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A reduced fluid model of Raman backscattering is proposed that describes backward Raman

amplification (BRA) of pulses with duration s0 comparable to or even smaller than the plasma

period 2p=xp. At such a small s0, a seed pulse can be amplified even if it has the same frequency

as the pump (which is technologically advantageous), as opposed to that satisfying the Raman

resonance condition. Using our theoretical model, we numerically calculate the BRA efficiency for

such pulses as a function of s0 and show that it remains reasonably high up to s0 � 2p=xp. We also

show that using short seed pulses in BRA makes the amplification less sensitive to quasistatic

inhomogeneities of the plasma density. Amplification can persist even when the density

perturbations are large enough to violate the commonly known condition of resonant amplification.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4960835]

I. INTRODUCTION

Stimulated Raman backscattering (SRBS) of laser radia-

tion in a plasma is one of the most promising methods of

generating short (femtosecond) ultraintense electromagnetic

pulses in a laboratory. It is based on the three-wave interac-

tion between a moderately intense yet a long pump wave, a

short counterpropagating seed pulse, and Langmuir oscilla-

tions excited by the resonant beating of the two. During the

SRBS nonlinear stage (i.e., when the pump becomes strongly

depleted), the seed shortens while still absorbing most of the

pump power; hence, it ends up having intensity much higher

than that of the pump. This effect is known as Raman com-

pression or backward Raman amplification (BRA).1,2

Due to the large power throughput allowed by a plasma,

BRA can, in principle, yield intensities 104–105 times larger

than the conventional chirped-pulse amplification.3–6

Because of that, the effect has been widely studied recently,

including experimentally,7–9 but building a practical Raman

amplifier still requires solving a number of problems. One of

such problems is ensuring that the Raman interaction

remains resonant over a sufficiently large distance. This

requirement is believed to impose strict limitations on the

amplitude of plasma density inhomogeneities.10 Besides, one

typically seeks to have the difference between the pump and

seed initial frequencies equal to the plasma frequency xp,

which is not easy to achieve in practice.

Here, we report how these requirements can be relaxed

by practicing BRA on extremely short seed pulses. We start

by noticing that, if the pulse duration s0 is comparable to or

smaller than the plasma period 2p=xp, BRA should be pos-

sible even if the seed initial frequency xb0 equals that of

the pump, xa0, which case is technologically advantageous.

For Brillouin amplification, related experiments were

already reported in Refs. 11 and 12, and some theory was

discussed in Refs. 13 and 14. For BRA, the effect is yet to

be analyzed and assessed quantitatively. To do so is the

purpose of this paper.

Specifically, we proceed as follows. First, we develop

an improved analytical model of SRBS that does not assume

the traditional requirement xb0 � xa0 � xp. Then, using this

model, we numerically compare the case xb0 ¼ xa0 with

xb0 ¼ xa0 � xp in terms of the BRA efficiency and the out-

put amplitude. We demonstrate that these quantities remain

reasonably high up to s0 � 2p=xp. We also show that using

short seed pulses in BRA makes the amplification less sensi-

tive to quasistatic inhomogeneities of the plasma density.

Amplification can persist even when the density perturba-

tions are large enough to violate the commonly known con-

dition of resonant amplification.

The simplicity of our model allows us to state conclu-

sively that the effects we identified in this paper are robustly

of hydrodynamic origin. This provides a guidance to how

BRA can be optimized, in the future, at the coarse level.

Kinetic effects are the next level of complexity, so they can

be studied separately.

The paper is organized as follows. In Sec. II, we derive

our reduced analytic model of broad-band BRA. In Sec. III,

we summarize our main equations. In Sec. IV, we report the

results of our numerical simulations based on this model. In

Sec. V, we summarize our main results. Some auxiliary cal-

culations are also presented in the Appendix.

II. GENERAL THEORY

In this section, we present a detailed derivation of our

theoretical model. This model is a separate result, which can

also help extend the SRBS theory (Sec. II D) beyond the con-

text discussed in this paper. However, a reader who is not

interested in details of analytic theory can skip this section

and proceed directly to Sec. III.

