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Waves propagating through a bounded plasma can rearrange the densities of states in the six-

dimensional velocity-configuration phase space. Depending on the rearrangement, the wave energy

can either increase or decrease, with the difference taken up by the total plasma energy. In the case

where the rearrangement is diffusive, only certain plasma states can be reached. It turns out that the

set of reachable states through such diffusive rearrangements has been described in very different

contexts. Building upon those descriptions, and making use of the fact that the plasma energy is a

linear functional of the state densities, the maximal extractable energy under diffusive rearrange-

ment can then be addressed through linear programming. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4933018]

I. INTRODUCTION

Waves propagating through a bounded plasma can rear-

range the densities of states in the six-dimensional velocity-

configuration phase space. When the rearrangement is such

as to cause particles to diffuse from higher energy states to

lower energy states, the waves extract energy from the

plasma. A particular case of this posing of the rearrangement

problem is the case of alpha channeling, where the energy is

deliberately extracted from the population of a-particles that

are produced in a fusion reactor.1 This energy is recovered as

wave energy. In a reactor, this energy is more useful in the

form of wave energy, which can be used to attain a hot-ion

mode or to drive electrical current.

The rearrangements contemplated in plasma using

waves are diffusive in nature, since the wave-particle mecha-

nisms generally cannot maintain coherence, at least not for

the leading way of using external rf sources to heat or drive

current in plasma. However, depending on the wave fre-

quency and wavenumber, the diffusion occurs in paths that

link energy to the spatial dimensions. In the case of tokamak

reactors, where a-particles are expected to be born at high

energy in the plasma center, there is a natural energy inver-

sion along the path that connects the dense phase space loca-

tion at high energy in the center to the under-dense phase

space location that is at low energy on the periphery. It is

then only a matter of constructing the appropriate wave dif-

fusion path to link these locations. How much energy can be

released from a-particles is a matter of considerable practical

interest, since if appreciable energy could be released in this

manner, there then might be the opportunity to diminish sub-

stantially the cost of electricity through tokamak fusion.

A theoretical issue of academic interest, however, is the

precise maximum available energy under diffusive rearrange-

ments of phase space density when an arbitrary number of dif-

fusion paths can be constructed.2 The energy extractable under

diffusion was posed recently, in fact, as one of the interesting,

outstanding problems in wave-particle physics in plasma.3 This

issue also motivated to some extent approaches to other bounds

on energy exchange between light and plasma, such as the

extent to which bounds could be placed on the absorption of

laser light at an interface.4 There are, to be sure, also other for-

mulations of free energy in plasma under phase space density

rearrangements. For example, respecting phase space conserva-

tion, the Gardner restacking5,6 represents a precisely definable

free energy that can be readily calculated. This energy is an

upper bound on that which can be extracted through diffusive

processes. However, because the Gardner restacking is without

the realistic limitation of the diffusion constraint, the free

energy available under this formulation represents a rather rare-

fied theoretical construct, even further from practical considera-

tions than the academic issue posed here.

The free energy under the constraint of diffusive rear-

rangements has one well-known textbook example: the so-

called “bump-on-tail” problem. The tail of the Maxwellian

distribution is imagined to have a “bump” in velocity space,

so that the distribution is no longer monotonically decreasing

in energy. In this case, waves can diffuse particles so as to

smooth out the bump, releasing the kinetic energy, until a

distribution monotonically decreasing in energy is reached.

The maximum extractable energy is obvious and can be con-

structed from geometrical considerations; for the one-bump

problem, it is just the energy change in flattening the bump.

However, where there are two bumps in the velocity space,

then the optimal solution would no longer be obvious at all,

since it is not clear which bump should be flattened first.

More generally, what is imagined here is that diffusion

paths can be constructed that link any two phase space loca-

tions in the 6D velocity-configuration space, whether or not

the locations are contiguous.2 The contiguous constraint can

formally be realized, in any event, in the limit of vanishingly

thin paths. Thus, we imagine an ensemble of discrete phase

space locations, each with an initial density, and each repre-

senting a certain energy. Then, as population densities relax

under diffusion, the total system energy relaxes as well. Thea)hay@princeton.edu
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free energy under the diffusion constraint is then defined as

the maximum extractable energy, given the opportunity to

diffuse particles between any two phase space locations,

with any sequence of such two-location or what we might

call two-state relaxations. It turns out, however, that while

this pair-wise relaxation is a well-defined posing of the free

energy, it has not been apparent at all how to calculate it effi-

ciently when there are many states.

