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In inertial confinement fusion, the loss of fast ions from the edge of the fusing hot-spot region

reduces the reactivity below its Maxwellian value. The loss of fast ions may be pronounced because

of the long mean free paths of fast ions, compared with those of thermal ions. We introduce a

fusion utility function to demonstrate essential features of this Knudsen layer effect, in both

magnetized and unmagnetized cases. The fusion utility concept is also used to evaluate the

restoring reactivity in the Knudsen layer by manipulating fast ions in phase space using waves.
VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4895477]

I. INTRODUCTION

Knudsen layer reduction of the fusion reactivity occurs

when some fusion fuel ions stream out of the fusing region

of the inertial confinement fusion (ICF) capsule before hav-

ing a chance to fuse. The fast fuel ions, which typically have

the best chances of fusing, also have very long mean free

paths compared with thermal ions. Thus, even when the bulk

of the plasma is collisionally confined over the time of the

fusion burn, the highly effective fast particles may be lost

before fusing, substantially decreasing the fusion reactivity.

The possibility for Knudsen layer reduction of the fusion

reactivity was initially explored by Henderson1 and Petschek

and Henderson.2 Molvig et al. formulated an asymptotic,

steady state theory of the effect, and applied it in radiation-

hydrodynamic simulations of OMEGA implosions.3 They

found that including the Knudsen layer model significantly

improved agreement in calculated D-T fusion neutron yield

between the simulations and experiments. The treatment of

the boundary in this model was subsequently improved by

Albright et al.4 This past work found the effect to be

pronounced only in capsules with small fuel qr. Tang et al.
considered larger capsules that may still have Knudsen

losses due to hydrodynamic mix, and the recovery of some

portion of the losses due to lost fast ions fusing in the

surrounding cold fuel.5 Tang et al.6,7 and McDevitt et al.8

studied a hierarchy of reduced Fokker-Planck operators to

capture the essentials of the Knudsen layer effect and to

compute the tail distributions at hot-cold plasma interfaces.

In the case where the implosion is magnetized, the pic-

ture of fast ion trajectories changes, since ions are limited in

traveling in the direction perpendicular to the magnetic field.

This fundamentally changes the length and velocity scalings.

Schmit et al. considered the effect of magnetization on the

Knudsen layer reduction of fusion reactivity, giving heuristic

conditions for the reactivity to be largely restored, and show-

ing the applicability of these conditions by numerically

generating the steady state fast ion distribution function in

cylindrical and spherical magnetized geometries.9

The present work describes the Knudsen layer phenom-

enon in a way that is complementary to previous work. By

identifying a fusion utility function for fast ions, we address

the question, “How much fusion energy is an ion starting at

position x0 with velocity v0 expected to produce over its life-

time?” After deriving the fusion utility function, we show

how it can be used to consider both the unmagnetized and

magnetized Knudsen layer problems, while allowing for spa-

tial density dependence.

In the unmagnetized case, we find that it is the total den-

sity between a fast ion and the boundary that determines its

lifetime fusion utility, not the absolute distance to the bound-

ary. The fusion utility increases as the amount of density to

the boundary increases until the fast ion is far from the

boundary. For the magnetized case, the fusion utility is inde-

pendent of the density.

The fusion utility function is a particularly powerful

construct for evaluating incremental effects. For example,

waves can be used to locally change the fast ion distribution

function, both by increasing ion energy and by pushing ions

away from the Knudsen layer. The utility function gives the

change in lifetime fusion energy production that occurs on

moving an ion from x0;v0 to x1;v1, thereby giving the effect

on fusion energy production of such waves.

The utility function approach, in general, has been use-

ful in considering incremental or differential effects of exter-

nal perturbations in plasma. It has been particularly useful in

resonant rf interactions with plasma, particularly in the case

of wave-driven electrical current.10 The rf waves diffuse par-

ticles along well-constrained diffusion paths, so that, essen-

tially, the rf removes particles from one phase space

location, and inserts those particles in an adjacent phase

space location, with the phase space residing in the 6D space

of velocity and position. By associating with each point in

phase space a utility, the differential utility, as well as the

energy cost, can be calculated under any rearrangement of

the phase space by wave excitation. Thus, the current-

carrying utility of a superthermal electron at an initial posi-

tion in the 6D phase space may be used to calculate the

current drive efficiency.11 Similarly, a runaway probability

can be associated with each initial position of an electron in

the 6D phase space.12 In both cases, the differential effect

relates the rf power dissipation to either the generation of

current or the production of runaways.