A. Variational formulation

Equations describing SRBS can be conveniently

obtained from the least action principle, dS ¼ 0, where S is
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the action integral, S ¼
Ð
L dt d3x. Assuming that the plasma

is cold, the Lagrangian density L can be expressed as

follows:15

L /;A; ns; hs½ � ¼ E2 � B2

8p
�
X

s

ns @ths þ Hs t; x;rhsð Þ½ �:

(1)

Here, E ¼ �r/� @sA and B ¼ r� A are the electric and

magnetic fields, and / and A are the scalar and vector poten-

tials, correspondingly; s¼: ct (we use ¼: to denote defini-

tions), and c is the speed of light. The sum is taken over all

species, ns are the corresponding densities, and Hs are the

corresponding Hamiltonians; specifically,

Hsðt; x;rhsÞ ¼ es/ðt; xÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

s c4 þ ½crhs � qsAðt; xÞ�2
q

:

(2)

Here, qs and ms are the particle charge and mass, and hsðt; xÞ
is defined such that Ps¼: rhs is the canonical momentum of

the sth fluid.

We assume that the interaction occurs mostly along

some axis z and adopt A � A?, so Ez � �@z/. We will

allow for small corrections due to diffraction, but other than

that, transverse gradients will be considered negligible.

Hence, we assume rhs � ez@zhsðt; zÞ, where ez is the unit

vector along z axis. This implies that Ps;? is conserved, or,

more precisely, equal to zero, since the plasma is initially at

rest. (Note also that pz;s¼: @zhs are the z-projections of the

kinetic momenta.) Then, the electron Hamiltonian can be

written as follows:

He ¼ qe/þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ec4 þ ðc @zheÞ2 þ q2
eA2
?

q
: (3)

We assume ions to be approximately motionless due to large

enough mi. Then,

Hi ¼ qi/þ mic
2 þ Oðm�1

i Þ � qi/þ mic
2: (4)

Assuming that the plasma is initially neutral and has electron

density n0ðxÞ, we also get
P

iðqnÞi ¼ �qen0, where the sum

is taken over ions only, and qe � �e < 0 is the electron

charge. We will also assume that n0ðxÞ � �n at all x, where �n
is some constant characteristic density. (A more specific defi-

nition of �n will not be necessary.)

Let us now combine the above formulas and drop the

constant terms
Ð
ðnmc2Þs dt d3x and

Ð
@tðnhÞi dt d3x. After

omitting the index e for brevity, we obtain

L ¼ Lem þ L/ þ Lkin; (5)

Lem ¼
@sA?ð Þ2

8p
� r� A?ð Þ2

8p
; (6)

L/ ¼
@z/ð Þ2

8p
þ e n� n0ð Þ/;

Lkin ¼ �n @thþ mc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @zhð Þ2

m2c2
þ e2A2

?
m2c4

s
� mc2

2
4

3
5
:

(7)

Although we will not use the Euler-Lagrange equations

(ELEs) that flow from this Lagrangian density directly, we

present these equations for completeness

dA? : @2
t A? � c2r2A? ¼ �ð4pne2=mcÞA?; (8)

dh : @tnþ @zðnpz=mcÞ ¼ 0; (9)

dn : @tpz þ @zðmc2c� e/Þ ¼ 0; (10)

d/ : r2/ ¼ 4peðn� n0Þ: (11)

Here and further, the notation “dx”: means that the corre-

sponding equation is obtained by extremizing the action inte-

gral with respect to x. [More strictly speaking, Eq. (10) was

obtained by applying @z to the corresponding ELE.] Also, c
is the instantaneous Lorentz factor

c¼:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

z

m2c2
þ e2A2

?
m2c4

r
: (12)

Also notably, one could, in principle, replace a real vector

equation (8) with an equation for a complex scalar, say,

Ac¼: Ax þ iAy, and express c through jAcj2.

B. Field spectrum

Consider the electromagnetic field using its spectral rep-

resentation, namely,

A?ðt; zÞ ¼
ð1
�1

ð1
�1
Aðx; kÞe�ixtþikz dx dk: (13)

We will assume thatAðx; kÞ is peaked around some charac-

teristic wave numbers 6k0. We will also assume that the

plasma is dilute, meaning that the characteristic plasma fre-

quency �xp¼: ð4p�ne2=mÞ1=2
is much smaller than the charac-

teristic frequency of the electromagnetic field, x0; hence,

k0 � x0=c. (Still, k0 � x0=c will be considered nonzero.)