The problem thus posed in plasmas can similarly be

posed with respect to stimulated emission by a set of lasers.2

Consider an initially cold ensemble of two-level atoms in the

ground state. Pumped by a resonant, incoherent source, each

atom oscillates between the ground and excited states. (The

energy levels correspond to the discrete phase space loca-

tions employed in the plasma model.) For pump durations

long compared to the Rabi period, the atoms are evenly di-

vided between the two states, a higher-entropy arrangement

associated with a larger number of microstates. In a practical

system of multilevel atoms, a train of pulses varying in fre-

quency could be used to populate specific states or liberate

energy stored in metastable excited states.

For a particular example,2 consider an ensemble of

atoms with only three energy levels, the ground state at

energy �0, the first excited state at �1, and the second excited

state at �2. The number of atoms prepared in each state is

denoted ni
0, with i¼ {1, 2, 3} identifying the energy level.

The total energy can be written W ¼~� �~n, where ~� and ~n
represent the energy levels and the population densities.

Suppose further the availability of three lasers with frequen-

cies �10, �20, and �21, that, respectively, can stimulate transi-

tions between the first level and the ground state, the second

level and the ground state, and the second level and the first

level. For example, h�20¼ �2� �0, where h is Planck’s con-

stant. If one of these incoherent lasers illuminates the ensem-

ble of atoms for a time long compared to the Rabi period, the

populations in the corresponding pair of levels will be equal-

ized. The maximum energy is extracted when the correct

sequence of laser pulses is applied.

Now suppose that the accessible states have energies

with numerical values~� ¼ ð0; 1; 4Þ and the initial state den-

sities are ~n ¼ ð0; 2=7; 5=7Þ, where the sum has been normal-

ized to 1. Then, the initial energy is W0¼ 22/7. The energy

at step j can be written as Wj. The sequence of level-

equalizing steps (�21, �20, and �10) then gives

�0 ¼ 0 �1 ¼ 1 �2 ¼ 4

initial W0 ¼ 22=7

step 1 W1 ¼ 5=2

step 2 W2 ¼ 3=2

step 3 W3 ¼ 11=8

0 2=7 5=7

0 1=2 1=2

1=4 1=2 1=4

3=8 3=8 1=4

0
BBBBBB@

1
CCCCCCA
:

The energy extracted is thus 22/7� 11/8¼ 99/56 or approxi-

mately 56% of the initial plasma energy. This work will dem-

onstrate that the sequence of pulses used here is optimal and

results in the minimum-energy final state, or equivalently the

maximum possible extracted energy. What is of interest,

however, is how exactly this can be proved, how the maximum

extraction can be calculated efficiently, and how the complex-

ity of the problem increases with the number of states.

It turns out that the answer to these questions lies in the

mathematical developments in other fields (although these

developments appear not to have received much attention).

Similar level-mixing operations have been considered in

chemical reaction kinetics.7 More directly of use here, Zylka

identified the set of accessible states through level-mixing

operations, called the K set, using as an example the problem

of attainable temperatures in heat reservoirs pairwise con-

nected by heat pipes, with an arbitrary number of reservoirs.8

Thon and Wallace, in the context of characterizations of

altruism as a pairwise relaxation correction to economic in-

equality,9 derived further features of the K set.10

Using these characterizations of the K set, the sequence

of operations to extract maximal energy can be found.

Although K, the set of states that can be reached from these

level-mixing operations, is not convex,8 one can imagine

covering the entirety of K with a small convex polygon. This

polygon (namely, the convex hull of K, denoted ch(K) here)

is determined by taking all possible convex combinations of

the points found within K. Equipped now with a linear objec-

tive function (the total energy of a state) and a convex feasi-

ble region (the unique covering polygon, ch(K)), we may

apply the fundamental theorem of linear programming to

locate the minimum energy state at a vertex or edge joining

two or more vertices of the convex hull of K. Crucially, K
contains each of the vertices of its convex hull (by construc-

tion), and so, the minimum energy state over the polygon

covering K is identical to the minimum energy state found

within K.

Thus, using the results of Zylka and of Thon and

Wallace, for the three-level system, we shall pose and an-

swer the following five questions:

(1) What sequence minimizes the energy?