Here, the fusion utility function gives the total extra

fusion energy at the cost of moving the ion in phase space.
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The utility function may thus be used to answer whether it is

useful to expend rf power to move particles away from the

boundary, say if the rf power is simply applied from an

external antenna. If, however, the power was supplied from

tapping the alpha particle energy, say through an instability

driven by the alpha particles themselves, then there would be

a number of added benefits. Among the added benefits, for

example, would be to avoid direct electron heating, thereby

obtaining a hot ion mode, where the ion temperature exceeds

the electron temperature.13 Another benefit is that, if the rf

wave is generated by the alpha particles, then the alpha par-

ticles may be transported toward the boundary. The present

analysis considers only the direct utility of extra fusion

energy, rather than these added benefits which depend on

whether the rf power is internally generated or externally

supplied. It is also beyond the scope of this paper to propose

specific waves that might be destabilized by the alpha par-

ticles specifically near the Knudsen layer boundary.

The paper is organized as follows. In Sec. II, we

describe the basic idea of the utility function and the scheme

for mitigating Knudsen layer fusion reactivity losses. Next,

Sec. III describes the fusion utility function more formally.

Section IV shows example calculations of an unmagnetized

utility function and a magnetized utility function. In Sec. V,

we find the theoretical fusion energy production gains from

phase space manipulation in the Knudsen layer. Finally,

Sec. VI discusses caveats for the reactivity restoration

scheme, and possible improvements and generalizations of

our work.

II. UTILITY FUNCTION

Consider tracking a fast ion moving through a plasma as

its pitch angle scatters and slows down due to drag. The

quantity of interest is the total expected fusion energy gener-

ated by the ion over its lifetime in the plasma. This lifetime

is defined by following the fast ion until it slows down to

thermal speed (at which point its chance for fusion is negligi-

ble) or until it leaves the plasma by exiting at a boundary.

The boundary might be unreacting liner surrounding the ICF

implosion hotspot.

We write the expected fusion energy generated by the

fast ion over its lifetime as Eðx0;v0Þ, where x0 and v0 are

the fast ion’s initial position and velocity. In the limit where

the fast ion starts very far (in mean free paths) from the

boundary, the chance it leaves the plasma before slowing

down to thermal speed is negligible, and the expected life-

time fusion energy will tend to depend only on the initial ve-

locity, Eðx0;v0Þ ! E0ðv0Þ. As x0 gets closer and closer to

the boundary, the fast ion is more and more likely to leave

the plasma before slowing down completely, decreasing

the expected fusion yield. This region of decreased yield

coincides with the Knudsen layer.

It is possible in some circumstances to use plasma waves

to change the velocity and position of particles, for example,

in alpha channeling in tokamaks.14 If a fast ion that starts

near to the boundary is pushed in position away from the

boundary by Dx while being heated in energy by D�, the

expected lifetime fusion energy yield (the utility) E will

increase

E! Eþ @E

@x
� Dxþ @E

@�
D�: (1)

The gain, g, from such pushing will be the incremental

fusion energy produced divided by the energy required to do

such pushing, represented by the change in the fast ion’s

energy in the push, D�

g ¼ @E

@x
� Dxþ @E

@�
D�

� �
=D�: (2)

In certain cases,14 the spatial push Dx can be proportional to

the energy push D� - a larger push in energy yields a larger

spatial push. Moreover, the direction of this push can be

arranged through the wave polarizations. In regions where

the fusion yield is lost most rapidly j@E=@xj is large, so that

a small spatial push can give significant gains. Thus, the

regions of rapid yield loss are also those where yield can be

regained with lowest energy cost. Indeed, we will show that

in some circumstances, the gain may be high enough to con-

sider such a mitigation strategy for counteracting Knudsen

layer losses of fusion yield.

III. APPROACH

To write a fusion utility function as described in Sec. II,

consider a function gðx;v; t; x0;v0; t0Þ that gives the probabil-

ity that an ion initialized at phase space point x0;v0 at time t0

is found later at time t at phase space point x;v. The instanta-

neous expected fusion production at time t for this ion is

E ðt; x0;v0; t0Þ ¼
ð

dx

ð
dv gðx;v; t; x0;v0; t0ÞWðx;vÞ; (3)

where Wðx;vÞ is the fusion energy production rate for a fast

ion located at point x; v. Here, W is taken as

Wðx;vÞ ¼ Ef hrvi; (4)

the Maxwellian averaged fusion reactivity multiplied by the

energy from fusion, Ef, with r the velocity dependent fusion

cross-section. The function W may depend on position

through its dependence on the density. One could generalize

this to account for multiple species reacting, but for simplic-

ity, we consider the fast ion reacting with only one species

here. The integrals in Eq. (3) are carried out over the domain

of g in the unprimed variables—anywhere the ion may exist

at time t. An integration of g in the unprimed variables may

give a total probability less than 1 if the ion can be lost, say

through a boundary.

The fusion utility is the integral of Eq. (3) over all time

Et0 ðx0;v0Þ ¼
ð1

t0
dt Eðt; x0;v0; t0Þ: (5)

This gives a more precise definition of the utility function

appearing in Eqs. (1) and (2). Finding the function g and
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then integrating it to find E is the Langevin approach to find-

ing the fusion utility.

