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An analytical theory is proposed for the kinetic electrostatic electron nonlinear (KEEN) waves

originally found in simulations by Afeyan et al. [arXiv:1210.8105]. We suggest that KEEN waves

represent saturated states of the negative mass instability (NMI) reported recently by Dodin et al.
[Phys. Rev. Lett. 110, 215006 (2013)]. Due to the NMI, trapped electrons form macroparticles that

produce field oscillations at harmonics of the bounce frequency. At large enough amplitudes, these

harmonics can phase-lock to the main wave and form stable nonlinear dissipationless structures that

are nonstationary but otherwise similar to Bernstein-Greene-Kruskal modes. The theory explains why

the formation of KEEN modes is sensitive to the excitation scenario and yields estimates that agree

with the numerical results of Afeyan et al. A new type of KEEN wave may be possible at even larger

amplitudes of the driving field than those used in simulations so far. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4868230]

As originally shown in Ref. 1, collisionless plasmas can

support stationary nonlinear waves, commonly known today

as Bernstein-Greene-Kruskal (BGK) modes. Resonant par-

ticles in such modes are trapped and phase-mixed, so Landau

damping is suppressed.2 On the other hand, trapped particles

are known to be responsible for a number of instabilities,3 so

BGK waves are not necessarily attractor states, and, as such,

are not always easily accessible.4 It was shown in Refs. 5

and 6 that, when excited by a strong enough force, plasma

oscillations can instead saturate in the form of structures

that, unlike BGK modes, are nonstationary in any frame of

reference and yet are undamped too. Such modes are

believed to have no fluid or linear analogs and, in one-

dimensional electron plasmas (to which our discussion will

be limited for clarity), were termed kinetic electrostatic elec-

tron nonlinear (KEEN) waves.5,6

KEEN waves were numerically observed near the

branch of the dispersion relation corresponding to the

electron-acoustic waves (EAW), i.e., at frequencies close to

xEAW� 1.31kvT; here, k is the wave number and vT is the

electron thermal speed.7–10 (Albeit strongly damped in

Maxwellian plasma, and thus rarely taken into account,

EAW can be nondissipative if the particle distribution is

flat at velocities close to xEAW/k. This occurs naturally

when plasma is driven externally at frequency x�xEAW for

a long enough time. Similar ion waves were also discussed

in Ref. 11.) However, KEEN modes are qualitatively differ-

ent from EAW, as they contain multiple pronounced

phase-locked harmonics. The advanced numerical modeling

reported recently in Refs. 12–14 corroborate that such a

spectrum is a robust feature of KEEN waves. In particular,

it was proposed in Ref. 12 that KEEN waves represent

essentially a superposition of BGK-like structures. One

may also attribute them as “BGK waves within BGK

waves.”15 However, the physical nature of these struc-

tures, as well as the sensitivity of KEEN waves to the

excitation scenario and the driver amplitude,5 is yet to

be understood in detail.

The purpose of this brief note is to offer a qualitative ex-

planation of these issues by pointing to the connection

between KEEN waves and the negative mass instability

(NMI) that was recently identified for BGK-like waves in

Ref. 16. In essence, the NMI causes trapped electrons to

bunch into macroparticles, which then produce sideband

oscillations of the wave field, shifted from the main wave by,

roughly, integers of the bounce frequency. These sidebands

survive in the long run only if they are phase-locked to the

main wave. This requires, for parameters at which KEEN

waves have been studied so far, that the bounce frequency be

somewhat higher than half of xEAW. Below, we explain this

in detail.

Suppose, as in Ref. 5, that electron oscillations are

excited by an external driving force with some frequency

x, wave number k, and spatially homogeneous ampli-

tude. Assuming that the driver is turned on slowly, both

trapped and passing particles conserve certain adiabatic

invariants that can be expressed in terms of their actions,

J. The action is defined as the appropriately normalized17

phase space area encircled by the particle trajectory in

the frame where the driver field is stationary; this frame,
�K, travels with respect to the laboratory frame K at the

driver phase velocity, u¼x/k (assumed nonrelativistic).