(2) What is the full set of sequences that must be considered

before the optimal sequence can be found?

(3) What are the full set of sequences that could possibly be

a solution, for some values of the energy levels and the

initial population densities?

(4) If it were possible to partially relax the distribution

between two states, rather than fully relax it, would that

ever be a useful step?

(5) Is it the case that it is ever useful to take a step that

increases the energy rather than decreases it?

The paper is organized as follows. In Sec. II, we define

the diffusion model. In Sec. III, we reproduce results of the

space of relaxation solutions and show how this immediately

answers the first three questions. In Sec. IV, we answer the

fourth question, proving that partial relaxation is never a use-

ful step, regardless of the number of states. In Sec. V, we

demonstrate out that strategies previously considered2 can be

put more precisely and further prove for any number of states

that energy-increasing steps can never be part of the optimal

sequence. In Sec. VI, we offer further discussion of the

implications for N states and the degree of complexity of the

problem. In Sec. VII, we summarize the main conclusions.
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II. DIFFUSION MODEL

Suppose a set of level energies �¼ (�1, �2,…, �N) and a

set of initial populations n0 ¼ ðn1
0; n2

0; …; nN
0 Þ. Here, we

understand the symbols � and n0, without superscripts, to rep-

resent vectors; the initial level density of state i is repre-

sented as ni
0. Consider a diffusion operation that equalizes

the populations of a pair of levels (i, j) such that

ni
0; nj

0

� �
! ni

0 þ nj
0

2
;

ni
0 þ nj

0

2

� �
(1)

leaving all other level populations unchanged. We are inter-

ested here in the minimization of the system energy Wd¼: � �
nf after repeated application of operations of this type on an

initial state n0 and reaching a state nf.

The diffusion operation (1) can be represented by dou-

bly stochastic matrices of the form Bij ¼ 1
2

I þ QijÞ
�

, where I
is the N�N identity matrix and Qij is the permutation matrix

that exchanges the ith and jth level populations. Application

of Bij equalizes the ith and jth populations. For example, (1)

could be styled n0! n0Bij.

The Bij are symmetric, idempotent, and do not generally

commute. (Two Bij commute if neither of them operates on

the same level.) They are a particular case of the T-trans-

form: T¼ (1� a)Iþ aQ, a 2 [0, 1] and Q is a permutation of

the identity matrix which exchanges only two rows.11 Like

all doubly stochastic matrices, T-transforms are measure-pre-

serving:
P

ab Tabnb ¼
P

b nb ¼ 1. It is important to distin-

guish between the cases of 0� a� 1/2 and 1/2< a� 1; the

latter case corresponds to moving density from a less-

populated level to a more-populated level. For now, we will

consider only a¼ 1/2 transforms, i.e., the Bij.

III. THE SET OF POINTS K

Zylka was the first to identify the set of accessible states

through level-mixing operations: the K set.8 K is determined

by the provided set of level populations, represented as a

length-N vector n0, as well as the allowed diffusion opera-

tions. Without loss of generality, n0 may be ordered increas-

ing, as we assume throughout this work. As described

previously, the diffusive Bij operations equalize the popula-

tions of any pair of levels i and j. Each element contained in

K is an N-tuple of level populations that can be reached by

applying some sequence of the various Bij to the initial state

n0.

The linear function Wd assumes its extremal values on

the boundary of ch(K). The three-level system is conven-

iently depicted in n1� n2 space. Due to normalization of the

population vector, one coordinate is ignorable and a general

state n may be written as n¼ (n1, n2, 1� n1� n2); if the total

density is say 1, the density of the third is simply 1� n1� n2.

Following Zylka, we will demonstrate that K is star-like.8

To see this, first let us consider the example considered

earlier, and previously,2 namely, the case of N¼ 3 case with

initial data n0¼ (0, 2/7, 5/7) and �¼ (0, 1, 4).

One can generate the entire set K by applying arbitrarily

long sequences of the transforms Bij to the initial point n0.

We denote the set of points generated by k arbitrary Bij the

kth generation of K. The first six generations of K are plotted

in Figure 1, overlaid with ch(K). Except for the original point

n0, the entirety of K lies along three distinct line segments

joining pairs of extreme points, as depicted in Figure 2. This

arrangement is obvious if one considers that every state must

have ni¼ nj, for some i and j, if the last transform applied in

the sequence arriving at that state is Bij.