There is another approach, based on an adjoint formal-

ism. This approach gives a more direct way of solving for

the utility, and shows that the utility is the function that con-

nects forcings on the distribution function to changes in

fusion energy production. The adjoint approach is outlined

here; it is discussed more completely elsewhere.15

Consider the general kinetic equation for a single plasma

species, with a collision operator that includes all relevant

collisions (e.g., electron-ion, electron-electron, for a two spe-

cies plasma)

@f

@t
þ v � @f

@x
þ F � @f

@v
� C f½ � ¼ � @

@v
� Cv �

@

@x
� Cx: (6)

Here, Cx;v are wave induced fluxes in space and velocity,

respectively, which will be useful when we consider wave

manipulation of ions.

Expand the distribution function f as

f ¼ fMð1þ vÞ (7)

with v assumed to be a small correction, induced in our case

by an external perturbation, such as waves or boundary

effects. Plugging Eq. (7) into Eq. (6), assuming that the back-

ground non-drifting Maxwellian quantities (density, temper-

ature) have no time dependence, and linearizing the collision

operator, yields

@

@t
fMvð Þ þ v � @

@x
fMvð Þ þ F � @

@v
fMvð Þ � Ĉ vð Þ

¼ �v � @fM
@x
� F � @fM

@v
� @

@v
� Cv �

@

@x
� Cx: (8)

Equation (8) has the form

L̂v ¼ s; (9)

where L̂ is a linear operator and s is a source term.

In the present application, our interest is in the change in

fusion energy production in the plasma when it is perturbed

from Maxwellian, not the full solution of Eq. (8). That is to

say, the relevant quantity is a moment of the distribution

function v, rather than v itself. In this case, it is natural to use

an adjoint formulation, which allows us to write an equation

for a general moment M of the distribution

M ðtÞ ¼
ð

dx

ð
dvWðx; vÞfMvðx; v; tÞ: (10)

For purposes of calculating the fusion energy production, W
is given by Eq. (4).

The Green’s function solution to an equation of the form

of Eq. (9) is

vðx;v;tÞ¼
ð

dt0
ð

dx0
ð

dv0gðx;v;t;x0;v0;t0Þsðx0;v0;t0Þ

�
ð

dt0
ð

dr0 �J½vðx0;v0;t0Þ;gðx;v;t;x0;v0;t0Þ� (11)

with the Green’s function g solving

L̂g ¼ dðx� x0Þdðv� v0Þdðt� t0Þ: (12)

Integrals in x0; v0 are carried out over the interior of a gen-

eral, possibly bounded domain, while the integral in r0 is

over the x0; v0 domain boundary. Time integrals are carried

out over an appropriate time domain (e.g., ½0;1�). The oper-

ator J is defined through the relationð
dt ðfw; L̂vg � fv; L̂†

wgÞ ¼
ð

dt

ð
dr � J ½v;w�: (13)

This relation also serves to define the adjoint operator L̂
†
.

The inner product is defined as

fw; L̂vg ¼
ð

dx

ð
dvwL̂v: (14)

Given an operator L̂, one uses Eq. (13) to find L̂
†

and J.

Substituting v from Eq. (11) into M, Eq. (10), it is possible to

write an equation for M and the moment of v over the do-

main boundary. Carrying out this procedure for the current

L̂, and specializing for homogeneous boundary conditions

on w gives an equation for Mð
dx

ð
dvW x;vð ÞfMv x;v; tð Þ

¼
ð

dt0
ð

dx0
ð

dv0
@w
@x0
� Sx þ

@w
@v0
� Sv

� �
(15)

with the fluxes

Sx ¼ v0fM þ Cx; (16a)

Sv ¼ FfM þ Cv: (16b)

With W given by Eq. (4), Eq. (15) gives the volume

averaged fusion energy production of the perturbed distribu-

tion v.

The function w is defined as

wðt; x0;v0; t0Þ ¼
ð

dx

ð
dv gðx;v; t; x0; v0; t0ÞWðx;vÞ: (17)

It obeys the adjoint equation

L̂
†
w ¼ �fM

@w
@t0
� fMv

0 � @w
@x0
� fMF � @w

@v0
� Ĉ w½ � ¼ 0 (18)

with an initial condition given by W, and homogeneous bound-

ary conditions for the present work. The function w in Eq. (17)

is the same as the fusion energy production rate, Eq. (3).

In order to get the utility, E, w must be integrated in t

Et0 ðx0;v0Þ ¼
ð1

t0
dt wðt; x0; v0; t0Þ: (19)

Thus, in the case that the ion obeys a linear equation, the util-

ity can be found by integrating in time the solution to the

adjoint equation with initial condition W. Furthermore, the

function g becomes the Green’s function for the kinetic

equation.

