-steady-state

and warrants a careful treatment, leading to unique effects

not present in stationary plasma. Two separate studies have

examined current drive in two different nonstationary scenar-

ios: plasma undergoing charge recombination78 and plasma

undergoing perpendicular expansion and compression.79

Driving electrical current in plasma using waves

requires the injection of waves that interact preferentially

with a single plasma species to generate a velocity space ani-

sotropy through wave-particle resonance.5 This anisotropy

can result in a net electrical current, which must compete

with the effects of collisional isotropization in order to per-

sist, requiring continuous injection of wave energy to operate

in the steady-state. Often, the wave-particle interactions

selected for current drive target suprathermal electrons

due to their reduced collisionality. Thus, collisions play an

important role in the calculation of the overall efficiency of a

current drive scenario, and in nonstationary plasma, the rela-

tive strength of collisional effects can vary significantly.

The case of plasma undergoing charge recombination

provides a useful paradigmatic nonstationary system in which

to study the collisional relaxation of particle velocity space

anisotropies in the context of current drive.78 Remarkably, the

Langevin equations, taken in the strict high-velocity limit to

describe the relaxation of suprathermal electrons,5,80,81 admit

an exact analytical solution for plasma exhibiting time-

varying charged particle number densities due to charge

recombination. One can derive the current density produced

by arbitrary particle fluxes, from which the current drive effi-

ciency can be calculated and optimized both for discrete and

continuous pulses of wave energy. One interesting and ubiqui-

tous feature in recombining plasma is the existence of a non-

zero residual current density that persists time-asymptotically

under certain conditions, a feature not present in stationary

plasma. Though the model neglects other dissipative forces

that would eventually quench a current, such as collisions

with neutrals or recombination of the suprathermal current

carriers, the results suggest that current could be prolonged

substantially in plasma with time-varying bulk properties.

Further discussion on this topic can be found in Ref. 78.

Explicit PIC simulations of current drive in nonstation-

ary plasma were carried out in the case of perpendicularly

expanding and compressing plasma. In this case, a magne-

tized plasma preseeded with an initially undamped Langmuir

wave transitions to a collisionless damping regime in a

switchlike manner upon expansion of the plasma perpendicu-

lar to the background magnetic field. Recall from Sec. IV

that transverse compression and expansion gives j / N�1=2,

from which it is clear that expansion is required to induce

Landau damping. Because the linear Langmuir wave carries

no momentum initially, and Landau damping conserves total

momentum, velocity-dependent collisions between electrons

and ions are required in order for an electric current to arise.4

Since particle collision rates �c / 1=v3, the enhanced aniso-

tropic high energy electron tail resulting from induced

Landau damping leads to a net electrical current. The sudden

rise in electrical current also induces a voltage within the

plasma due to L/R effects associated with the specific plasma

geometry.

The current drive efficiency of this effect in nonstation-

ary plasma is shown to depend on the rate of plasma expan-

sion, which determines both the onset and extent of the

collisionless damping as well as the time-varying strength of

particle collisions, and the plasma L/R time. Figure 6 shows

the electron parallel velocity distributions vs. time for two

different rates of expansion. At the faster expansion rate

[Fig. 6(a)], enhanced particle trapping by the wave modifies

significantly the suprathermal electron distribution in the

vicinity of the resonance,47,82 accelerating electrons to

FIG. 6. Plot of log10½f ðv; tÞ�, with f(v, t) the electron parallel velocity distri-

bution function, for (a) T ¼ 30sp0 and (b) T ¼ 250sp0, with T is the total

magnetic expansion time and sp0 ¼ 2p=xp0. Cooling of bulk parallel veloc-

ities is due to collisional coupling with perpendicular velocities. Figure from

Ref. 79. Reprinted with permission from P. F. Schmit and N. J. Fisch, Phys.

Rev. Lett. 108, 215003 (2012). Copyright 2012 American Physical Society.
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higher parallel velocities by amounts comparable to the

Langmuir wave trapping width, vtr � 2xb=k. On the other

hand, Fig. 6(b) indicates that slower expansion leads to less

particle trapping, thus limiting the production of high-energy

electrons. It is found that faster expansion rates generally

lead to more prolonged currents, owing to the enhanced flux

of current-carrying electrons to higher velocities, and hence,

the formation of lower collisionality configurations. It is also

found that subsequent recompression of the plasma enhances

the current drive effect by increasing particle perpendicular

energies, and hence, reducing further the collision rates of

the current-carrying electrons.

Further discussion on this topic can be found in Ref. 79.