The six extreme points (excepting n0) can then be

paired according to their final Bij. For example, the extreme

points n0B12B13 and n0B23B13 are so paired, and the line

joining them satisfies n1¼ n3¼ 1� n1� n2, or n2¼ 1� 2n1.

It is now clear that K must be star-shaped with respect to

e¼ (1/3, 1/3, 1/3) because the three lines joining pairs of

extreme points satisfy n1¼ n2¼ 1� n1� n2 there.8

Likewise, ch(K) for a three-level system is defined by at

most seven extreme points (see Appendix A). Each genera-

tion approaches e more closely, and no extreme points are

generated after the third generation.

(Consider the effect of Bij on a state n¼ (n1, n2,

1� n1� n2). Then, the Euclidean distance s of n from e satis-

fies s2 ¼ ðn� eÞ � ðn� eÞ. Comparing the distances of n
and nBij from e, one finds ðn� eÞ � ðn� eÞ � ðnBij � eÞ
�ðnBij � eÞ ¼ 1

2
ðni � njÞ2 � 0. Thus, each Bij brings a state

closer to e.)

Note that the set K is non-convex,8 since not all of the

points in ch(K) can be reached by sequences of Bij applied to

n0. Per the fundamental theorem of linear programming, the

minimum Wd over the convex feasible region ch(K) is found

either at a single extreme point of ch(K) or along an edge of

ch(K) joining two or more extreme points of ch(K). (In the

latter case, the minimum Wd multiplicity is equal to the num-

ber of collinear extreme points.) However, the extreme

points of ch(K) are all contained in K. Thus, the linearity of

the objective function Wd¼ � � n ensures that it has the same

minimum over K and ch(K).

FIG. 1. The set K for n0¼ (0, 2/7, 5/7), depicted in n1� n2 space. The con-

vex hull ch(K) is illustrated by the pink region. Extreme points of ch(K) are

indicated with red dots and labeled by the by the series of transformations

Bij required to reach them. Interior points are labeled with small black dots.

K itself is the union of the red and black dots.
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Having identified the set of extreme points of ch(K),

EðchðKÞÞ, in Fig. 1, the minimum Wd may be computed as

minf� � EðchðKÞÞg. Fig. 3 overlays contours of the state

energy � � n on K, thereby illustrating the scheme and identi-

fying the minimum energy state. In this case, the optimum

level populations are nf¼ n0B23B13B12¼ (3/8, 3/8, 1/4),

yielding a minimum Wd¼ 11/8, as previously calculated by

exhaustive search.

The sequence which minimizes the plasma energy can

always be identified with this algorithm. Crucially, because

we have not assumed any ordering of the level energies �,
the slope of the state energy contours is arbitrary in the gen-

eral case (cf. Fig. 3). Therefore, each of the seven extreme

points identified is a possible solution to the energy minimi-

zation problem.

IV. PARTIAL RELAXATION

The discussion so far has assumed complete pairwise

equalization of levels at every step, corresponding to Bij

transforms with a¼ 1/2. From a physical standpoint, den-

sities could also be relaxed through a diffusion process that

only partially equalizes population levels, corresponding to

the case of T-transforms with 0< a< 1/2.

The a¼ 1/2 transforms Bij can be reached by repeatedly

applying a particular T-transform with 0< a< 1 formed

from the same Qij, since for all 0 < a < 1; limn!1 Tn
ij

¼ 1
2

I þ QijÞ ¼ Bij

�
. Thus, the a¼ 1/2 state space is in the

closure of the state space for any fixed 0< a< 1. At the

same time, the 0< a< 1/2 state space is contained entirely in

the convex hull of the a¼ 1/2 state space. To see this, simply

observe that for 0< a< 1/2,

Tij ¼ ð1� aÞI þ aQij ¼ ð1� 2aÞI þ 2aBij; (2)

where 0< 2a< 1. Thus, any 0< a< 1/2 transform (on a state

in the a¼ 1/2 state space) results in a state that is a convex

combination of the initial state and the state resulting from

the corresponding a¼ 1/2 transform, i.e., an interior point of

ch(K). See Fig. 4 for a depiction of these possibilities. For

any Tij with 0< a< 1/2, the new state is constrained to lie on

the dashed line joining p and the corresponding pBij.