In the applications considered here, w will only depend

on the time difference t� t0, and an integration in t
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corresponds to integrating the adjoint equation in t0 from

�1 to an initial condition at t.
Since w is the fusion production rate, Eq. (15) shows

that the instantaneous fusion energy production of the pertur-

bation v can be written in terms of fluxes and this fusion pro-

duction rate. The same relationship will hold after time

integration; the total fusion energy production of the pertur-

bation can be written in terms of fluxes and the utility.

IV. EXAMPLE UTILITY CALCULATIONS

We make a number of simplifying assumptions in our

example calculations for both the unmagnetized and magne-

tized cases, but the adjoint formulation is also applicable to

more complicated scenarios. The unmagnetized case con-

tains no magnetic fields, while the magnetized case has a

constant z directed field. We assume that the plasma region

of interest has no electric fields, and allows spatial depend-

ence in only one direction, the z direction in the unmagne-

tized case, and the x direction in the magnetized case. This

dependence is on the half line z; x 2 ½0;1�, with an absorb-

ing boundary at z; x ¼ 0, so that we can isolate the effects of

the boundary.

Additionally, we use the high velocity limit of the colli-

sion operator. In this limit, the fast ion only undergoes veloc-

ity drag and pitch angle scattering, with frequencies �E and

�l, respectively,

Ĉ /½ � ¼ 1

2
�l

V3
T

v03
@

@l0
1� l02
� � @/

@l0
þ �E

V3
T

v02
@/
@v0

: (20)

The lack of dependence on the thermal velocity is made clear

by writing

V3
T�E ¼ CEnðz0Þ; (21a)

V3
T�l ¼ Clnðz0Þ; (21b)

where CE and Cl are constants independent of the thermal

velocity and density (and any coordinates), and n(z) is the

density, which we allow to vary in the z direction. While the

collisional dynamics are somewhat more complicated for the

magnetized case, they can still be expressed in terms of these

frequencies. In factoring out the density, we assume that col-

lision partner species all have the same functional form of

dependence in z, although they need not appear in equal

amounts. In other words, consider

V3
T�l ¼

e4Z2
aln Kð Þ

4pm2
a�

2
0

X
b

Z2
bnb z0ð Þ; (22)

where we have ignored dependence inside the Coulomb log-

arithm, Za;b are the charge numbers of the fast ion and colli-

sion partner species, ma is the fast ion mass, and �0 is the

permittivity of free space. Each nbðz0Þ is assumed to have the

same functional form, nbðz0Þ ¼ nb0nðz0Þ, so that the func-

tional dependence can be factored out of the sum

X
b

Z2
bnbðz0Þ ¼ nðz0Þ

X
b

Z2
bnb0: (23)

The coefficients nb0 are dimensionless. Thus, Cl is defined

by Eqs. (21b), (22), and (23). The same process gives CE

CE ¼
e4Z2

aln Kð Þ
4pm2

a�
2
0

X
b

Z2
b

ma

mb
nb0: (24)

As previously mentioned, in the unmagnetized case, we

allow z dependence, for the magnetized case, the dependence

is in the x direction, and so z should be replaced with x in the

preceding expressions.

A. Unmagnetized utility

When the pitch angle scattering frequency is much

larger than the rate at which the fast ion slows down, the par-

ticle motion is diffusive on scales longer than the mean free

path. This is shown formally through an expansion and aver-

aging in l, see, for example, Kirk et al.16 or Albright et al.4

Such an approximation would be most valid for, say, protons

in proton-boron fusion, where the high Z and mass of boron

make pitch angle scattering occur significantly faster than

slowing down for protons. Its application to D-T fusion has

also been discussed.3,4 The presence of impurities in the

plasma can also make the approximation more valid. To

derive the fusion utility in this limit, the kinetic equation

@f

@t
þ vl

@f

@z
¼ Cln zð Þ

2v3

@

@l
1� l2
� � @f

@l
þ CEn zð Þ

v2

@f

@v
(25)

is rewritten in terms of the variable Z

Z ðzÞ ¼
ðz

0

nðẑÞdẑ: (26)

Performing the expansion and averaging in l gives the diffu-

sive kinetic equation

1

CEn Zð Þ
@f

@t
¼ v5

3CECl

@2f

@Z2
þ 1

v2

@f

@v
: (27)

The adjoint equation, as defined by Eq. (13), rewritten in

primed variables, is

� 1

CEn Z0ð Þ
@w
@t0
¼ v05

3CECl

@2w
@Z02
� 1

v02
@w
@v0

: (28)

To get the utility E, Eq. (19), integrate this equation in t0

from �1 to an initial condition of W at t, per the discussion

at the end of Sec. III,

CE

v02
@E

@v0
¼ 1

3

v05

Cl

@2E

@Z02
þW Z0; v0ð Þ

n Z0ð Þ
: (29)

The dependence of W on Z is only through the density. To

see this, consider, for simplicity,

WðZ; vÞ ¼ Ef nf 0nðZÞvrðvÞ; (30)

which approximates the collision partners in the Maxwellian

average to all be stationary with respect to the fast ion.