We will also assume that the width of the spectral peaks, Dk,

is sufficiently narrow compared to 2k0 yet possibly compara-

ble to, or even larger than, �xp=c. This is summarized as

follows:

2x0

c
� 2k0 � Dk � �xp

c
: (14)

Hence, the spectrum Aðx; kÞ can be split into four localized

components

A ¼ Aa þA	a þAb þA	b; (15)

where Aaðx; kÞ is peaked at ðx0; k0Þ and Ab is peaked at

ðx0;�k0Þ. Hence, we decompose the vector potential as

A? ¼ Aa þ A	a þ Ab þ A	b, where

Aa;b¼:
ð1
�1

ð1
�1
Aa;bðx; kÞe�ixtþikz dx dk (16)

are complex fields. The term Aa þ A	a describes waves prop-

agating in the þz direction and is identified as a pump wave.
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The term Ab þ A	b describes waves propagating in the �z
direction and is identified as a seed wave.

Let us also introduce the following dimensionless

fields:

a¼: eA?
mc2

; a¼: eAa

mc2
; b¼: eAb

mc2
; (17)

so a ¼ aþ a	 þ bþ b	.16 (Keep in mind that, while a and b

are complex, a is real.) Then

Lem ¼
m2c4

8pe2
½ð@saÞ2 � ðr � aÞ2�: (18)

After omitting the rapidly oscillating terms, which are insig-

nificant, one can also reduce this expression to

Lem ¼
m2c4

8pe2
j@saj2 þ j@sbj2 � jr � aj2 � jr � bj2
� �

:

C. Approximate Lagrangian density

In this paper, we limit our consideration to nonrelativis-

tic intensities (a
 1). Then, Lkin can be Taylor-expanded as

follows:

Lkin ¼ �n @thþ
@zhð Þ2

2m
þ U

� �
; (19)

where U¼: mc2a2=2 serves as an effective potential. More

specifically, one obtains

U ¼ mc2ðjaj2 þ jbj2 þ a � b	 þ a	 � bÞ

þmc2

2
a2 þ a	2 þ a � bþ a	 � b	 þ b2 þ b	2ð Þ:

Since a; b � expð6ik0zÞ, the electron density n and phase

h will respond to this effective potential U at spatial

harmonics k � 0;62k. Hence, we represent them as

follows:

n ¼ �nðN þ f þ f 	Þ; h ¼ Hþ ~h þ ~h
	
: (20)

Here, N and H have slow spatial dependence compared to f
and ~h. Regarding their temporal dependence, we expect f
and ~h to evolve with frequencies of the order of �xp 
 x,

but we do not require these fields to be quasimonochromatic

in time.

Equation (19) can now be expressed as

Lkin ¼ ��n N þ f þ f 	ð Þ
�
@tHþ @t

~h þ @t
~h
	

þ @zHð Þ2

2m
þ @zH

m
@z

~h þ @z
~h
	� �
þ j@z

~hj2

m

þmc2 jaj2 þ jbj2 þ a � b	 þ a	 � b
� �

þ ~H

�
; (21)

where

~H ¼: 1

2m
@z

~h
2 þ @z

~h
	2

� �
þmc2

2
a2 þ a	2 þ a � bð

þa	 � b	 þ b2 þ b	2
�
:

Since all terms in n ~H oscillate rapidly either in time or in

space, this term can be omitted. The same applies to other

nonresonant terms. This leads to an equivalent Lagrangian

density

Lkin ¼ ��nN

�
@tHþ

@zHð Þ2

2m
þ j@z

~hj2

m

þmc2 jaj2 þ jbj2
� ��

þ LR þ L
	
R; (22)

where LR is given by

LR¼: � �nf @t
~h
	 þ 1

m
@zHð Þ @z

~h
	� �
þ mc2 a	 � bð Þ

� �
:

Let us also represent the scalar potential as

/ ¼ mc2

e
Uþ ~/ þ ~/

	
� �

; (23)

where U is slow compared to ~/ � expð2ik0zÞ; hence,

L/ ¼
m2c4

8pe2
@zUð Þ2 þ 2j@z

~/j2
h i

þmc2�n N � N0ð ÞUþ mc2�n f ~/
	 þ f 	~/

� �
; (24)

where N0¼: n0=�n. The full Lagrangian density (5) is then

cast as follows:

L ¼ mc2�n N � N0ð ÞUþ mc2�n f ~/
	 þ f 	~/

� �

þm2c4

8pe2
@zUð Þ2 þ 2j@z

~/j2
h i

þm2c4

8pe2
@sað Þ2 þ @sbð Þ2 � r� að Þ2 � r� bð Þ2

h i

� @tHþ
@zHð Þ2

2m
þ j@z

~hj2

m
þ mc2 jaj2 þ jbj2

� �� �
�nN

� @t
~h
	 þ 1

m
@zHð Þ @z

~h
	� �
þ mc2a	 � b

� �
�nf

� @t
~h þ 1

m
@zHð Þ @z

~h
� �

þ mc2a � b	
� �

�nf 	: (25)

D. Dimensionless equations

Let us measure L in units mc2�n, time in units x�1
0 , coor-

dinates in units c=x0, and h and ~h in units mc2=x0. Let us

also introduce

b¼: �x2
p=x

2
0 
 1: (26)

Hence, Eq. (25) can be cast as follows:
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L ¼ N � N0ð ÞUþ f ~/
	 þ f 	~/

þ 1

2b
@zUð Þ2 þ 2j@z

~/j2
h i

þ 1

2b
@tað Þ2 þ @tbð Þ2 � r� að Þ2 � r� bð Þ2

h i

� @tHþ
@zHð Þ2

2
þW

� �
N

� @t
~h
	 þ @zHð Þ @z

~h
	� �
þ a	 � b

h i
f

� @t
~h þ @zHð Þ @z

~h
� �

þ a � b	
h i

f 	; (27)

where W¼: j@z
~hj2 þ jaj2 þ jbj2 is the ponderomotive poten-

tial. Since the seed pulse is expected to quickly grow larger

than the pump wave, W � jbj2 is typically a good approxi-

mation for W. Nevertheless, retaining the complete expres-

sion for W in the Lagrangian density is necessary to obtain

the correct equations for f and a.

The ELEs corresponding to the above Lagrangian den-

sity are as follows:

db	 : ð@2
z � @2

t Þb ¼ bðNaþ af 	Þ � r2
?b; (28)

d~h
	

: @tf þ @zðN~p þ fPÞ ¼ 0; (29)

dU	 : @2
z U ¼ bðN � N0Þ; (30)

df 	 : @t~p þ @zðP~p þ a � b	 � ~/Þ ¼ 0; (31)

d~/
	

: @2
z
~/ ¼ bf ; (32)

dN : @tPþ @zðP2=2þW� UÞ ¼ 0; (33)

dH : @tN þ @zðNPþ f ~p	 þ f 	~pÞ ¼ 0; (34)

where P¼: @zH and ~p¼: @z
~h. Notably, since these are exact

ELEs corresponding to the Lagrangian density L, they

remain exactly conservative even though L itself is approxi-

mate. In particular, such ELEs are automatically applicable

to inhomogeneous and even nonstationary plasmas, which

otherwise can be tricky to deal with.17,18 Another advantage

of the Lagrangian formulation is that it can be readily

extended to account for complex nonlinear effects such as

effects of trapped particles. See Refs. 19–21 for how to mod-

ify the expression for U in this case, at least for long enough

pulses.

E. Neglecting quasistatic fields

The above equations can be simplified further as fol-

lows. Assuming that the low-frequency dynamics is deter-

mined primarily by the seed pulse, we can take @t � @z in all

equations for the “slow” variables. Then, from the momen-

tum equation, we have

P � �P2=2�Wþ U � �Wþ U; (35)

where we made use of the assumption P
 1. Similarly,

from the continuity equation, we have

N � N0ð1þ PÞ�1 � N0ð1� PÞ � N0ð1þW� UÞ: (36)

Then, N � N0 � N0ðW� UÞ, so the equation for U becomes

@2
z U ¼ bN0ðW� UÞ: (37)

The above equation predicts two distinct regimes

depending on the ratio of the characteristic spatial scale l and

dp¼: c=xp. At l� dp, one has @2
z 
 b, so U � W, which

describes an adiabatic response of the plasma to the pondero-

motive potential. At l � dp, one has U � Wðl=dpÞ2, which

describes a wake field. In either case, U � W
 1. Since

nonrelativistic corrections are neglected in our theory, we

must hence adopt N � N0. In other words, the effect of all

quasistatic fields on the electron density will be neglected.