It follows that it is sufficient to consider only a¼ 1/2

transforms to identify the extreme points of the 0< a� 1/2

state space and accordingly solve the energy minimization

problem.

V. STRATEGIES FOR FINDING THE OPTIMUM
SEQUENCE

Two strategies for determining the sequence of trans-

forms Bij required to attain the minimum-Wd state were con-

jectured in Ref. 2. Reproduced here, these strategies are:

(1) Diffusion of particles first between similar population

levels, all other things being equal, eventually releases

more energy.

FIG. 2. The three lines covering K are depicted for n0¼ (0, 2/7, 5/7), empha-

sizing the star-shaped nature of K.
FIG. 3. K superimposed on contours of Wd¼ � � n (labeled by energy). The

minimum Wd is found at the extreme point n0B23B13B12¼ (3/8, 3/8, 1/4)

(labeled by a red circle in Figs. 1 and 2) labeled here by a large white circle.

FIG. 4. Result of partial relaxations (Tij with 0< a< 1/2) applied to a point

p in the convex hull of K for n0¼ (0, 2/7, 5/7), as before. Partial relaxations

result in interior points constrained to lie along the dashed lines joining p to

each pBij.
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(2) Depleting of particles the higher energy level first, all

other things being equal, eventually releases more energy.

These strategies were only surmised based on trial-and-

error experience. However, it turns out that they are inti-

mately related to the more precisely stated Proposition 2,

proposed and proven by Thon and Wallace.10 It is worth-

while here to make use of the permutation of the set of initial

populations, as introduced in Ref. 10. Given n0¼ (n1, n2, n3),

the starting permutation is {1, 2, 3} if n1< n2< n3, as

assumed throughout this work. Application of Bij exchanges

the level numberings, e.g., if n0 has permutation {1, 2, 3},

n0B12 has permutation {2, 1, 3}. For a more detailed exposi-

tion of these permutations and emergent combinatorial tech-

niques, please refer to Appendix B.

Put briefly, Prop. 2 states that extreme points can be

obtained by equalizing only adjacent level pairs. That is, any

sequence of Bij resulting in an extreme point will effect only

adjacent transpositions in the population permutation. More

concretely, n0B12 and n0B23 are both extreme points, but

n0B13, which averages the nonadjacent first and third levels,

is not. However, n0B12B13 is an extreme point because the

later application of B13 equalizes two adjacent levels, viz.,

n0 � f1; 2; 3g ! n0B12 � f2; 1; 3g ! n0B12B13 � f2; 3; 1g.
Because the initial populations are assumed ordered

increasing and the global minimum energy state will always be

located at an extreme point, any correct first step must be consist-

ent with Strategy 1: the Bij chosen must mix two adjacent levels.

It is clear that there are “dead ends” among the possible

Bij sequences, where a state is reached with level populations

decreasing with level energy, such that no more energy can

be extracted. Any such stopping state has the level popula-

tion permutation, which is the reverse of the energy level

permutation. For example, given �¼ (�1, �2, �3) with

�2<�1<�3� {2, 1, 3}, the stopping permutation is {3, 1, 2},

such that n3� n1� n2. n� {3, 1, 2} can be reached from

n0� {1, 2, 3} by the sequence n0B23B13.

The three-level system has two extreme points with per-

mutation {3, 2, 1}, the stopping permutation if the level den-

sities and energies are both ordered increasing. In one case,

the two lower-energy levels are first diffused; in the other,

the two higher-energy levels are first diffused. The state

energies of the extreme points cannot be ordered using a

reduced set of variables (i.e., only some of the initial popula-

tions or energy levels), so the correct first step can only be

determined in retrospect after a full calculation. The multi-

plicity of extreme points with a possible stopping permuta-

tion indicates that Strategy 2 is not generally applicable.

A further question of interest is the usefulness of an

“annealing” strategy, whereby a diffusion operation heats the

system, resulting in a state with extra energy. Subsequent Bij

would lower the system energy to its minimum value, presum-

ably smaller than the minimum value possible without anneal-

ing. However, such a strategy cannot obtain a global

minimum Wd. Note that any step which heats the system

results in an inversion of the population permutation with

respect to the correct stopping permutation. In order to obtain

the stopping permutation, a subsequent diffusion operation is

required on the two levels involved the heating step.