The density of collision scattering centers is nf ¼ nf 0nðZÞ,
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typically representing a single species from the sum in

Eq. (22). Then the solution of Eq. (29) on the domain z 2
½0;1� is

E �v0;�z0ð Þ¼E0

ð�v 0

0

d�v�r �vð Þ�v3Erf

ffiffiffi
6
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�v08��v8
p

ð�z 0

0

�n �zð Þd�z

 !
(31)

in variables where the velocity is normalized to the velocity

at the peak of the fusion cross-section, the density is normal-

ized to a mean density, the cross section to the peak cross

section, and distance is normalized to a hybrid mean free

path that naturally appears

�v ¼ v

vG
; (32a)

�n ¼ n

n0

; �r ¼ r
r0

; (32b)

�z ¼ z

k�
¼ z

vG=
ffiffiffiffiffiffiffiffiffiffiffi
�G

l �
G
E

q : (32c)

The constants are grouped into E0 ¼ Ef v4
Gr0nf 0=CE, which

has units of energy. The superscript G on the collision fre-

quencies indicates the collision frequency at velocity vG and

mean density n0. Note that nf 0 will also appear in the sum in

CE, Eq. (24), so that E0 does not scale linearly with it. The

contours of the fusion utility E, as given in Eq. (31), normal-

ized to Ef are shown in Fig. 1. Normalizing to Ef effectively

turns the utility into the lifetime probability of the particle

fusing, assuming no removal of the particle after a fusion

event. The limit Z !1 (equivalently z!1 for non-

vanishing density profiles) gives the utility in the absence of

a boundary. Horizontal contours in Fig. 1 indicate the region

where fast ions are fully utilized; moving the ion spatially in

a region of horizontal contours has no effect on the utility. In

other words, the ion does not feel the boundary. Figure 1

shows that as z approaches the boundary, there is increasing

underutilization of fast ions that is characteristic of Knudsen

layer effects. The utility in Fig. 1 is plotted using the D-T

cross section17 for r ðvÞ and assuming a 50/50 D-T plasma,

but would have a similar structure for any cross section in

these normalized units, assuming it is qualitatively similar in

being peaked, and that the background plasma temperature is

well below the peak so that the scattering centers can be

approximated as stationary. Using a fusion reaction other

than D-T would scale the utility by affecting various factors

in E0, especially Ef and r0. Subsequent figures also use the

D-T cross section and a 50/50 D-T plasma. The fact the

plasma is 50/50 D-T, instead of some other ratio, affects the

distance scale through the collision frequencies in the hybrid

mean free path, Eq. (32c), and the utility scaling, E0, through

nf 0 and CE, but not the overall structure of the utility con-

tours. The density dependence of Eq. (31) makes clear an

earlier assertion that it is the total density between the fast

ion’s starting position and the edge that matters in determin-

ing its utility, not the absolute distance. Furthermore, as a

result of the error function, there are initially large gains in

utility for adding density between a particle and the edge,

which then quickly become diminishing.

Figure 1 shows, for example, that a particle at v0 ¼ 1

(deuteron energy of 108 keV) has a normalized utility of

0.01, so that it is expected to produce 176 keV of energy in

its lifetime as a fast particle. On the other hand, a particle

that is �300 keV hotter, and it is located at least 8 k� from

the boundary, has a normalized utility of 0.09, so that it pro-

duces nine times the energy, 1.58 MeV, while having

approximately only four times the energy. Far from a bound-

ary, the ratio of utility to particle energy increases rapidly up

to a peak around v0 ¼ 2 (deuteron energy of 433 keV) and

then falls off gradually. Note that, infinitely far from a

boundary, the utility itself will be a strictly increasing func-

tion of velocity, which can be seen from Eq. (31), since the

cross section is positive and the error function evaluates

to one.

B. Magnetized utility

To treat the magnetized case, we use a guiding center

Fokker-Planck collision operator, specializing for simplicity

to a uniform magnetic field in the z direction.18,19 In order

for the fast ions to be treated by this collision operator, their

cyclotron frequency xc must be greater than the collision fre-

quency for fast particles, xc � �G
l . The length scale of the

density variation allowed must also be larger than the gyrora-

dius scale

@f

@t
¼ � vl

@f

@z
þ Cln xð Þ

2v3

@

@l
1� l2
� � @f

@l

þl2

v
Cl

4x2
c

@2

@x2
n xð Þf½ � þ CEn xð Þ

v2

@f

@v
: (33)