B. Plasma-based particle acceleration with magnetic
compression

Charged-particle acceleration in plasma typically

employs short, intense laser pulses or high energy electron

beams to drive high amplitude plasma waves capable of

accelerating relativistic particles to high energies over very

short distances.84–88 One effect that significantly limits the

attainable gain in plasma-based accelerators is phase slip-
page, in which a particle eventually overtakes the segment

of the wave providing a positive accelerating force (see, e.g.,

Ref. 86). Some methods to improve electron energy gain

attempt to keep an accelerating electron in phase with the

wave for an extended period of time, achieving this goal,

e.g., by means of an applied transverse magnetic field89,90 or

a stationary axial density gradient.91–95

In the scheme considered here, the use of a modest

[Oð10 kGÞ] axial, time-varying magnetic field in the accel-

eration channel is proposed as a method to overcome elec-

tron dephasing.83 The evolution of the uniform axial

magnetic field leads to plasma densification, enabling direct,

time-resolved control of the plasma wave properties, particu-

larly through the dependence of the phase velocity on the

plasma density, u / n1=2. This general methodology can be

applied to the leading acceleration approaches; however, the

compression profile required to maximize energy gain varies

significantly between plasma beat-wave (PBWA) techniques

and wakefield techniques, including plasma wakefield accel-

eration (PWFA) and laser wakefield acceleration (LWFA).

Static axial magnetic fields have already been shown to pro-

vide performance benefits in plasma-based acceleration,96–99

yet this is the first time a time-varying field is proposed as a

precise control mechanism for the plasma wave dynamics.

For PBWA, only a small fractional density increase via

compression is needed to increase the electron dephasing

characteristic length to arbitrarily long distances, and no

cross-beam electron transport is induced, unlike the surfa-

tron.89 For wakefield acceleration, the density increase

required for uniform plasma compression is compared to the

axial density gradient technique, and the resulting density

profiles demonstrate a much more gradual characteristic rise

in the case of uniform compression. Figure 7 displays the

optimized 1D density profiles corresponding to each method.

The stationary density gradient profile spans many orders

of magnitude, becoming singular near the point where the

accelerating electrons overtake the driver (after time T over

length L¼ cT). Uniform compression achieves proper wave-

particle phasing over a similar time and distance, but it does

so utilizing a much smaller shift in plasma density. For

PWFA, uniform compression can also increase the amplitude

of the wakefield with distance, unlike the axial density gradi-

ent method.

The physical mechanism underlying this result is related

to the time-variation of the bulk plasma, which causes the

wakefield properties to continue evolving after the driver

pulse has passed, but before the accelerating electron bunch

catches up. Besides the performance enhancement arising

from dephasing, it is also possible that generating a time-

varying, uniform density profile with magnetic compression

could be technologically easier than generating an enormous

stationary plasma density gradient over relatively short

[OðcmÞ] distances.

Further discussion on this topic can be found in Ref. 83.

VI. CONCLUSIONS

Here, we reviewed recent findings pertaining to the

dynamics of waves in nonstationary plasma. In seeking to

describe the entire life cycle of a plasma wave embedded in

nonstationary, collisional plasma, a number of interesting and

novel results were uncovered. In plasma undergoing compres-

sion, embedded waves can have very unusual and possibly

useful properties. For example, part of the mechanical energy

of compressing plasma can be transferred controllably to hot

electrons by seeding the plasma with plasma waves. Under

compression, wherein wave action is conserved initially, both

linearly and nonlinearly, the wave energy grows as its fre-

quency and wavenumber change adiabatically, until suddenly,

the wave damps, resulting in switchlike production not only

of heat but also voltage and current. These bursts can be con-

trolled precisely in time by prescribing the compression script.

Several classic problems in wave physics, including the

bump-on-tail instability and nonlinear BGK waves, exhibit

new effects under compression. In addition, the wavelike

FIG. 7. Optimized density profiles to address wakefield dephasing for (a) the

axial density gradient method (dashed line), with Q¼ z/L signifying an axi-

ally inhomogeneous density profile, and (b) the perpendicular magnetic

compression method (solid line), with Q¼ t/T signifying a time-varying, but

axially uniform, density profile. Note that L¼ cT, and accelerating electrons

initialized identically in each case will overtake the driver pulse after the

same time T and path length L in both cases. Figure from Ref. 83. Reprinted

with permission from P. F. Schmit and N. J. Fisch, Phys. Rev. Lett. 109,

255003 (2012). Copyright 2012 American Physical Society.
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perturbations undergoing compression or expansion affect

fundamental bulk properties of the plasma, such as the plasma

compressibility; moreover, and rather remarkably, nonlinear

waves, such as BGK modes, affect the plasma compressibility

differently. The dynamics of such nonlinear modes are influ-

enced significantly by the presence of trapped particles.

Wave-particle interactions mediated by plasma compression

also can enhance the performance of plasma-based particle

accelerators. To describe numerically all these effects, novel

particle-in-cell (PIC) simulations were developed. These find-

ings point towards potentially beneficial applications, includ-

ing in ICF and HED physics, where extreme compression is

exercised on dense plasma, which could be seeded with

waves.
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