As an example, consider a case mentioned previously

with level energy permutation �� {2, 1, 3}, initial population

permutation n0� {1, 2, 3}, and stopping permutation n� {3,

1, 2}. Note that the initial permutation contains two inversions

with respect to the stopping permutation. Applying B12 to the

initial state results in the system absorbing energy

� � n0B12 � � � n0 ¼
1

2
n2 � n1ð Þ �1 � �2ð Þ: (3)

By construction, each difference on the right hand side of

Eq. (3) is positive and the system absorbs energy. Now con-

sider the number of inversions: n0B12 results in the level pop-

ulation permutation n� {2, 1, 3}, containing a total of three

inversions with respect to the stopping permutation {3, 1, 2}.

The extra inversion changes the parity of the permutation

and requires at least one additional diffusion operation to

correct. In particular, the same diffusion operation B12 must

be repeated at some point in the relaxation process. Prop. 3
of Ref. 10 states that a sequence of Bij, which equalizes a

particular pair of levels more than once cannot generate an

extreme point of ch(K). Even if all instances of the repeated

Bij correspond to adjacent transpositions, the necessary

sequence will not yield an extreme point, which always has a

(minimal length) reduced decomposition.

However, there exists at least one extreme point with the

stopping permutation. Because K is star-shaped, any annealing

strategy results in a non-optimal interior point (a convex com-

bination of the uniform distribution e and an extreme point

with the stopping permutation). Because the parity and num-

ber of inversions characterize any finite-length permutation,

this conclusion holds in the general N-level case.

VI. COMPLEXITY

Given length-N initial data, there are at most
�

N
2

�
possible states after one transformation has been applied

(fewer in case of degeneracy in the initial level populations).

The second generation contributes up to N(N� 1)(N� 2)

(Nþ 5)/8 unique states.12 Although the number of possible

unique states grows rapidly with the passing generations, these

later states spiral quickly toward the uniform distribution

e¼ (1/N, 1/N,…, 1/N).

In fact, we can safely restrict our attention to the first�
N
2

�
generations, a nevertheless enormous set for large N.

This follows from Prop. 2, which holds that extreme points

are only generated from sequences of adjacent transposi-

tions; the reverse permutation has the longest reduced

decompositions, each containing
�

N
2

�
adjacent transposi-

tions. Therefore, every extreme point can be identified after

only
�

N
2

�
generations.

Thon and Wallace10 presented an algorithm for generating

the extreme points of ch(K). In fact, the algorithm identifies the

reduced (minimum length) sequences of adjacent transpositions

(i.e., permutations exchanging only neighboring elements in the

set), leading to each permutation in the Nth symmetric group

SN . For example, if N¼ 3, the group S3 contains N!¼ 6
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possible permutations. The permutation {3, 2, 1} can be

reached from the initial X¼ {1, 2, 3} by two distinct sequen-

ces of adjacent transpositions: (1, 2)(2, 3)(1, 2) and (2, 3)(1,

2)(2, 3). The other five possible permutations of X have

unique reduced decompositions in adjacent transpositions; the

total number of such decompositions for all of the permuta-

tions in S3 is therefore seven.13 As noted, each possible per-

mutation in SN is a stopping state for an appropriate

permutation of �.
Any sequence of diffusion operations with a repeated Bij

is not minimal and results in a permutation accessible with�
N
2

�
or fewer Bij. This follows because the reverse permuta-

tion, the longest permutation when expressed in adjacent

transpositions, requires precisely
�

N
2

�
transpositions (corre-

sponding to the number of inversions in the final permutation).

For example, nB23B13B12B23 has the permutation {2, 3, 1},

which could also be reached with nB12B13.

In the N¼ 3 case, the minimization of Wd is straightfor-

ward. There are
�

3

2

�
¼ 3 unique Bij: B12, B13, and B23.

Without loss of generality, the initial data n0 are increasing,

so the initial permutation is {1, 2, 3}. The set K is covered

by ch(K), which has seven extreme points: n0, n0B12, n0B23,

n0B12B13, n0B23B13, n0B12B13B23, and n0B23B13B12.