III. MAIN EQUATIONS

A. Reduced model

To the extent that the plasma density and nonlinearity

can be neglected, one has @ta � �@za and @tb � @zb, where

we used the fact that a and b have narrow spectra. Thus, to

the first nonvanishing order in ð@t þ @zÞa and ð@t � @zÞb, one

can write

ð@2
z � @2

t Þa � 2@zð@t þ @zÞa; (38)

ð@2
z � @2

t Þb � �2@zð@t � @zÞb: (39)

Then, one arrives at the following set of equations:

ð@t þ @zÞa ¼ K̂a½bðN0aþ bf Þ � r2
?a�; (40)

ð@t � @zÞb ¼ K̂b½bðN0bþ af 	Þ � r2
?b�; (41)

@tf þ @zð~pN0Þ ¼ 0; (42)

@t ~p þ @zða � b	Þ � b@�1
z f ¼ 0: (43)

Here, we introduced @�1
z as an operator inverse to @z (pro-

vided zero boundary conditions, this operator is well defined)

and

K̂a;b ¼ ð62@zÞ�1: (44)

Equations (40)–(43) form a new model of SRBS that is

one of the main results of this paper. Although we formally

required 2k0 � Dk [Eq. (14)] to derive these equations, we

expect that our model can produce reasonably accurate

results even for relatively wide electromagnetic spectra, say,

with Dk up to k0=2 (because 1/4 is considerably smaller than

unity).

Note that our model uses four first-order equations. This

makes it different from the traditional three-wave model of

SRBS that uses three first-order equations and relies on hav-

ing the Raman resonance condition1

xa � xb þ xp; (45)

where xa;b are the carrier frequencies of a and b, correspond-

ingly, and xp¼:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pN0e2=m

p
is the local plasma frequency.

(The same distinction applies to comparison with other

papers, e.g., Refs. 22 and 23, where various modifications of

the traditional SRBS model were contemplated but
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invariably assumed three-wave resonances at least approxi-

mately.) Should the condition (45) be adopted within our

model, the equations of Ref. 1 are readily reproduced (see

the Appendix).

B. Improved model for K̂a;b

For linear plane monochromatic waves in a homoge-

neous plasma, one expects that harmonics comprising both a

and b satisfy the cold-plasma dispersion relation

xðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bN0 þ k2

p
: (46)

However, from Eqs. (40) and (41), one gets

i@t

a

b

	 

¼ ðjkj7iK̂a;bÞ

a

b

	 

: (47)

Using Eq. (44), one is hence led to the linear dispersion

x kð Þ ¼ jkj þ bN0

2jkj : (48)

This is the correct asymptotic representation of Eq. (46) for

all k of interest, since we have assumed that the electromag-

netic energy is mainly concentrated at jkj �
ffiffiffi
b
p

. However,

in simulations, having xðkÞ ! 1 at k ! 0 can cause

numerical errors to build up. These errors eventually propa-

gate to larger k and then can become a problem. Hence, we

propose an alternative model for K̂a;b, namely,

K̂a;b ¼ �
iffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b� @2
z

p
7i@z

; (49)

which corresponds to the linear dispersion

x kð Þ ¼ jkj þ bN0ffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ k2

p
þ jkj

: (50)

The above equation reproduces the true dispersion relation

(46) exactly for N0 ¼ 1 (Ref. 26) and approximates it for

arbitrary N0 � 1 with fidelity at jkj �
ffiffiffi
b
p

(Fig. 1). In other

words, replacing Eq. (44) with Eq. (49) bounds the error that

FIG. 1. Comparison of the model dispersion relation (50) (solid black) with

the true dispersion relation (46) (red dashed) and the asymptotic dispersion

relation (48) (blue dashed). The model dispersion relation is plotted for

N0 ¼ 0:3; 0:7; 1:3, where higher curves correspond to larger N0. It is seen

that, at k�
ffiffiffi
b
p

, Eq. (50) is a better approximation of Eq. (46) than Eq. (48).

It is also seen that, at k�
ffiffiffi
b
p

, all three equations predict approximately the

same x.