For a trapped particle, the invariant is J itself, whereas

for a passing particle, the invariant is the oscillation-

center canonical momentum, P ¼ mu þ kJ sgn ðv� uÞ,
where m is the electron mass and v is the electron

velocity.18,19

Let us assume that both x and k are constants; then con-

servation of P implies conservation of J for passing particles

too.20 But J, if normalized appropriately,17 is conserved also

when a particle crosses the separatrix, albeit with worse-

than-exponential accuracy.21–23 Therefore, the action distri-

bution, F(J), is conserved throughout the entire process of

the wave excitation. This gives17,24

FðJÞ ¼ ðk=mÞ½f0ðuþ kJ=mÞ þ f0ðu� kJ=mÞ�; (1)
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where f0(v) is the initial velocity distribution. The separatrix

action is J ¼ ð4=pÞmX0=k2,17 where X0 ¼ ðeEk=mÞ1=2
is the

maximum bounce frequency and E is the amplitude of the

total electric field, including both the driver and the induced

field. (We assume, for clarity, that eE> 0 and k> 0.) Hence,

if E is small enough, the trapped distribution can be approxi-

mated with the second-order Taylor expansion of Eq. (1). The

terms linear in the trapped-particle action, 6ðk=mÞ2Jf 00ðuÞ,
mutually cancel out, so one gets

FtðJÞ � ðk=mÞ½2f0ðuÞ þ ðkJ=mÞ2f 000 ðuÞ�; (2)

regardless of the value of f 00ðuÞ. For x�xEAW in

Maxwellian plasma assumed here, one has f 000ðuÞ > 0. Thus,

such a distribution is inverted, F0tðJÞ > 0, as is also seen

directly in simulations.25

As shown in Ref. 16, inverted Ft(J) can be unstable due

to the particle bounce frequency X(J) being a decreasing

function of J. [Note that, unlike F0tðJÞ, the slope of the

“spatially averaged velocity distribution” is not directly

linked to trapped-particle instabilities, contrary to what is of-

ten assumed in the literature.] This is explained as follows.

Consider a pair of electrons bouncing in the wave potential,

i.e., rotating in phase space around a local equilibrium.

Through Coulomb repulsion (strictly speaking, via collective

fields), the leading particle increases its energy; then it

moves to an outer phase orbit and slows down its phase

space rotation (as X0 < 0), whereas the trailing particle

moves to a lower orbit and speeds up, correspondingly. This

way, mutually repelling electrons can undergo phase-

bunching, or condensation, as if they had negative masses.

The condensation may or may not eventually saturate in the

form of a stable macroparticle, but its very formation consti-

tutes a fundamental instability in itself. By analogy with sim-

ilar effects in accelerators26 and ion traps,27,28 the term NMI

was coined for this instability in Ref. 16.

Now consider the effect of macroparticles as production

of sidebands of the wave field. As the driver continues to

feed the instability, these sidebands grow and initiate sto-

chastization of electron orbits in the resonance region. (One

can view this as an effect akin, if not identical, to quasilinear

diffusion.) The stochastization tends to flatten the trapped

distribution and thus eventually suppresses the NMI. Most

particles then phase-mix (cf. Ref. 29), so a standard, albeit

non-sinusoidal,30 BGK mode is formed. However, the sce-

nario is different when the sidebands are in approximate res-

onance with the main wave (and, thus, with the driver too).

In that case, the system is close to periodic, so one can

expect formation of invariant tori in the particle phase space,

even for a relatively strong driver. Then, the system can sus-

tain large stable macroparticles and the corresponding well-

pronounced sidebands phase-locked to the main wave; cf.

Refs. 29, 31, and 32. Once phase-locked, the wave should

also be able to tolerate moderate variations of the wave am-

plitude from the exact resonance, as in a typical autoreso-

nance,33 without abrupt modifications of the spectrum; i.e.,

one can expect that its nonlinear features are robust. (But, of

course, large enough variations of the wave parameters

destroy the resonance.)

The condition of phase locking is derived as follows.