There are � for which each of the seven extreme points

can serve as the optimum system configuration. As noted,

�� {1, 2, 3} is a special case in which the decomposition has

maximum length
�

3

2

�
¼ 3; there are two unique decomposi-

tions of the stopping permutation {3, 2, 1} in adjacent trans-

positions. Equivalently, there are two extreme points with

the stopping permutation: the minimum system energy is

then Wd¼min{� � n0B23B13B12, � � n0B12B13B23}. This is the

most general scenario for the free energy optimization prob-

lem, in which multiple extreme points with the correct stop-

ping permutation must be compared.

The problem has been reduced to evaluating the function

Wd¼ � � n at a finite number of known extreme points.

Unfortunately, the upper bound on the number of extreme

points with stopping permutations is OðNN2Þ.14,15 Because

there is no a priori means of ordering these points in energy,

the exponential depth of the state tree is intrinsic to the opti-

mization problem.16 Thus, calculating the system energy ac-

cessible with discrete diffusive exchanges is NP-hard.

VII. CONCLUSIONS

By utilizing the (mostly ignored) literature on pairwise

relaxation transformations, it is a relatively simple matter to

apply the techniques of convex optimization and combina-

torics to answer the questions posed. The first three questions

posed have been resolved for a system with an arbitrary

number of levels. The energy-minimizing sequence of Bij is

always located at an extreme point of ch(K), and is in partic-

ular, a reduced decomposition of the stopping permutation.

There may be as many as OðNN2Þ such decompositions for a

given permutation, so many extreme points must be

considered before the optimal sequence can be found.

However, each extreme point, i.e., each reduced decomposi-

tion in SN , is a possible solution for an appropriate set of

energy levels and initial population densities. Moreover, par-

tial relaxation or annealing strategies are never useful.

The exposition here has also laid the foundation for ana-

lyzing the extremal properties of more complicated systems.

One might make use of the results about K to extremize non-

linear objective functions, as would be necessary in, e.g.,

systems with electrostatic self-energy. Alternately, formulat-

ing the optimization problem over a system of countable par-

ticles (as in integer programming) could shed light on the

manipulation of degenerate matter. These systems and others

like them could reveal the physical significance of the non-

convexity of the state space.

Although we have shown that identifying the maximal

energy extraction solution is impractical in most cases of in-

terest, the results obtained along the way nonetheless provide

useful constraints on diffusive schemes that should narrow

the search for efficient strategies.
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APPENDIX A: EXTREME POINT GEOMETRY

Thon and Wallace proved10 that their algorithm gener-

ates the full set of extreme points for an arbitrary number of

energy levels N. However, the N¼ 3 case admits a straight-

forward geometric proof. All states resulting from the appli-

cation of a Bij lie along the line ni¼ nj. This constrains the

possible paths through state space. In particular, the slope of

the line joining any two points p1 and p2 such that p2¼ p1Bij

is�1 if (i, j)¼ (1, 2), 0 if (i, j)¼ (1, 3), or1 if (i, j)¼ (2, 3).

Fig. 5 plots the extreme points and the three lines cover-

ing K as well as these constrained trajectories. One extreme

point is given (n, the initial data), and the other six are gener-

ated from choosing one of two routes through state space.

Note that extreme points are only obtained by moving

directly to a line ni¼ nj, without crossing any other such

line. The lines are color-coded. Thus, for example, the partial

relaxation along a red dotted line terminates on the red solid

line; the red solid indicates complete relaxation of levels n1

and n2, while all the states traversed along the dotted line are

reachable. It can be seen from this geometrical representa-

tion that no extreme points are obtained by revisiting the

same line: each diffusive transformation Bij reduces the dis-

tance of the state from the uniform distribution e. Thus, a

state that revisits a line would necessarily be interior to the

first state reached on that line.
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APPENDIX B: COMBINATORIAL METHODS

Thon and Wallace10 simplified the structures of many

proofs by making use of the combinatorial features of the

Dalton transfer problem.9 In particular, they introduced the

permutation of the individuals whose incomes were to be

redistributed. In their notation, the initial permutation is

denoted v¼ (v(1), v(2),…, v(N)), where v(i)¼ k is interpreted

to mean that the individual numbered k is the ith poorest. This

representation is equivalent to the common two-line notation

1 2 � � � N
vð1Þ vð2Þ � � � vðNÞ

� �
;

where the first row lists indices of the permutation and the

second row identifies the individuals. Note that the ordering

of the columns is immaterial. The first column could be read

as “individual v(1) is the poorest, listed first.” By analogy,

the individuals of the Dalton problem may be construed as

energy levels and likewise poor (rich) individuals are levels,

which are smaller (larger) in population.