FIG. 2. Sequence of snapshots illustrating the interaction of a linearly polarized pump (red) and seed (blue) with equal carrier frequencies x0: upper figures—

spatial representation (jaj and jbj) and lower figures—spectral representation (jaxj and jbxj). The spatial spectra are calculated at the specified moments of

time (t ¼ 12; 14; 16; 18 ps) and mapped to the frequency domain using Eq. (46). The plasma is homogeneous with density n0 ¼ 6� 1018 cm�3, and the

assumed wavelength 2pc=x0 ¼ 1:053 lm, so xp=x0 � 0:08. The initial seed is Gaussian and has the maximum amplitude bmaxðt ¼ 0Þ ¼ 0:01. The initial

pump is step-like (which is why it has a wide spectrum) with the amplitude amaxðt ¼ 0Þ ¼ 0:01. In contrast to the traditional three-wave model, the model

proposed here captures Raman harmonics at x ¼ x0 � 2xp and at x ¼ x0 þ xp, which are seen in the last subfigure. For other relevant aspects of pulse trans-

formation at SRBS, see Refs. 13 and 14.
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is caused by adopting Eqs. (38) and (39). Thus, Eq. (49) may

be better suited for numerical simulations compared to Eq.

(44). This improved model for K̂a;b can be considered as

another, secondary distinction between our model and that in

Ref. 1.

IV. NUMERICAL RESULTS

As opposed to the traditional three-wave model of

SRBS,1 the model proposed above allows a reduced descrip-

tion of BRA in the regime when the seed pulse has duration

s0 � 2p=xp: (51)

By integrating Eqs. (40)–(43) numerically [with K̂a;b mod-

eled by Eq. (49)], we show below that using such short

pulses in BRA may be advantageous for a number of rea-

sons. For clarity, we focus on the regime when the seed dura-

tion is (few) tens of fs and the intensity is comparable to that

of the pump. Such pulses are experimentally accessible; for

example, see Refs. 24 and 25.

A. Using a seed and a pump with equal carrier
frequencies

Since short seed pulses have a broad spectrum, one can

anticipate that they can be amplified using SRBS even with-

out the Raman resonance condition (45). Then, the initial

seed can be produced using the same laser as the pump with-

out additional frequency transformations, which is techno-

logically advantageous. The above theory allows one to test

this idea quantitatively using a simple and robust numerical

model.

Our simulations show that efficient BRA (i.e., that with

substantial pump depletion) using a seed and a pump with

equal initial carrier frequencies (henceforth termed x0) is

possible indeed. Figure 2 shows a typical evolution of the

corresponding fields and their spectra. It is seen that BRA

starts in the part of the seed spectrum that is downshifted by

xp from x0. Later, the maximum of the seed spectral ampli-

tude saturates but the spectrum width continues to grow,

resulting in the increase of the seed maximum amplitude

bmaxðtÞ. Eventually, a solution similar to the “p pulse”1 is

formed.

The maximum amplitude as a function of s0 is shown in

Fig. 3(a). In Fig. 3(b), we show the BRA efficiency

g¼: I b=Ia, where I a¼:
Ð
jaj2 dz and Ib¼:

Ð
jbj2 dz charac-

terize the number of quanta in the pump and seed pulses,

respectively. (Having g¼ 1 would correspond to complete

pump depletion.) For comparison, we also show bmax and g
produced at the same plasma parameters but for xa and xb

satisfying Eq. (45). At s0 
 2p=xp, the two schemes pro-

duce virtually identical results. But such initial pulses with

large enough intensities are harder to prepare,25 so more real-

istic is the regime s0 � 2p=xp. In this case, the distinction

between the resonant and nonresonant schemes becomes

somewhat noticeable, to the extent seen in Fig. 3. Still, the

two schemes produce comparable results; i.e., BRA of such

short pulses remains possible also without the Raman

resonance condition, as anticipated. At larger s0, the effi-

ciency drops, as also expected from findings in Ref. 27.

B. Effect of density inhomogeneities

We also explored numerically how BRA of short pulses

is affected by quasistatic inhomogeneities of the plasma den-

sity. For simplicity, the electron density was taken in the

form

N0 ¼ 1þ dN sinðz=LdÞ (52)

with various amplitudes dN and scales Ld. The results are

shown in Figs. 4 and 5. They indicate that BRA of pulses

with s0 satisfying Eq. (51) is much less sensitive to inhomo-

geneities than BRA of longer pulses. [Although the effect of

inhomogeneities for short pulses was studied previously in

Ref. 10, the extreme regime (51) that we discuss here was

not addressed in that paper.] In fact, it is seen that, for a wide

range of Ld, BRA tolerates dN up to unity if the pulse dura-

tion is sufficiently small.