Suppose the system is stabilized in a state where there are N
identical macroparticles per island. Assuming that the trapped

density is small enough, this should cause oscillations of the

electrostatic potential u in the frame �K at harmonics of the

frequency �x ¼ NXðJÞ, where J is the characteristic action

corresponding to the macroparticle trajectory. Since the driver

field is stationary in �K but renders the background spatially

periodic, each of these harmonics is a Bloch-Floquet wave, so

the total potential is representable as u ¼
P

‘n u‘ne�i‘�xtþink�x .

Here, we assumed (as is dictated also by specific boundary

conditions commonly adopted for simulations16) that the

wave is spatially periodic with the same period as the driver,

and the coordinate �x relates to the coordinate x in K as

�x ¼ x� ut; hence u ¼
P

‘n u‘ne�ið‘�x�nxÞtþinkx. On the other

hand, the temporal period of a phase-locked wave must also

be the same as that of the driver. Then, �x ¼ �Nx, or

X ¼ �Nx=N, where �N is some integer.

Since we are interested in weakly nonlinear waves, we

will assume X<x or �N < N. Also, noticeable nonlinear

structures can be expected only at resonances of not-too-high

order, i.e., �N þ N cannot be too large. This limits KEEN

waves to, say, N � 3 and �N ¼ 1. Hence, the following pic-

ture is suggested for wave excitation in initially quiescent

plasma. Assuming X grows starting from zero, it passes sev-

eral resonances of the type

X ¼ x=N; (3)

with consequently decreasing N. As the bounce frequency is

J-dependent, Eq. (3) can be satisfied for more than one N for a

given driver. On the other hand, resonances unavoidably com-

pete when they enter the nonlinear stage. What survives is

always the strongest resonance, i.e., the one that has the low-

est order allowed by Eq. (3), Nm¼x/X0. Using the dimen-

sionless variables j¼ kvT/xp and a ¼ eE=ðmxpvTÞ, where xp

is the plasma frequency, one can express Nm as follows:

Nm ¼ ðu=vTÞðj=aÞ1=2: (4)

For u/vT¼ 1.31 and j¼ 0.26, which are typical for

KEEN-wave simulations, Eq. (4) becomes Nm ¼ 2ða=acÞ�1=2
,

where ac� 0.11. This shows that, at a> ac, phase-locking is

possible into a resonance with N¼ 2, which corresponds to

two macroparticles per island. In contrast, at a< ac, phase-

locking is possible only at N¼ 3, which corresponds to three

macroparticles per island. In the latter case, the macroparticle

size is much smaller, so one can expect an abrupt modification

of the wave spectrum at a� ac. This is indeed what is seen in

simulations.5 Moreover, the typical KEEN mode shown in

Fig. 1 of Ref. 5 clearly shows the presence of exactly two

macroparticles in a trapping island.

One can also anticipate a similar threshold at a� 0.5,

when Eq. (4) predicts Nm¼ 1. A single macroparticle can

form then and bounce resonantly to the main wave. At such

large amplitudes, however, the electron quiver speed

becomes comparable to vT, so the above estimates (which

rely on the weak-interaction model and the EAW dispersion

being linear) may lack quantitative accuracy.
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In summary, here, we propose a basic semi-quantitative

theory of KEEN waves. We argue that key to the KEEN

mode formation is a specific instability, the NMI,16 that pro-

duces macroparticles out of trapped electrons. These macro-

particles can, under certain conditions, become phase-locked

to the main wave. For parameters typical for KEEN-wave

simulations reported in literature, this requires that the

bounce frequency be higher than half of xEAW, imposing a

lower limit on the driver amplitude. This picture readily

explains why the formation of KEEN modes is sensitive to

the excitation scenario; e.g., pre-flattening of the resonant

distribution would eliminate the source of the NMI, so mac-

roparticles would not form, and the wave would remain in

the linear regime. We also propose numerical estimates that

agree with existing simulation results and argue that a new

type of KEEN waves may be possible at even larger ampli-

tudes of the driving field than those tried in simulations so

far. Finally, due to the general nature of the mechanism con-

sidered here, similar arguments may apply to other kinetic

waves too, such as the ion-bulk waves introduced in Ref. 11.
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