The first and second terms after the equal sign are precisely

those that lead to diffusive transport in the unmagnetized

FIG. 1. Normalized utility function E=Ef in the unmagnetized case for a 50/

50 D-T plasma. The normalized utility gives the lifetime probability of fus-

ing for a particle starting with velocity v0 at position Z0. The expected life-

time energy production is the contour value times the 17.6 MeV fusion

energy release. The absorbing boundary is located at Z0 ¼ 0. The right axis

gives the particle energy corresponding to v0, assuming the particle is a deu-

teron. The utility values shown are for a deuteron. For a triton, the plot is

identical except that both the normalized utility values and right axis energy

values are higher by a factor of 3/2.
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case, and will lead to similar transport along the magnetic

field in this case. To isolate the cross field effects, we ignore

the z dynamics. We also average over a Maxwellian in pitch

angle. This assumption of uniformity in pitch angle breaks

down when near a boundary. After dropping terms and aver-

aging out l, the kinetic equation is

@f

@t
¼ Cl

6vx2
c

@2

@x2
n xð Þfð Þ þ CEn xð Þ

v2

@f

@v
(34)

for which the adjoint must be found and then integrated in

time, as in Sec. IV A. The adjoint equation is

� @w
@t0
¼ Cln x0ð Þ

6v0x2
c

@2w
@x02
� CEn x0ð Þ

v02
@w
@v0

: (35)

Integrating in time gives the lifetime utility equation

CE

v02
@E

@v0
¼ Cl

6v0x2
c

@2E

@x02
þW x0; v0ð Þ

n x0ð Þ
: (36)

Solving this equation gives the lifetime utility function

E �v0; �z0ð Þ ¼ E0

ð�v 0

0

d�v�r �vð Þ�v3Erf

ffiffiffi
3
p

�x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�v02 � �v2
p

 !
: (37)

In this case, the distance coordinate is normalized to a modi-

fied fast particle gyro-radius

�x ¼ x=q�; (38)

where

q� ¼
ffiffiffi
R
p vG

xc

� �
; (39)

and R is the ratio of collision frequencies, R ¼ Cl=CE.

Figure 2 shows this utility function on similar (normalized)

axes as Fig. 1 for the unmagnetized case. As might be

expected, given the effects included, we can see the weaker

penetration of the Knudsen layer effect, as well as the altered

scaling of utility with increased velocity. In the unmagne-

tized case, fast ion utility decreases beyond a certain veloc-

ity, due to much higher edge loss probability outcompeting

gains in fusion production. In the magnetized case, this is no

longer true, and the utility increases with increasing velocity,

albeit at a much slower rate near the edge than would occur

with no boundary. Note that the z scales in the magnetized

and unmagnetized cases are very different. The observation

of this decreased Knudsen penetration with magnetization is

consistent with the work of Schmit et al.9 With the present

approximations, the magnetized utility is independent of

density. The much higher maximum normalized utility val-

ues in the magnetized case compared with the unmagnetzied

one result from full fast ion utilization in the highest velocity

phase space region shown. In other words, at 3q� and

v0 � 2:75, the normalized utility of 0.15 in the magnetized

case is the same value as would be achieved in the absence

of a boundary. The unmagnetized case will reach this same

normalized utility, at the same velocity (as it must), at a dis-

tance much greater than the maximum distance shown in

Fig. 1.

V. INCREMENTAL UTILITY CALCULATION AND
REACTIVITY LOSS MITIGATION

Figures 1 and 2 show that the energy produced by a fast

ion in the edge region can be increased substantially by mov-

ing the ion away from the boundary. For example, Fig. 1

shows that moving an ion with velocity v0 ¼ 1:5 by one k�
away from the boundary, from Z0 � 1 to Z0 � 2, increases

the expected fusion probability by more than 50% (from

�0.03 to �0.05), and therefore also the expected energy pro-

duction. All the while, the particle energy remains the same.

While the numbers are different for the magnetized case, the

effect is clear. In the magnetized case, the magnetic field can

link wave pushes in energy to pushes in space, making it

possible to move hot ions away from the boundary and

increase their utility. Here, we calculate the fusion gains pos-

sible from such pushing.

Using the magnetized fusion utility, Eq. (37), and sim-

plifying the moment Eq. (15) under the same set of assump-

tions, we can write the expected change in fusion power

production as a result of wave induced fluxes in space and

velocity,

E ¼
ð

dv

ð
dx W v; xð ÞfMv v; xð Þ

¼
ð

dv0
ð

dx0
@E

@x0
Cx þ

@E

@v0
� Cv: (40)

To isolate the impact of the waves in phase space, consider

localized fluxes

Cx;v ¼ Cx0;v0dðx0 � x0Þdðv0 � v0Þ: (41)

If pushing the fast ion to a new point in phase space produces

more net fusion energy over its lifetime than energy required
FIG. 2. Same as Fig. 1, the normalized utility function E=Ef , but in the mag-

netized case. The horizontal axis scale is now q� instead of k�.
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to push, there will be a net gain in energy. This gain is

defined by

g x0;v0ð Þ ¼
E
�D
; (42)

where �D is the energy absorbed by the ion during the push

�D ¼
ð

dx0
ð

dv0Cv0 �
d mv02=2
� �

dv0
: (43)