This is a nontrivial effect, because it is not anticipated

from the traditional theory of resonant BRA. According to

Ref. 3, the seed bandwidth is irrelevant (the Green’s function

FIG. 3. Comparison of two BRA schemes that use the same carrier frequency

of the pump xa but different initial carrier frequencies of the seed xb0: red

crosses—xb0 ¼ xa � xp, blue circles—xb0 ¼ xa; s0 is the initial seed dura-

tion measured in fs. (a) Maximum amplitude of the amplified seed bmax vs s0.

(b) BRA efficiency g vs s0. (Having g¼ 1 would correspond to complete

pump depletion.) The plasma is 3-mm long and homogeneous otherwise. The

other parameters are the same as in Fig. 2; in particular, 2p=xp � 45 fs. The

initial amplitudes are amaxðt ¼ 0Þ ¼ bmaxðt ¼ 0Þ ¼ 0:01.
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reported there is the solution for a delta-shaped pulse, which

has infinitely broad spectrum), and the condition of efficient

amplification is dxp 
 a
ffiffiffiffiffiffiffiffiffi
xxp
p

. In other words, each given

frequency must remain resonant up to the Raman growth

rate, which is a natural measure of spectral broadening. In

our simulations, this condition is not satisfied for any
frequency. Thus, even linear amplification beyond the

three-wave resonance is not self-evident, let alone the non-

linear regime.

The improved tolerance of BRA with respect to density

inhomogeneities is interpreted as follows. At each given

moment, BRA is most efficient for the part of the seed spec-

trum that satisfies the condition of the local Raman reso-

nance [Eq. (45)]. This implies that different harmonics are

FIG. 4. Same as in Fig. 3 but for an inhomogeneous background plasma with density of the form (52) with dN ¼ 0:2 and Ld ¼ 200 lm.

FIG. 5. Same as in Fig. 3 but for an inhomogeneous background plasma with density of the form (52) with various dN: left column—Ld ¼ 50 lm and right column—

Ld ¼ 400 lm.
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amplified at different z. But their phases remain correlated

near the seed front, so, there, the harmonics still can interfere

constructively (albeit after a distance longer than that required

to form the standard p pulse). This results in the amplification

of the leading peak and, eventually, in pump depletion. But

the coherence is largely lost at the tail of the seed, so the tail

structure ends up being less regular (Fig. 4).

At larger dN, a larger amplification length is needed for

this mechanism to be efficient. Thus, at a given amplifica-

tion length, both bmax and g decrease accordingly. The

effect is most dramatic for weak signals. Note also that

BRA is most tolerant to smaller-scale inhomogeneities, for

their influence is effectively averaged over the pulse trajec-

tory. In contrast, larger-scale inhomogeneities cause linear

transformations of the seed spectrum according to the stan-

dard equations of geometrical optics.28 This makes it harder

to satisfy the Raman-resonance condition; then, bmax and g
decrease (Fig. 5).

V. CONCLUSIONS

To summarize, we proposed a reduced fluid model of

Raman backscattering that describes BRA of pulses with dura-

tion comparable to or even smaller than the plasma period.

Using our theoretical model, we numerically calculated the

BRA efficiency for such pulses as a function of s0 and showed

that it remains reasonably high up to s0 � 2p=xp. We also

showed that using short seed pulses in BRA makes the ampli-

fication less sensitive to quasistatic inhomogeneities of the

plasma density. Amplification can persist even when the den-

sity perturbations are large enough to violate the commonly

known condition of resonant amplification.

The simplicity of our model allows us to state conclu-

sively that the effects we identified in this paper are robustly

of hydrodynamic origin. This provides a guidance to how

BRA can be optimized, in the future, at the coarse level.