In our problem, it is assumed that the levels are ordered

initially from least populated to most populated, yielding an

initial permutation v(i)¼ i. Because the diffusion operations

treated in this work transfer level densities but leave the level

energies unchanged, we lose no generality by specializing to

such a permutation, which we denote {1, 2,…, N}, reflecting

n1
0 � n2

0 � � � � � nN
0 . (This is the ordered arrangement or

one-line representation of the level density permutation.) In

concordance with Ref. 10, we describe the levels nearest in

population as neighbors, e.g., n2 is neighbors with n1 and n3

only. It turns out that the extreme points of ch(K) can be

reached only by sequences of Bij averaging such neighboring

levels (Prop. 2 of Ref. 10).

Hoping for greater simplicity, we discuss separately the

permutation of the level energies, denoted {w(1), w(2),…,

w(N)}, with w(i)¼ k, meaning the level with the kth lowest

energy has initially the ith smallest population. For example,

if there is a complete population inversion, the highest-

energy levels are initially most populated and �� {1, 2,…,

N}. If instead N¼ 3 and the second-highest energy level is

most populated, followed in turn by the lowest and highest

energy levels, one has �� {3, 1, 2}, or, in two-line notation

3 2 1

2 1 3

� �
¼ 1 2 3

3 1 2

� �
:

(Recall our assumption i¼ v(i), so that the first row of the two-

line representation of the energy permutation identifies the

states ordered by initial level populations. Thus the columns of

the two-line representation could be parsed “greatest density in

second-highest energy level, second-highest density in the low-

est energy level, and least density in highest-energy level.”)

Apart from equalizing the populations of levels i and j,
one can consider the effect of the Bij on these permutations. As

mentioned previously, the Bij have no effect on the permuta-

tion of level energies, which remains fixed throughout the

problem. However, each Bij changes the permutation of level

populations, with the result that the numberings are exchanged,

so that, e.g., n0B13 has permutation {3, 2, 1}. Considering the

problem in n1� n2 space, one realizes that the effect of a Bij is

to move the system state to another of the N!¼ 6 cells in

ch(K), each corresponding to a specific permutation of the

level populations (cf. Fig. 1 of Ref. 10). The cells are separated

by rays from e to six of extreme points in ch(K) (n0 excluded).

One of the key insights of this approach is the connec-

tion between population inversions and inversions in the per-

mutation of level densities vis-�a-vis the energy permutation.

Using only the Bij, it is possible to reorder the entire set of

level populations, so that the final distribution is decreasing

with energy (we term the permutations corresponding to

such distributions stopping permutations).

In fact, there is a unique stopping permutation in a given

problem: the reverse of the energy permutation, i.e., {w(N),

w(N� 1),…, w(1)}, obtained from the composition of w

with the order-reversing permutation. Let w
r denote the

reverse of the permutation w. In two-line notation, one has

wr ¼
1 2 � � � N

wð1Þ wð2Þ � � � wðNÞ

� �
1 2 � � � N

N N� 1 � � � 1

� �

¼
N N� 1 � � � 1

wðNÞ wðN� 1Þ � � � wð1Þ

� �
1 2 � � � N

N N� 1 � � � 1

� �

¼
1 2 � � � N

wðNÞ wðN� 1Þ � � � wð1Þ

� �
:

Note that the reverse operation is an involution, such that

(wr)r¼w. For example, {1, 2, 3} and {3, 2, 1} are reverse

permutations. In our previous example, the level energy per-

mutation was {3, 1, 2} such that �3� �1� �2 for �¼ (�1, �2,

�3) and n0 ¼ ðn1
0; n

2
0; n

3
0Þ. The reverse of the � permutation is

{2, 1, 3}. Thus, any stopping state has n2� n1� n3, such that

the final population in the highest-energy level (“level 2,”

when ordered by initial population) is smallest, and so on.

By identifying the level energies’ permutation and its

reverse, the search for the correct sequence of Bij can be

greatly narrowed because only extreme points with the stop-

ping permutation need be considered.
FIG. 5. Geometric construction of K. Extreme points of ch(K) (yellow dots)

depicted with lines ni¼ nj (solid) and lines joining extreme points (dashed).
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