The gain for the magnetized case is then

g z0; v0ð Þ ¼
@E

@x0

Cx0 þ
@E

@v0

Cv0

� ��
mv0ð Þ

¼ E0

mv2
G

�r �v0ð Þ�v3
0þ2

ffiffiffi
3

p

r ðv0

0

d�v
�r �vð Þ�v3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�v2

0 � �v2
p

 

� exp � 3�z2
0

�v2
0 � �v2

 !
d�x0

d�v0

� �x0�v0

�v2
0 � �v2

� 	!
: (44)

The first and third terms in Eq. (44) occur due to changes in

utility with changing velocity, the second term (first in the

square brackets) occurs due to changes in utility with chang-

ing position. In writing this expression, we have made the

replacement

Cx0 ¼
dx0

dv0

Cv0 (45)

without loss of generality. The flux Cv0 is set to 1 so that g
represents the single particle gain, which is useful to see for

gaining intuition. The amount of gain in the edge region

depends heavily on the factor d�x0=d�v0, which represents the

amount of change in spatial position a wave can impart for a

given velocity change. For an ion gyro-orbiting a z directed

magnetic field, and a wave directed in the y direction, we

can write a simple resonance condition as x� kyvy ¼ 0. If

the wave imparts a velocity kick dvy and a corresponding

energy change mvydvy, then the change in guiding center for

the particle is

d�xgc

d�v0

¼ � v0ky

x
: (46)

Equation (46) shows that the amount of change in position

for a given velocity change is in large part determined by the

wave properties. Figure 3 shows the gain, Eq. (44), plotted

for d�x0=d�v0 ¼ 2. In this case, the gains may be quite high in

the region where Knudsen effects are prominent. For ions

pushed over a non-infinitesimal path through phase space,

the gain would be averaged along the path. In Fig. 3, this

path is constrained to be a line of slope 1/2, since the gain

contours are calculated assuming d�x0=d�v0 ¼ 2.

As before, regions of horizontal contours indicate where

Knudsen effects cease to have an impact. Larger values of

d�x0=d�v0 will result in even larger gains, but these gains

would not extend into regions of horizontal contours. For

example, Knudsen impacted gains for particles less than 1.5

vG (or equivalently 244 keV deuteron energy in the D-T

plasma considered here) have a maximum extent of approxi-

mately 1 q� from the boundary. Far from the boundary, push-

ing in space has no effect, so that the gains are due purely to

a baseline gain from pushing in velocity. This baseline is

given by the first term in Eq. (44). In the present case, the

baseline has a maximum gain of approximately 49:2=ln ðKÞ
for fast ions near the peak of the fusion cross section. Gains

here are calculated using the full 17.6 MeV fusion energy

for Ef, and must be scaled down accordingly if one is only

interested in the 3.5 MeV alpha particle energy. Figure 3

uses ln ðKÞ ¼ 8. A different Coulomb logarithm value

would, again, affect the scaling of the figure but not the

structure. Having large gains requires being able to find a

wave with the right properties (e.g., phase velocity, wave-

number) in the edge region of the ICF plasma.

The gains calculated here assume that the only increase

in fusion energy production as a result of the injected energy

is that generated by increases in the ion chance of fusion.

However, the effective gains may be increased by the fact

that the some portion of the injected energy will be trans-

ferred by collisions from the ion to other plasma particles,

heating them. Energy transferred from the fast ion that helps

generate other fast ions would most increase the gain in

fusion reactions, but any energy going into ion heating is

useful.

VI. DISCUSSION

Ultimately, the usefulness of the scheme for restoring

fusion reactivity lost to the deleterious effects of the

Knudsen layer depends on two factors: the efficiency with

which reactivity can be restored, and the total amount of

reactivity that can be restored compared with the entire hot

spot reactivity. With the right wave, the theoretical single

particle efficiency may be high. Pushing many fast particles

from the edge region towards the interior may result in a

FIG. 3. Gain function g in near boundary region, giving the multiplier

between input energy and increase in expected fusion energy output; when a

fast ion at x0, v0 is pushed incrementally in space and velocity. Axis scales

are the same as discussed in Fig. 1, but with a horizontal scale of q� instead

of k�. Gain values are the same for both deuterons and tritons.
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lower individual efficiency, since such pushing requires dif-

fusion paths in phase space—once a particle has been pushed

inwards to a new position in the phase space, it raises the

phase space density there, eventually making it infeasible to

push to the same location. Since the distribution function

drops off quite rapidly as a function of velocity in the region

of velocity space occupied by fast particles, pushing particles

more in velocity for a given spatial push opens up more

phase space, but lowers the efficiency. Tackling the global

efficiency of the scheme in a dynamic situation is a challeng-

ing problem.