Kinetic effects are the next level of complexity, so they can

be studied separately.
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APPENDIX: THREE-WAVE MODEL

Here, we show that, in the limiting case when a; b, and f
have sufficiently narrow spectra, Eqs. (40)–(43) lead to the

traditional three-wave model of SRBS as in Ref. 1. In this

limit, one can adopt K̂a;b � �i=2 and

@zð~pN0Þ � 2i~pN0; (A1)

@zða � b	Þ � 2iða � b	Þ; (A2)

@�1
z f � ð2iÞ�1f : (A3)

Then,

ð@t þ @zÞa ¼ �ði=2Þ bðN0aþ bf Þ þ ði=2Þr2
?a; (A4)

ð@t � @zÞb ¼ �ði=2ÞbðN0bþ af 	Þ þ ði=2Þr2
?b; (A5)

@tf þ 2i~pN0 ¼ 0; (A6)

@t ~p þ 2iða � b	Þ þ bf=2 ¼ 0: (A7)

The latter pair of equations can be combined as follows:

@2
t f ¼ �2iN0@t ~p ¼ �4N0ða � b	Þ � bN0f ; (A8)

or, equivalently,

@2
t f þ bN0f ¼ �4N0ða � b	Þ: (A9)

This equation describes a driven oscillator with frequency

Xp¼:
ffiffiffiffiffiffiffiffi
bN0

p
, which is just the local plasma frequency in

dimensionless units. Since we have assumed that the spec-

trum of f is narrow, we can use

@2
t f � �X2

pf � 2iXpð@t þ iXpÞf : (A10)

This gives

@tf þ iXpf ¼ � 2iN0

Xp
a � b	ð Þ: (A11)

Equations (A4), (A5), and (A11) form a complete set of

equations describing a three-wave resonant interaction.

Specifically, f is understood as the plasma wave that can be

excited resonantly if the difference between the carrier fre-

quencies of a and b equals the local plasma frequency.

Now let us measure t and z in units X and f in units iF,

with X and F that satisfy

1

2
XFb ¼ 1;

2XN0

FXp
¼ 1; (A12)

which is equivalent to

X ¼ 1ffiffiffiffiffiffi
Xp

p ; F ¼ 2N0

X3=2
p

: (A13)

In dimensional representation, this amounts to measuring

coordinates in the units c=
ffiffiffiffiffiffiffiffiffi
xxp
p

and the amplitude of den-

sity inhomogeneities in the units 2inðx0=xpÞ2 [i.e., the new f
is nothing but �eEz=ðmcx2

pÞ], where xp is the local plasma

frequency. The corresponding equations are

ð@t þ @zÞaþ ði=2ÞX2
pa� ði=2Þr2

?a ¼ bf ; (A14)

ð@t � @zÞbþ ði=2ÞX2
pb� ði=2Þr2

?b ¼ �af 	; (A15)

@tf þ iXpf ¼ �a � b	; (A16)

and, clearly, efficient interaction within this model is possi-

ble only under the condition (45).

In a homogeneous plasma, the terms containing Xp can

be eliminated using a variable transformation, e.g.,

a! ae�iXpðt�zÞ�iX2
pt=2; (A17)

083115-8 Balakin et al. Phys. Plasmas 23, 083115 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  98.110.124.57 On: Mon, 15 Aug

2016 16:09:52



b! be�iX2
pt=2; f ! fe�iXpt: (A18)

Suppose also that diffraction is negligible. Then, the above

equations are simplified down to

ð@t þ @zÞa ¼ bf ; ð@t � @zÞb ¼ �af 	; @tf ¼ �a � b	:

Let us also introduce f¼: zþ t and assume ð@tÞf 
 ð@fÞt, as

in Ref. 1. (The indexes denote the variables that are kept

fixed at differentiation.) Then, one gets

2@fa ¼ bf ; @tb ¼ �af 	; @ff ¼ �a � b	 (A19)

[here, all fields are considered as functions of ðt; fÞ], where

we used ð@tÞz ¼ ð@tÞf þ ð@fÞt and ð@zÞt ¼ ð@fÞt.
Notice also that Eqs. (A19) yield the Manley-Rowe rela-

tion 2jaj2 þ jf j2 ¼ const. Assuming that f is initially zero,

this leads to a useful estimate for the plasma wave ampli-

tude: f � a0 (here, a0 is the amplitude of the unperturbed

pump), or, in our original units,

f � Fa0 �
a0

X3=2
p

� a0

b3=4
: (A20)
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