The second factor depends largely on the design of mag-

netized ICF experiments. The larger the fraction of the burn-

ing plasma volume that is subject to the depletion of fast

ions due to edge loss, the more theoretically useful the miti-

gation scheme. The point design for magnetized liner experi-

ments and recent magnetized OMEGA implosions are not

expected to suffer substantial Knudsen related losses.9

However, it is possible that future magnetized ICF experi-

ments may be in a regime where there is some level of mag-

netized Knudsen edge loss. Unforeseen kinetic or dynamical

effects may also cause more ion loss than currently expected.

The mitigation strategy presented here should remain rele-

vant for more inclusive physics models of edge ion loss, so

long as the loss is kinetic in nature. While no mitigation may

be needed, it is reassuring that the more necessary it is the

more theoretically efficient it may become—when the utility

decreases rapidly near the edge, large restorations can be had

for small spatial pushes.

Note that neither utility function derived here is

expected to be accurate immediately near the boundary. This

is due to the breakdown of underlying assumptions in each

model at the boundary, particularly the lack of dependence

of the distribution function on l, which is not sensible for an

absorbing boundary but underlies the diffusive approxima-

tion. This is a well known problem. Albright et al. have dem-

onstrated the implementation of an improved boundary

condition for the unmagnetized diffusive model used here in

the Knudsen layer context.4 Improvements for the unmagne-

tized case, beyond the diffusive model used here, have been

discussed by Tang et al.6 and McDevitt et al.8 For simplicity

of demonstrating the technique and ideas, we have used a

zero boundary condition and diffusive approximations.

The linearization in Eq. (7) is not strictly valid near

boundaries, where past work3,4,9 has indicated the excursion

from Maxwellian in the tail of the distribution function can

be rather large. This affects the validity of equations involv-

ing v, like the adjoint moment equation for the differential

fusion energy production, Eq. (15). However, the utility,

given by Eq. (19), is relatively insensitive to the background

distribution so that it is still well defined and valid within the

approximations used in its calculation. The utility is in

essence a single particle calculation that helps determine

what we can say without calculating the actual distribution

function.

The high velocity approximation discussed in Sec. IV

can be accurate for the calculation of the utility of very fast

particles because the vast majority of the expected lifetime

fusion energy created by a particle that starts fast will occur

while it is fast. Even if we fail to accurately capture the parti-

cle dynamics when it starts getting closer to thermal speed

(for example, velocity diffusion which starts to kick in), the

contribution to the fusion utility is negligible there, so we

will still get a reasonable estimate of the expected fusion

energy production. Note that this is true since we are consid-

ering a finite “lifetime,” i.e., there is some velocity, say the

thermal velocity or some substantial fraction of it, below

which we stop tracking the particle. This means we are not

treating the circumstance when a fast ion has slowed down to

nearly zero velocity and is then jostled back into being a fast

ion. This circumstance does not matter when calculating the

incremental energy production due to an initial energy or spa-

tial push, since the ion loses memory of the push after it

slows down. However, the finite lifetime may limit the

applicability of the utility functions given here for other prob-

lems. This is not a fundamental limitation of the utility func-

tion formulation, but rather of the present approximations.

For the approximately 10 keV operating temperature

targeted in typical ICF experiments, the Gamow peak in a

50–50 DT plasma is located at approximately three times the

thermal energy (less than 2 VT). The Gamow peak gives the

particle energy value where the maximum fusion production

occurs, when both the fusion cross section and the number of

particles at each energy in a Maxwellian distribution are

taken into account. The high velocity approximation means

utility values for these particles will not be quantitatively

accurate, although trends in the utility at these lower veloc-

ities can still be correct. As the temperature considered

decreases, the broad Gamow peak will start to contain more

and more high (normalized to VT) velocity particles. Then

the high velocity approximation will yield increasingly accu-

rate utility results. (For reference, far from the boundary,

Monte Carlo simulations indicate that the high velocity util-

ity for a particle starting at 4 VT is off by �10% compared

with a utility calculated with the next order velocity diffu-

sion term included.) Of course, a more accurate calculation

of the utility function could be obtained by avoiding the high

velocity approximation and solving instead the complete

adjoint equation.

The utility function and adjoint approach could be

applied to calculate a total reactivity reduction, which past

Knudsen layer work has focused on.3–6,9 However, a full

consideration of the relative benefits of different approaches

for calculating reactivity reduction is beyond the scope of

this present work.

The adjoint approach for the utility function can be sys-

tematically generalized to increasingly complex situations.

More general moment equations than Eq. (15) can be writ-

ten, allowing for more complicated boundary conditions.

One could include other effects not considered here, such as

electric fields or more complex collisional dynamics. The

adjoint formulation can also be expanded to include a time

evolving background.15

While the examples given in this work could be made

quantitatively more accurate, the approach should be useful as

more inclusive and accurate pictures of ion kinetic physics in

ICF implosions are developed. With a simple application, it

has given us insight into the density dependence of
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magnetized and unmagnetized Knudsen dynamics, as well as

a basic evaluation of a scheme for combating Knudsen losses.
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